数值计算实验:牛顿迭代法求根
使用牛顿迭代法求解平方根

使用牛顿迭代法求解平方根牛顿迭代法是一种用于求解方程的数值方法,它可以用来近似求解平方根。
本文将介绍牛顿迭代法的原理和步骤,并通过一个简单的示例来说明其应用。
牛顿迭代法的基本思想是通过不断逼近函数的零点来求解方程。
对于求解平方根的问题,我们可以将其转化为求解方程f(x) = x^2 - a = 0的根,其中a为待求平方根的数。
我们需要选择一个初始点x0作为迭代的起点。
然后,通过牛顿迭代公式x = x0 - f(x0)/f'(x0)来计算下一个近似解x1,其中f'(x)表示函数f(x)的导数。
这个公式的意义是用切线与x轴的交点作为下一个近似解。
接下来,我们用x1作为新的起点,再次应用迭代公式计算x2。
不断重复这个过程,直到我们得到一个满足精度要求的近似解。
下面,通过一个具体的例子来演示牛顿迭代法的求解过程。
假设我们要求解的平方根是2,我们可以选择初始点x0 = 1作为起点。
我们计算f(x0)和f'(x0)的值。
代入f(x) = x^2 - 2的表达式,我们得到f(1) = 1^2 - 2 = -1和f'(1) = 2。
然后,代入牛顿迭代公式,得到x1 = 1 - (-1)/2 = 1.5。
接着,我们计算f(x1)的值,代入f(1.5) = 1.5^2 - 2 = 0.25。
由于f(x1)的值不满足精度要求,我们继续迭代。
以x1作为新的起点,计算f(x1)和f'(x1)的值。
代入公式,得到x2 = 1.5 - 0.25/2 = 1.375。
计算f(x2)的值,代入f(1.375) = 1.375^2 - 2 = -0.140625。
再次迭代,以x2作为新的起点,计算f(x2)和f'(x2)的值。
代入公式,得到x3 = 1.375 - (-0.140625)/2 = 1.4140625。
计算f(x3)的值,代入f(1.4140625) = 1.4140625^2 - 2 = -0.0009765625。
数学数学实验Newton迭代法

数学实验题目4 Newton 迭代法摘要0x 为初始猜测,则由递推关系产生逼近解*x 的迭代序列{}k x ,这个递推公式就是Newton 法。
当0x 距*x 较近时,{}k x 很快收敛于*x 。
但当0x 选择不当时,会导致{}k x 发散。
故我们事先规定迭代的最多次数。
若超过这个次数,还不收敛,则停止迭代另选初值。
前言利用牛顿迭代法求的根程序设计流程问题1(1 程序运行如下:r = NewtSolveOne('fun1_1',pi/4,1e-6,1e-4,10) r = 0.7391(2 程序运行如下:r = NewtSolveOne('fun1_2',0.6,1e-6,1e-4,10) r = 0.5885问题2(1 程序运行如下:否 是否是是定义()f x输入012,,,x N εε开 始1k =01()f x ε<0100()()f x x x f x =-'102||x x ε-<k N =输出迭代失败标志输出1x输出奇 异标志结 束01x x = 1k k =+ 否r = NewtSolveOne('fun2_1',0.5,1e-6,1e-4,10)r = 0.5671(2)程序运行如下:r = NewtSolveOne('fun2_2',0.5,1e-6,1e-4,20)r = 0.5669问题3(1)程序运行如下:①p = LegendreIter(2)p = 1.0000 0 -0.3333p = LegendreIter(3)p = 1.0000 0 -0.6000 0p = LegendreIter(4)p =1.0000 0 -0.8571 0 0.0857p = LegendreIter(5)p = 1.0000 0 -1.1111 0 0.2381 0②p = LegendreIter(6)p = 1.0000 0 -1.3636 0 0.4545 0 -0.0216r = roots(p)'r= -0.932469514203150 -0.6612 0.9324695142031530.6612 -0.238619186083197 0.238619186083197用二分法求根为:r = BinSolve('LegendreP6',-1,1,1e-6)r = -0.932470204878826 -0.661212531887755 -0.2386200573979590.2386 0.661192602040816 0.932467713647959(2)程序运行如下:①p = ChebyshevIter(2)p = 1.0000 0 -0.5000p = ChebyshevIter(3)p = 1.0000 0 -0.7500 0p = ChebyshevIter(4)p = 1.0000 0 -1.0000 0 0.1250p = ChebyshevIter(5)p = 1.0000 0 -1.2500 0 0.3125 0②p = ChebyshevIter(6)p = 1.0000 0 -1.5000 0 0.5625 0 -0.0313r = roots(p)'r = -0.965925826289067 -0.7548 0.9659258262890680.7547 -0.258819045102521 0.258819045102521用二分法求根为:r = BinSolve('ChebyshevT6',-1,1,1e-6)r = -0.965929926658163 -0.7755 -0.2588289221938780.2588 0.7020 0.965924944196429与下列代码结果基本一致,只是元素顺序稍有不同:j = 0:5;x = cos((2*j+1)*pi/2/(5+1))x =0.965925826289068 0.7548 0.258819045102521-0.258819045102521 -0.7547 -0.965925826289068(3)程序运行如下:①p = LaguerreIter(2)p = 1 -4 2p = LaguerreIter(3)p = 1 -9 18 -6p = LaguerreIter(4)p = 1 -16 72 -96 24p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000②p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000r = roots(p)'r =12.6432 7.8891 3.5964257710407111.4520 0.263560319718141用二分法求根为:r = BinSolve('LaguerreL5',0,13,1e-6)r = 0.263560314567722 1.4789 3.5964257656311507.0720 12.6490(4)程序运行如下:①p = HermiteIter(2)p = 1.0000 0 -0.5000p = HermiteIter(3)p = 1.0000 0 -1.5000 0p = HermiteIter(4)p = 1.0000 0 -3.0000 0 0.7500p = HermiteIter(5)p = 1.0000 0 -5.0000 0 3.7500 0②p = HermiteIter(6)p = 1.0000 0 -7.5000 0 11.2500 0 -1.8750r = roots(p)'r =-2.3587 2.3588 -1.3358490740136961.335849074013698 -0.4367 0.4366用二分法求根为:r = BinSolve('HermiteH6',-3,3,1e-6)r =-2.3516 -1.335849********* -0.43630.4366 1.335848983453244 2.3504所用到的函数function r = NewtSolveOne(fun, x0, ftol, dftol, maxit)% NewtSolveOne 用Newton法解方程f(x)=0在x0附近的一个根%% Synopsis: r = NewtSolveOne(fun, x0)% r = NewtSolveOne(fun, x0, ftol, dftol)%% Input: fun = (string) 需要求根的函数及其导数% x0 = 猜测根,Newton法迭代初始值% ftol = (optional)误差,默认为5e-9% dftol = (optional)导数容忍最小值,小于它表明Newton法失败,默认为5e-9 % maxit = (optional)迭代次数,默认为25%% Output: r = 在寻根区间内的根或奇点if nargin < 3ftol = 5e-9;endif nargin < 4dftol = 5e-9;endif nargin < 5maxit = 25;endx = x0; %设置初始迭代位置为x0k = 0; %初始化迭代次数为0while k <= maxitk = k + 1;[f,dfdx] = feval(fun,x); %fun返回f(x)和f'(x)的值if abs(dfdx) < dftol %如果导数小于dftol,Newton法失败,返回空值r = [];warning('dfdx is too small!');return;enddx = f/dfdx; %x(n+1) = x(n) - f( x(n) )/f'( x(n) ),这里设dx = f( x(n) )/f'( x(n) )x = x - dx;if abs(f) < ftol %如果误差小于ftol,返回当前x为根r = x;return;endendr = []; %如果牛顿法未收敛,返回空值function p = LegendreIter(n)% LegendreIter 用递推的方法计算n次勒让德多项式的系数向量Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)%% Synopsis: p = LegendreIter(n)%% Input: n = 勒让德多项式的次数%% Output: p = n次勒让德多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %P0(x) = 1p = 1;return;elseif n == 1 %P1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为P0pMid = [1 0]; %初始化三项递推公式中项为P1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Pn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = (2*i+3)/(i+2) * pMidCal - (i+1)/(i+2) * pBkCal; %勒让德多项式三项递推公式Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德多项式最高次项系数归一化function p = ChebyshevIter(n)% ChebyshevIter 用递推的方法计算n次勒让德-切比雪夫多项式的系数向量Tn+2(x) = 2*x*Tn+1(x) - Tn(x)%% Synopsis: p = ChebyshevIter(n)%% Input: n = 勒让德-切比雪夫多项式的次数%% Output: p = n次勒让德-切比雪夫多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %T0(x) = 1p = 1;return;elseif n == 1 %T1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为T0pMid = [1 0]; %初始化三项递推公式中项为T1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Tn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = 2*pMidCal - pBkCal; %勒让德-切比雪夫多项式三项递推公式Tn+2(x) = 2*x*Tn+1(x) - Tn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德-切比雪夫多项式最高次项系数归一化function p = LaguerreIter(n)% LaguerreIter 用递推的方法计算n次拉盖尔多项式的系数向量Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)*Ln(x)%% Synopsis: p = LaguerreIter(n)%% Input: n = 拉盖尔多项式的次数%% Output: p = n次拉盖尔多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %L0(x) = 1p = 1;return;elseif n == 1 %L1(x) = -x+1p = [-1 1];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [-1 1]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal1 = zeros(1,i+3); %构造用于计算的x*Ln+1(x)pMidCal1(1:i+2) = pMid;pMidCal2 = zeros(1,i+3); %构造用于计算的Ln+1(x)pMidCal2(2:i+3) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Ln(x)pBkCal(3:i+3) = pBk;pFwd =( (2*i+3)*pMidCal2 - pMidCal1 - (i+1)*pBkCal )/ (i+2); %拉盖尔多项式三项递推公式Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)^2*Ln(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function p = HermiteIter(n)% HermiteIter 用递推的方法计算n次埃尔米特多项式的系数向量Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)%% Synopsis: p = HermiteIter(n)%% Input: n = 埃尔米特多项式的次数%% Output: p = n次埃尔米特多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %H0(x) = 1p = 1;return;elseif n == 1 %H1(x) = 2*xp = [2 0];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [2 0]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Hn+1(x)pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Hn(x)pBkCal(3:i+3) = pBk;pFwd =2*pMidCal - 2*(i+1)*pBkCal; %埃尔米特多项式三项递推公式Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function r = BinSolve(fun, a, b, tol)% BinSolve 用二分法解方程f(x)=0在区间[a,b]的根%% Synopsis: r = BinSolve(fun, a, b)% r = BinSolve(fun, a, b, tol)%% Input: fun = (string) 需要求根的函数% a,b = 寻根区间上下限% tol = (optional)误差,默认为5e-9%% Output: r = 在寻根区间内的根if nargin < 4tol = 5e-9;endXb = RootBracket(fun, a, b); %粗略寻找含根区间[m,n] = size(Xb);r = [];nr = 1; %初始化找到的根的个数为1maxit = 50; %最大二分迭代次数为50for i = 1:ma = Xb(i,1); %初始化第i个寻根区间下限b = Xb(i,2); %初始化第i个寻根区间上限err = 1; %初始化误差k = 0;while k < maxitfa = feval(fun, a); %计算下限函数值fb = feval(fun, b); %计算上限函数值m = (a+b)/2;fm = feval(fun, m);err = abs(fm);if sign(fm) == sign(fb) %若中点处与右端点函数值同号,右端点赋值为中点b = m;else %若中点处与左端点函数值同号或为0,左端点赋值为中点a = m;endif err < tol %如果在a处函数值小于tolr(nr) = a; %一般奇点不符合该条件,这样可以去除奇点nr = nr + 1; %找到根的个数递增k = maxit; %改变k值跳出循环endk = k + 1; %二分迭代次数递增endendfunction X = powerX(x,a,b)% powerX 对给定向量(x1, x2,..., xn)返回增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)%% Synopsis: X = powerX(x,a,b)%% Input: x = 需要返回增幂矩阵的向量% a,b = 寻根区间上下限%% Output: X = 增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)if round(a) ~= a | round(b) ~= berror('a,b must be integers');elseif a >= berror('a must be smaller than b!');endx = x(:)';row = b-a+1;col = length(x);X = zeros(row, col);for i = b:-1:aX(b-i+1,:) = x.^i;Endfunction [f, dfdx] = fun1_1(x)f = cos(x) - x;dfdx = -sin(x) - 1;function [f, dfdx] = fun1_2(x)f = exp(-x) - sin(x);dfdx = -exp(-x) - cos(x);function [f, dfdx] = fun2_1(x)f = x - exp(-x);dfdx = 1 + exp(-x);function [f, dfdx] = fun2_2(x)f = x.^2 - 2*x*exp(-x) + exp(-2*x);dfdx = 2*x - 2*exp(-x) + 2*x*exp(-x) - 2*exp(-2*x);function y = LegendreP6(x)p = LegendreIter(6);X = powerX(x,0,6);y = p*X;function y = ChebyshevT6(x)p = ChebyshevIter(6);X = powerX(x,0,6);y = p*X;function y = LaguerreL5(x)p = LaguerreIter(5);X = powerX(x,0,5);y = p*X;function y = HermiteH6(x)p = HermiteIter(6);X = powerX(x,0,6);y = p*X;思考题(1)由于Newton法具有局部收敛性,所以在实际问题中,当实际问题本身能提供接近于根的初始近似值时,就可保证迭代序列收敛,但当初值难以确定时,迭代序列就不一定收敛。
二分法、牛顿迭代法、普通迭代法

数值球根试验报告《数值计算方法》专业班级软件08-1姓名熊文成学号08083117时间2010年10月24日星期天一、 实验目的熟悉二分法以及牛顿迭代法求方程近似根的数值方法,掌握各种迭代方法,自己扩张研究迭代法的效率与收敛性和初始值的关系。
二、 实验内容1.已知0104)(23=-+=x x x f 在[]21,上有一个实根*x ,14)2(5)1(=-=f f ,,用二分法和牛顿迭代法求该实根,要求精度满足条件:321*1021-+⨯≤-k x x 。
2.条件允许的话,扩展研究各种迭代法的效率,以及迭代的效率和收敛性与初始值的关系,并通过比较采用两点加速的方法与普通的方法的效率体验加速迭代的优点。
总而言之,本实验中的用到的求根方法有①二分法,②牛顿迭代法,③迭代函数为213)10(21)(x x -=ϕ的迭代方法,以及④对函数213)10(21)(x x -=ϕ采用两点加速迭代的方法。
三、 主函数流程程序是按顺序运行的,流程图如下图所示:四、源程序#include <stdio.h>#include <conio.h>#include <math.h>//根据x的值计算函数值//函数f(x)=x*x*x+4*x*x-10double func(double x){double value;value=x*x*x+4*x*x-10;return value;}//根据参数x的值计算函数f(x)的导数值double divFunc(double x){return 3*x*x+8*x;}//二分法计算方程f(x)=0在[1,2]上的跟//二份迭代结束条件由参数precision精度给出void biSectionMethod(double precision){int k=0; //均分次数double x1=1.0,x2=2.0; //区间[1.0,2.0]double midx; //二分之后的值printf("\n\t k 有根区间k+1 f(x(k+1)) ");do{printf("\n\t%3d",k);printf(" [%.3f,%.3f]",x1,x2);midx=(x1+x2)/2;printf(" %f",midx);printf(" %.6f",func(midx));if (func(midx)<0)x1=midx;else x2=midx;k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>=precision); //区间的长度超过5e-3就一直迭代printf("\n\t二分法分区间的次数:%d,所求的根是:%lf",k-1,x2);}//牛顿迭代法//根据初值值x0,在区间[1.0,2.0]上迭代求根//迭代次数由参数precision精度决定void NewTonMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=x2-func(x1)/divFunc(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t牛顿迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//迭代函数g(x)=(sqrt(10-x*x*x))/2;double funcTwo(double x){return (sqrt(10-x*x*x))/2;}//普通迭代函数void ordinaMethod(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=funcTwo(x1);if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t普通迭代初值:%lf,次数:%d,所求的根是:%lf",x0,k-1,x2); }//使用两个跌代值的组合加速跌代//对迭代函数f(x)=(sqrt(10-x*x*x))/2的加速void twoValue(double x0,double precision){int k=0; //迭代次数double x1,x2=x0;printf("\n\t k x(k) f(x(k)) |x(k+1)-x(k)|");do{printf("\n\t%2d",k);printf(" %.6f",x2);printf(" %.6f",func(x2));x1=x2;x2=(funcTwo(x1)+x1)/2;if (x2-x1>0)printf(" %.6f",x2-x1); //输出两次迭代的差值else printf(" %.6f",x1-x2);k++;if (k%3==0) //每次输出4个等用户审查getch();} while (x2-x1>precision||x1-x2>precision);printf("\n\t两点加速迭代初值:%lf,次数:%d,根:%lf",x0,k,x2);}void main(){double orgin=1.5; //初始值double precision=5e-6; //精度char sel=0; //操作符while(1){printf("\n\t选择:");printf("\n\t1.二分法\n\t2.迭代法\n\t");sel=getch();printf("\n\n\t注:程序停止处按任意键继续");if (sel=='1'){printf("\n\n\t ************二分法求解过程***********");biSectionMethod(precision); //测试函数}else{printf("\n\t输入迭代的初值:");scanf("%lf",&orgin);//if (orgin>2.0||orgin<1.0) //限制迭代初值范围,根据情况决定//orgin=1.5; //如果输入非法,则按1.5计算printf("\n\n\t ************牛顿迭代法求解过程************");NewTonMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t *******普通迭代g(x)=(sqrt(10-x*x*x))/2*****");ordinaMethod(orgin,precision);printf("\n\t任何键继续:");getch();printf("\n\n\t ************两个值组合加速迭代x=(g(x)+x)/2***********");twoValue(orgin,precision);}printf("\n\t任何键继续:");getch();}}五、运行结果1、选择求根方法2、 选择二分法下面给出二分法的结果:3、 选择迭代法查看结果:首先显示的是牛顿迭代法的结果:然后是普通迭代法函数是:213)10(21)(x x -=ϕ,结果如下:接着可以看到的是用两点加速法对函数213)10(21)(x x -=ϕ的加速:下面采用不同的初值查看普通迭代函数的收敛性与效率: 各个结果如下:上图对应的是收敛性:收敛的。
实验五 用Newton法计算方程的根

五. 讨论分析当初始值选取离零点较远时将导致算法无法使用,例如第三题,将初始值改为2就无法计算出结果了,显示如下例如求020sin 35=-+-x x e x 的根,其中控制精度1010-=eps ,最大迭代次数40=M ,在steffensen 加速迭代方法的程序中,我们只需改动:it_max=40; ep=1e-10, 其余不变 。
利用以上程序,我们只需输入:phi=inline('exp(5*x)-sin(x)+(x)^3-20');[x_star,index,it]=steffensen(phi,0.5)可得:x_star = 0.637246094753909index = 0it = 41观察上述结果,index = 0,it = 41表明迭代失败,所以使用以上方法估计的时候,应该尽量估计出解的范围,偏离不应过大,距离增加迭代次数增加,也有可能迭代失败六. 改进实验建议根据上述分析,我认为,应该先对函数作一个简图,方便知道解的大概位置,然后我们才将这个大概值代入Newton 法或者Steffensen 中进行求解。
当然,我们可以用其他数学软件实现Newton 迭代法,我们可以用z-z 超级画板,其操作流程为:牛顿迭代法的公式是:x n+1=x n-f(x n)/f'(x n)。
下面我们就用牛顿迭代法设计程序求方程f(x)=ln(x)+2*x-6的近似解。
(一)观察方程f(x)=0的零点位置(1)显示坐标系的坐标刻度。
(2)作出函数y=ln(x)+2*x-6的图像,如下图所示:可以观察到方程的根在区间[2,3]上,我们可以设定近似解的初始值为2。
(二)设计求方程近似解的程序(1)在程序工作区中输入:f(x){ln(x)+2*x-6;}执行后,返回结果为:>> f(x) #这表示在计算机已经完成了函数f(x)的定义。
(2)定义f(x)的导函数g(x),在程序工作区中输入:Diff(f(x),x);执行后,返回结果为:>> 2+1/x #得到了f(x)的导函数。
牛顿迭代法求方程x^3+2=0的根

2 2 2 迭代时的迭代次数,我们计算 sgn(1 + sgn( x # + y # − r )) , 设标签为 p , 计算
第 3 页 共 3 页
近似解的精度。 在复数集中, 求可导函数 w = f ( z ) 的复数零点, 可类似地通过作复平面上 的迭代 z → z − f ( z ) / f '( z ) ,便可找到所有复数零点。使用特殊的扫描方法, 扫描出来的图形,在三个复根两两间的边界处,会呈现出漂亮的“项链”, 这就是著名的牛顿分形。
H、S;计算 1-S
0.01
0.5
,设标签为 V。依次选中 H、S、V 和点 Z,对点 Z 进行着
色 HSV,设此色点为 Z HSV ,并作颜色变换 Z → Z HSV 。改 n=50,作扫描框并
3 0 的牛顿分形图(如下左 对扫描线施行颜色变换 Z → Z HSV , 跟踪扫描得 z + 2 =
图)。选择“项链”从右边第 2 个环放大 5.5 倍,得下右图。
及其与 x 轴的交点, ……这样重复下去得到的 x 轴上的一列点, 且此点列无限 趋近于函数 y = f ( x) 的零点。
第 1 页 共 3 页
新建参数 n=2, 以 n 为深度作 A→B 的完整迭代, 选中 B 的迭代像求迭代
3 0 近似解。增加 n 的值便增加 终点 D,度量 D 的横坐标 xD ,即方程的 x + 2 =
) x3 + 2 为例,在 x 轴上图象的零点附近任取一点 A,度量出 A 的横坐 以 f ( x= y A + f '( x A )( x − x A ) 与 x 轴的交点 B,同法度量出 B 标,作出 f ( x) 的切线 y = x A − f ( x A ) / f '( x A ) ),再作切线 的横坐标(也可以在切线方程中令 y=0,得 x= B
matlab牛顿迭代法算重根

一、简介Matlab是一种十分常用的科学计算软件,其功能强大,可以进行各种数值计算、数据分析和可视化操作。
而牛顿迭代法是一种用于求解方程的数值算法,可以有效地计算出函数的根。
本文将重点介绍如何使用Matlab进行牛顿迭代法来计算重根。
二、牛顿迭代法原理1. 牛顿迭代法是一种迭代逼近的方法,通过不断迭代得到更接近函数零点的近似值。
其公式如下:X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}其中,X_{n+1}为下一次迭代的近似值,X_n为当前的近似值,f(X)为函数值,f'(X)为函数的导数值。
2. 牛顿迭代法的优点是收敛速度快,而缺点是对初始值的选择敏感,可能会产生不收敛的情况。
三、在Matlab中使用牛顿迭代法1. 在Matlab中,可以使用内置的函数`fzero`来进行牛顿迭代法的计算。
其语法如下:x = fzero(fun,x0)其中,fun为要求解的函数句柄,x0为起始点的初始值,x为函数的根。
2. 需要注意的是,在使用`fzero`函数时,需要提供函数的句柄,即在Matlab中定义要求解的函数,并使用`(x)`符号来表示函数的自变量。
另外,还需要提供初始值x0,可以根据具体问题来选择较为合适的初始值。
3. 以下是一个简单的使用牛顿迭代法求解函数根的示例代码:```matlabf = (x) x^3 - 2*x - 5;x0 = 2;x = fzero(f, x0);disp(x);```四、示例接下来,我们将通过一个具体的示例来演示如何使用Matlab的牛顿迭代法来计算重根。
1. 问题描述假设有如下方程:f(x) = x^3 - 2x^2 + 3x - 6我们希望使用牛顿迭代法来计算函数f(x)的重根。
2. 解决过程在Matlab中定义函数f(x):```matlabf = (x) x^3 - 2*x^2 + 3*x - 6;```选择初始值x0,并利用`fzero`函数进行牛顿迭代法的计算:```matlabx0 = 2;x = fzero(f, x0);disp(x);```3. 结果分析经过计算,可以得到函数f(x)的一个重根为x=2.这样,我们就成功地使用Matlab的牛顿迭代法来计算重根。
数值计算迭代法

习题二3、证明:当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实根x *,并分别用上述迭代法求满足于精度要求︱X k+1-X k ︱≤10-5的近似根。
解:证明:{先用迭代法求f(x)=x 3+4x 2-10=0的根。
(a )对x 3+4x 2-10=0变形有:4x 2=10-x 3所以:X=21310X - 则相应的迭代公式为:X k+1=21k X 310- 取:X 0=1.5,根据计算可以看出看,我们认为得到的迭代序列是收敛的。
}(此行可忽略){ 由 f(x)=x 3+4x 2-10=0得迭代方程:X=21310X -=g (x ) 先证明在区间【1,2】上x=g (x )有实根。
由于[1,2]上g ‘(x )存在,所以g (x )连续。
作Q (x )=x-g(x),则Q(x)在[1,2]上也连续。
由定理1条件2有:Q (1)=1-g (1)≤0,Q (,2)=1-g (2)≥0故存在x *∈[1,2]使Q *(x )=0,即x *= Q *(x )又因为,x *是方程f(x)=x 3+4x 2-10=0在区间[1,2]内的唯一实根,(由定理一条件2)对任意的x 0∈[1,2]时,X k ∈[1,2](k=0,1,2,3…)因为:x *- X k+1=g (x *)-g (X k )=g ‘(h k )(x *- X k )故由条件1知:︱X *-X k+1︱≤L ︱X *-X k ︱(k=0,1,2,3…)于是有:0≤︱X *-X k ︱≤L k ︱X *-X 0︱,0<L <1,立即可知:lim (k 趋于无穷)︱X *-X k ︱=0,从而lim (k 趋于无穷)X k= X *。
所以当X 0=1.5时,迭代法X k+1=Xk +410和X k+1=21k X 310-都是由迭代法X k+1=g (X k )产生的迭代序列{ X k }收敛于方程f(x)=x 3+4x 2-10=0在区间[1,2]内唯一实根x *。
牛顿迭代法实验课件

05
结论与展望
牛顿迭代法的优缺点总结
收敛速度快
牛顿迭代法在初始点接近真实根的情况下具有非常快的收敛速度。
适用于多维问题
可以推广到多维问题,通过引入更多的方程和变量来求解复杂的问题。
牛顿迭代法的优缺点总结
• 适用于非线性问题:能够处理非线性方程 的求解问题,这是许多其他方法无法做到 的。
牛顿迭代法的优缺点总结
初始值影响
初始值对迭代结果有一定影响,但只要在合理范围内,最终都能 收敛到正确解。
结果误差分析
绝对误差
(|x - x_{true}| = 0.00002698)
相对误差
(frac{|x - x_{true}|}{|x_{true}|} = 0.0027%)
误差来源
主要来源于舍入误差和计算过程中的近似处理。
牛顿迭代法实验课件
目录
• 引言 • 牛顿迭代法的基本原理 • 牛顿迭代法的实现步骤 • 实验结果与分析 • 结论与展望
01
引言
牛顿迭代法的定义
牛顿迭代法是一种数值计算方法,通 过迭代的方式求解非线性方程的根。
它基于牛顿定理,即函数在某点的切 线与x轴的交点即为该函数的根。
牛顿迭代法的应用场景
在金融领域的应用
牛顿迭代法可以用于求解金融领 域中的复杂模型和优化问题,例 如资产定价和风险管理。
在工程领域的应用
牛顿迭代法可以用于求解各种工 程领域的优化问题,例如结构分 析和控制系统设计。
感谢您的观看
THANKS
通过改进初始点的选择方法,提 高迭代过程的成功率和收敛速度。
在迭代过程中引入阻尼因子,以 避免迭代过程在鞍点处停滞不前。
根据迭代过程中的误差信息,自 适应地调整步长,以提高收敛速 度和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与计算科学学院实验报告
实验项目名称牛顿迭代法求根
所属课程名称
实验类型
实验日期
班级
学号
姓名
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新性实验,还应注明其创新点、特色。
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。