数值分析课程实验报告-二分法和牛顿迭代法
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析求解非线性方程根的二分法简单迭代法和牛顿迭代法

实验报告一:实验题目一、 实验目的掌握求解非线性方程根的二分法、简单迭代法和牛顿迭代法,并通过数值实验比较两种方法的收敛速度。
二、 实验内容1、编写二分法、并使用这两个程序计算02)(=-+=x e x x f 在[0, 1]区间的解,要求误差小于 410- ,比较两种方法收敛速度。
2、在利率问题中,若贷款额为20万元,月还款额为2160元,还期为10年,则年利率为多少?请使用牛顿迭代法求解。
3、由中子迁移理论,燃料棒的临界长度为下面方程的根,用牛顿迭代法求这个方程的最小正根。
4、用牛顿法求方程的根,精确至8位有效数字。
比较牛顿迭代法算单根和重根的收敛速度,并用改进的牛顿迭代法计算重根。
第1题:02)(=-+=x e x x f 区间[0,1] 函数画图可得函数零点约为0.5。
画图函数:function Test1()% f(x) 示意图, f(x) = x + exp(x) - 2; f(x) = 0r = 0:0.01:1;y = r + exp(r) - 2plot(r, y);grid on 二分法程序:计算调用函数:[c,num]=bisect(0,1,1e-4)function [c,num]=bisect(a,b,delta)%Input –a,b 是取值区间范围% -delta 是允许误差%Output -c 牛顿迭代法最后计算所得零点值% -num 是迭代次数ya = a + exp(a) - 2;yb = b + exp(b) - 2;if ya * yb>0return;endfor k=1:100c=(a+b)/2;yc= c + exp(c) - 2;if abs(yc)<=deltaa=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif abs(b-a)<deltanum=k; %num为迭代次数break;endendc=(a+b)/2;err=abs(b-a);yc = c + exp(c) - 2;牛顿迭代法程序:计算调用函数:[c,num]=newton(@func1,0.5,1e-4) 调用函数:function [y] = func1(x)y = x + exp(x) - 2;end迭代算法:function[c,num]=newton(func,p0,delta)%Input -func是运算公式% -p0是零点值% -delta是允许误差%Output -c牛顿迭代法最后计算所得零点值% -num是迭代次数num=-1;for k=1:1000y0=func(p0);dy0=diff(func([p0 p0+1e-8]))/1e-8;p1=p0-y0/dy0;err=abs(p1-p0);p0=p1;if(err<delta)num=k;%num为迭代次数break;endendc=p0;第2题:由题意得到算式:计算调用函数:[c,num]=newton(@func2,0.02,1e-8)程序:先用画图法估计出大概零点位置在0.02附近。
数值分析——二分法和牛顿法

二分法和牛顿法的比较二分法的基本思想是对有根区间[a,b]逐次分半,首先计算区间[a,b]的中间点x0,然后分析可能出现的三种情况:如果f(x0)f(a)<0,则f(x)在区间[a,x0]内有零点;如果f(x0)f(b)<0,则f(x)在区间[x0,b]内有零点;如果f(x0)=0,则x0是f(x)在区间[a,b]内所求零点。
但是二分法的缺点是收敛速度慢且不能求复根。
牛顿迭代法的基本思想是将方程f(x)=0中函数f(x)线性化,以线性方程的解逼近非线性方程的解其迭代函数为)(')()(x f x f x x -=ϕ。
牛顿迭代法的缺点是可能发生被零除错误,且可能出现死循环。
用二分法和牛顿法分别计算多项式024323=-+-x x x 的解。
该多项式的解为1、1+i 和1-i ,使用二分法计算时,区间为(-1,2),使用牛顿法计算时取初始值为0。
误差都为0.0001。
编程如下二分法(erfen.m):syms x ;fun=x^3-3*x^2+4*x-2; a=-1; b=2;d=0.0001; f=inline(fun); e=b-a; k=0;while e>d c=(a+b)/2; if f(a)*f(c)<0 b=c; elseif f(a)*f(c)>0a=c; elsea=c;b=c; end e=e/2; k=k+1; end k x=(a+b)/2牛顿法(newton.m):function [k,x,wuca] = newton() k=1; x0=0; tol=0.0001; yx1=fun(x0); yx2=fun1(x0); x1=x0-yx1/yx2; while abs(x1-x0)>tol x0=x1; yx1=fun(x0); yx2=fun1(x0); k=k+1; x1=x1-yx1/yx2; end k x=x1wuca=abs(x1-x0)/2 endfunction y1=fun(x) y1=x^3-3*x^2+4*x-2; endfunction y2=fun1(x)y2=3*x^2-6*x+4; end 分析结果得知,在相同的误差精度下,二分法需要计算15次,而牛顿法只需计算5次,得知牛顿法比二分法优越。
数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。
实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。
2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。
3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。
实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。
2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。
3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。
4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。
5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。
实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。
2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。
3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。
4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。
5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。
6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。
7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。
结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。
2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。
3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。
二分法、牛顿迭代法、普通迭代法

数值球根试验报告《数值计算方法》专业班级软件08-1姓名熊文成学号08083117时间2010年10月24日星期天一、 实验目的熟悉二分法以及牛顿迭代法求方程近似根的数值方法,掌握各种迭代方法,自己扩张研究迭代法的效率与收敛性和初始值的关系。
二、 实验内容1.已知0104)(23=-+=x x x f 在[]21,上有一个实根*x ,14)2(5)1(=-=f f ,,用二分法和牛顿迭代法求该实根,要求精度满足条件:321*1021-+⨯≤-k x x 。
2.条件允许的话,扩展研究各种迭代法的效率,以及迭代的效率和收敛性与初始值的关系,并通过比较采用两点加速的方法与普通的方法的效率体验加速迭代的优点。
总而言之,本实验中的用到的求根方法有①二分法,②牛顿迭代法,③迭代函数为213)10(21)(x x -=ϕ的迭代方法,以及④对函数213)10(21)(x x -=ϕ采用两点加速迭代的方法。
三、 主函数流程程序是按顺序运行的,流程图如下图所示:四、源程序#include <stdio.h>#include <conio.h>#include <math.h>//根据x的值计算函数值//函数f(x)=x*x*x+4*x*x-10double func(double x){double value;value=x*x*x+4*x*x-10;return value;}//根据参数x的值计算函数f(x)的导数值double divFunc(double x){return 3*x*x+8*x;}//二分法计算方程f(x)=0在[1,2]上的跟//二份迭代结束条件由参数precision精度给出void biSectionMethod(double precision){int k=0; //均分次数double x1=1.0,x2=2.0; //区间[1.0,2.0]double midx; //二分之后的值printf("\n\t k 有根区间k+1 f(x(k+1)) ");do{printf("\n\t%3d",k);printf(" [%.3f,%.3f]",x1,x2);midx=(x1+x2)/2;printf(" %f",midx);printf(" %.6f",func(midx));if (func(midx)<0)x1=midx;else x2=midx;k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>=precision); //区间的长度超过5e-3就一直迭代printf("\n\t二分法分区间的次数:%d,所求的根是:%lf",k-1,x2);}//牛顿迭代法//根据初值值x0,在区间[1.0,2.0]上迭代求根//迭代次数由参数precision精度决定void NewTonMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=x2-func(x1)/divFunc(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t牛顿迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//迭代函数g(x)=(sqrt(10-x*x*x))/2;double funcTwo(double x){return (sqrt(10-x*x*x))/2;}//普通迭代函数void ordinaMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=funcTwo(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t普通迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//使用两个跌代值的组合加速跌代//对迭代函数f(x)=(sqrt(10-x*x*x))/2的加速void twoValue(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=(funcTwo(x1)+x1)/2;if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t两点加速迭代初值:%lf,次数:%d,根:%lf",x0,k,x2);}void main(){double orgin=1.5; //初始值double precision=5e-6; //精度char sel=0; //操作符while(1){printf("\n\t选择:");printf("\n\t1.二分法\n\t2.迭代法\n\t");sel=getch();printf("\n\n\t注:程序停止处按任意键继续");if (sel=='1'){printf("\n\n\t ************二分法求解过程***********");biSectionMethod(precision); //测试函数}else{printf("\n\t输入迭代的初值:");scanf("%lf",&orgin);//if (orgin>2.0||orgin<1.0) //限制迭代初值范围,根据情况决定//orgin=1.5; //如果输入非法,则按1.5计算printf("\n\n\t ************牛顿迭代法求解过程************");NewTonMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t *******普通迭代g(x)=(sqrt(10-x*x*x))/2*****");ordinaMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t ************两个值组合加速迭代x=(g(x)+x)/2***********");twoValue(orgin,precision);}printf("\n\t任何键继续:");getch();}}五、运行结果1、选择求根方法2、 选择二分法下面给出二分法的结果:3、 选择迭代法查看结果:首先显示的是牛顿迭代法的结果:然后是普通迭代法函数是:213)10(21)(x x -=ϕ,结果如下:接着可以看到的是用两点加速法对函数213)10(21)(x x -=ϕ的加速:下面采用不同的初值查看普通迭代函数的收敛性与效率: 各个结果如下:上图对应的是收敛性:收敛的。
MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。
在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。
二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。
根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。
2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。
根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。
3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。
通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。
本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。
具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。
2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。
3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。
三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。
下面是实验结果的汇总及分析。
1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。
实验结果显示,根据给定的输入,我们得到了方程的数值解。
通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。
2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。
实验结果显示,根据给定的输入,我们得到了方程组的数值解。
与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用二分法和牛顿迭代法求方程的根
算法名称用二分法和牛顿迭代法求方程的根
学科专业机械工程
作者姓名xxxxxx
作者学号xxxBiblioteka xx作者班级xxxxxxxx
xx大学
二〇一五年十二月
《数值分析》课程实验报告
实验名称
用二分法和牛顿迭代法求方程的根
成绩
一、问题背景
在科学研究与工程计算中,常遇到方程(组)求根问题。若干个世纪以来,工程师和数学家花了大量时用于探索求解方程(组),研究各种各样的方程求解方法。对于方程f(x)=0,当f(x)为线性函数时,称f(x)=0为线性方程;当f(x)为非线性函数时,称式f(x)=0为非线性方程。对于线性方程(组)的求解,理论与数值求法的成果丰富;对于非线性方程的求解,由于f(x)的多样性,尚无一般的解析解法。当f(x)为非线性函数时,若f(x)=0无解析解,但如果对任意的精度要求,设计迭代方程,数值计算出方程的近似解,则可以认为求根的计算问题已经解决,至少能够满足实际要求。
fx=subs(ff,x,xk);
fa=subs(ff,x,a);
k=k+1;
iffx==0
y(k)=xk;
break;
elseiffa*fx<0
b=xk;
else
a=xk;
end
y(k)=xk;
end
plot(y,'.-');
gridon
(2)牛顿迭代法程序:
functionx=newton(xx,n)
对二分法和牛顿迭代法的观察和分析我们可以知道,二分法的优点是方法比较简单,编程比较容易,只是二分法只能用于求方程的近似根,不能用于求方程的复根,且收敛速度慢。而牛顿迭代法的收敛速度明显大于二分法的速度。
2、牛顿迭代法:牛顿迭代法是一种逐次逼近的方法,其步骤是首先给定一个粗糙的初始值,然后用一个迭代公式反复修正这个值,知道满足要求为止。
四、主要代码
(1)二分法程序代码:
functiony=erfen1(m,n,er)
symsxxk
a=m;b=n;k=0;
ff=x^3+x-1;
whileb-a>er
xk=(a+b)/2;
Columns 6 through 10
0.682327803828019 0.682327803828019 0.682327803828019 0.682327803828019 0.682327803828019
Column 11
0.682327803828019
根据题目精度要求,故所求根为x=0.6823278。
x=zeros(1,n+1);
x(1)=xx;
fori=1:n
x(i+1)=x(i)-(x(i)^3+x(i)-1)/(3*x(i)^2+1);
end
五、实验结果及分析
(1)二分法:
在命令窗口下执行:
实验结果如下:
可以得到迭代区间中点数列分布及图像,数值如下:
ans =
[ 0.5, 0.75, 0.625, 0.6875, 0.65625, 0.671875, 0.6796875, 0.68359375, 0.68164062, 0.68261719, 0.68212891, 0.68237305, 0.68225098, 0.68231201, 0.68234253, 0.68232727, 0.6823349]
依据题目要求的精度,则需做十七次,由实验数据知x=0.6823349即为所求的根。
(2)牛顿迭代法:
在命令窗口下执行:
>>format long
>>x=newton(1,10)
实验结果如下:
可以得到迭代列:
x =
Columns 1 through 5
1.000000000000000 0.750000000000000 0.686046511627907 0.682339582597314 0.682327803946513
二、数学模型
1.使用二分法求方程x^3+x-1=0在[0,1]内的近似根(误差<10^-5)。
2.使用牛顿迭代求方程x^3+x-1=0在[0,1]内的近似根,设置迭代格式为
三、算法描述
1、二分法:二分法是最简单的求根方法,它是利用连续函数的零点定理,将汗根区间逐次减半缩小,取区间的中点构造收敛点列{ }来逼近根x。