高数第七章无穷级数知识点
无穷级数-重点和难点-精品文档

发散.如果初步估计后,再利用比较判别法的
极限形式,可以免除放大或缩小
的困难,使运算更简便.而函数
展开成幂级数常用的方法是间接展开法.
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络返回第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-知识网络
返回
第七章 无穷级数-重点与难点
本章的重点
无穷级数收敛与发散的概念;正项级数的比值判别法,交错级 数的莱布尼兹判别法,幂级数的收敛半径与收敛区间,函数展开成 幂级数.
本章的难点
正项级数敛散性的比较判别法和函数展开成幂级数.其中,使 用比较判别法时,应先对 收敛,只需将 收敛;若估计 达式为 ,而 的敛散性作一个初步估计.若估计 ,而 适当缩小,使其缩小之后的表 适当放大,使其放大之后的表达式为 发散,只需将
无穷级数知识点

⽆穷级数知识点⽆穷级数知识点⽆穷级数1. 级数收敛充要条件:部分和存在且极值唯⼀,即:1lim n k n k S u ∞→∞==∑存在,称级数收敛。
2.若任意项级数1n n u ∞=∑收敛,1n n u ∞=∑发散,则称1n n u ∞=∑条件收敛,若1n n u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛,绝对收敛的级数⼀定条件收敛。
. 2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数1n n u ∞=∑和1n n v ∞=∑,11,n n n n u s v σ∞∞====∑∑则①1()n n n u v s σ∞=±=±∑,11n n n n u v s σ∞∞===∑∑。
②1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑发散。
③若⼆者都发散,则1()n n n u v ∞=+∑不确定,如()111, 1k k ∞∞==-∑∑发散,⽽()1110k ∞=-=∑收敛。
4.三个必须记住的常⽤于⽐较判敛的参考级数:a) 等⽐级数:0111n n ar ar r ∞=?-=??≥?∑,收敛,r 发散,b) P 级数: 11p n n ∞=>?=?≤?∑收敛,p 1发散,p 1c) 对数级数: 21ln pn n n ∞=>?=?≤?∑收敛,p 1发散,p 15.三个重要结论①11()n n n a a ∞-=-∑收敛lim n n a →∞存在②正项(不变号)级数n a ∑收2n a ?∑收,反之不成⽴,③2n a ∑和2n b ∑都收敛n n a b ?∑收,n na b n n∑∑或收6.常⽤收敛快慢正整数 ln (0)(1)!n n n n a a n n αα→>→>→→由慢到快连续型 ln (0)(1)x x x x a a x αα→>→>→由慢到快7.正项(不变号)级数敛散性的判据与常⽤技巧1.达朗贝尔⽐值法 11,lim 1,lim 0)1,n n n n n n l u l l u l µµ+→∞→+∞=>≠??=??收发(实际上导致了单独讨论(当为连乘时)2. 柯西根值法 1,1,1,n n n n l u l l n l µ=>??=?收发(当为某次⽅时)单独讨论3. ⽐阶法①代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤∑∑∑∑收敛收敛,发散发散②极限式 lim nn nu A v →∞=,其中:1n n u ∞=∑和1n n v ∞=∑都是正项级数。
高等数学无穷级数

n1
思考题解答
能.由柯西审敛原理即知.
观察雪花分形过程
设三角形
周长为 P1 3,
面积为 A1
3; 4
第一次分叉:
周长为 P2
4 3
P1
,
面积为 A2
A1
3 1 9
A1;
依次类推
1
2
3
4
5
练习题
一、填空题:
1、若 a n
1
3(2n 2 42n
1) ,则 5
n1
an
=____________;
369
3n
2、( 1 2
1) 3
1 (22
1 32
)
(
1 23
1 33
)
1 (2n
1 3n
)
;
3、1 2
1 10
1 4
1 20
1 2n
1 10n
.
五、利用柯西收敛原理判别级数
1 1 1 1 1 1 的敛散性 . 23456
练习题答案
一、1、 1 1 2 1 3 5 1 3 5 7 1 3 5 7 9 ; 2 2 4 2 4 6 2 4 6 8 2 4 6 8 10
2、若 a n
n! nn
5
,则
n1
an
=______________________;
3、若级数为
x 2
x 24
x 2
x 46
则a n
_______;
4、若级数为 a 2 a 3 a 4 a 5 则a n ________; 3579
5、若级数为1 1 3 1 5 1 则当n _____
lim qn
无穷级数知识点

无穷级数知识点
嘿,朋友们!今天咱来聊聊无穷级数这个有意思的知识点。
啥是无穷级数呢?简单来说,就是把一堆数按照一定规则加起来,不过这堆数有无穷多个呢!就好像你有无限多的糖果,然后把它们一个一个地加起来。
无穷级数有很多种类型哦。
比如说正项级数,这些数都是正数呢。
那怎么判断一个正项级数收不收敛呢?有好多方法呀!就像我们判断一件事情能不能成功一样,有各种标准。
还有交错级数,这些数一会儿正一会儿负,就像坐过山车一样起起伏伏。
对于交错级数,也有专门的判别法来看看它是不是收敛的。
那无穷级数有啥用呢?哎呀,用处可大啦!比如在数学的很多领域都能看到它的身影。
它就像是一把万能钥匙,可以打开很多知识的大门。
想象一下,如果没有无穷级数,很多数学问题就没办法解决啦,那该多可惜呀!它就像一个神奇的工具,帮助我们更好地理解和探索数学的奥秘。
在物理学中,无穷级数也常常出现呢!比如在研究一些波动现象的时候,无穷级数就能发挥大作用啦。
总之,无穷级数是数学中非常重要的一部分,它充满了魅力和神奇。
它让我们看到了数学的无限可能,让我们对知识的追求永无止境。
所以呀,大家可别小看了无穷级数哦,它真的超级厉害的!。
7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))

,
使
,于是
.令
,当 充分大时,有
因为
收敛,所以级数
绝对收敛.
【综合题】(04 年,数学一)设有方程
,其中 为正整数.证明此方程存
在唯一正实根 ,并证明当
时,级数
收敛.
【证明】记
.当
时,
,
故
在
上单调增加.
由于
,根据连续函数的零点存在定理知方程
存在唯一正实根 ,且
.从而当
时,有
,
而正项级数
收敛,所以当
在其收敛域 上可以逐项积分,即
, 且积分后的幂级数的收敛半径与原级数的收敛半径相同.
【函数展开成幂级数】
设
在
点的邻域
存在任意阶导数,则称幂级数
为
在
点处的泰勒级数.
特别地,当
时,称幂级数
【泰勒级数收敛充要条件】设函数
敛于
的充要条件为
,为
的麦克劳林级数.
在
内存在任意阶导数,则其泰勒级数收
,
其中
.
【常见麦克劳林级数】
(A)发散.
(C)绝对收敛. 【答案】(C).
收敛,则级数 (B)条件收敛. (D)收敛性与 有关.
【解析】由于
,
又级数
与
均收敛,所以由级数的运算性质得级数
收敛,
由正项级数的比较判别法,得级数
绝对收敛.故选(C).
【例题】(03 年,数学三)
设
,则下列命题正确的是 .
(A)若
条件收敛,则
与
都收敛.
【解析】因
当
时,因级数
设
,所以收敛半径
.
及
发散,故收敛域为
fx第七章 无穷级数.ppt

n0 n!
n0 n!
n0
2n n!
xn
2
n1
(n
1 1)!
xn
2x
n1
(n
1 1)!
x n1
2x
m0
1 m!
xm
S(x) 2xe x e x . 11
第七章 无穷级数
12.展开 f
(x)
2
3 x
x2 为x的幂级数,求收敛域.
解:f
(x)
2
3 x
x2
1 2
x
1 1 x
1 2
1
1
x
1 1 x
n1
n1
证:lim an2 n an
lim
n
an
0.
(比较极限)
4. 若级数
a
2 n
,
bn2 收敛,证明
(an bn )2 收敛.
n1
n1
n1
证:(an bn )2 an2 bn2 2anbn
2anbn an2 bn2. (比较,绝收→收)
4
第七章 无穷级数
5.若级数 an , bn 收敛(其中 an , bn 0 ),
1
0,
1
,故
(1)n 收 敛 .
n n ln n
n ln n
n1 n ln n
en lim(n ln n) lim ln
en lnlim
ln limen .
n
n n
n n
n
( 1 ) n ln n
1
1
(n
n ln n)2
n1 n(n ln n)2
0.
3
第七章 无穷级数
大一高数无穷级数知识点

大一高数无穷级数知识点在大一高等数学课程中,无穷级数是一个重要的内容,具有广泛的应用。
了解无穷级数的概念、性质和收敛条件等知识点对于学好这门课程是至关重要的。
本文将介绍大一高数无穷级数的基本知识点,并对其应用进行简要探讨。
一、无穷级数的概念无穷级数是由一系列数的和构成的数列。
设a₁、a₂、a₃、⋯、aₙ、⋯是一列实数,将它们相加所得的数列称为无穷级数,表示为:S = a₁ + a₂ + a₃ + ⋯ + aₙ + ⋯二、无穷级数的收敛和发散1. 收敛的定义:若一个无穷级数的部分和数列{Sₙ}收敛于某个实数S,即lim(n→∞)Sₙ = S,则称该无穷级数收敛,否则称为发散。
2. 收敛的必要条件:无穷级数收敛的必要条件是它的通项数列趋于零,即lim(n→∞)aₙ = 0。
3. 通项数列趋于零的充分条件:若无穷级数的通项数列满足aₙ≤aₙ₊₁(n≥N,N为某个自然数),则该无穷级数收敛。
三、常见的无穷级数1. 等差数列的无穷级数:若等差数列a₁、a₂、a₃、⋯、aₙ、⋯的公差不为零,即aₙ₊₁ - aₙ = d ≠ 0,则其部分和数列为等差数列,即Sₙ = (n/2)(2a₁ + (n-1)d)。
若d>0并且|a₁|/(|a₁ + d| < 1,则该无穷级数收敛,反之发散。
2. 等比数列的无穷级数:若等比数列a₁、a₂、a₃、⋯、aₙ、⋯的公比不为零,即aₙ₊₁/aₙ = q ≠ 0,则其部分和数列为等比数列,即Sₙ = a₁(1-qⁿ)/(1-q)。
当|q|<1时,该无穷级数收敛,否则发散。
四、收敛级数的运算性质1. 收敛级数的有界性:收敛级数的部分和数列有界。
2. 收敛级数的加法性:有限个收敛级数的和仍然是收敛级数。
3. 收敛级数的乘法性:若级数{aₙ}收敛,级数{bₙ}绝对收敛,则乘积级数{aₙbₙ}收敛。
五、收敛级数的应用无穷级数在数学和实际问题中有广泛的应用,以下介绍两个常见的应用:1. 泰勒级数:泰勒级数是一种无穷级数展开式,用于将函数表示成无穷级数的形式。
第七章 无穷级数2010

叫做级数的一般项 一般项, 称上式为无穷级数, 称上式为无穷级数, 无穷级数 其中第 n 项 un 叫做级数的一般项 级数的前 n 项和
机动
目录
上页
下页
返回
结束
称为级数的部分和 称为级数的部分和. 部分和 为级数的和 收敛 , 并称 S 为级数的和, 记作
则称无穷级数
则称无穷级数发散 则称无穷级数发散 .
机动
目录
上页
下页
返回
结束
判别下列级数的敛散性: 例1. 判别下列级数的敛散性
解: (1)
2 4 n +1 3 Sn = ln + ln + ln +L+ ln 1 3 n 2
= (ln 2 − ln1) + (ln3 − ln 2) +L+ (ln(n +1) − ln n)
= ln(n +1) → ∞ ( n → ∞)
机动 目录 上页 下页 返回 结束
两个重要级数:
1、等比级数
q <1 q ≥1
收敛, p > 1
2、p 级数
发散 , p ≤ 1 发散。
特殊地,p=1时,调和级数
机动
目录
上页
下页
返回
结束
调和级数与 p 级数是两个常用的比较级数. 若存在 N ∈Z + , 对一切 n ≥ N ,
机动
目录
上页
下页
返回
∞ n−1 1
例如 :∑(−1)
n=1
n
为条件收敛 .
为绝对收敛.
机动
目录
上页
下页
返回
结束
定理5. 定理 绝对收敛的级数一定收敛 . 证: (不要求) 设 收敛 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 无穷级数
一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性):
1、形如∑∞
=-11
n n aq
的几何级数(等比级数):当1<q 时收敛,当1≥q 时
发散。
2、形如∑∞
=1
1
n p
n
的P 级数:当1>p 时收敛,当1≤p 时发散。
3、⇒
≠∞
→0lim n n U 级数发散; 级数收敛
lim =⇒∞
→n n U
4、比值判别法(适用于多个因式相乘除):若正项级数∑∞
=1
n n
U
,满足
条件l
U U n n n =+∞→1
lim
:
当1<l 时,级数收敛;
当1>l 时,级数发散(或+∞=l );
当1=l 时,无法判断。
5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞
=1n n
U
,满足
条件λ
=∞→n n n U lim :
当1<λ时,级数收敛;
当1>λ时,级数发散(或+∞=λ);
当1=λ时,无法判断。
注:当1,1==λl 时,方法失灵。
6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。
(通过不等式的放缩)
推论:若∑∞
=1
n n
U
与
∑∞
=1
n n
V
均为正项级数,且
l
V U n
n
n =∞→lim
(n V 是已知敛散
性的级数) 若+∞<<l 0,则级数∑∞
=1n n
U
与
∑∞
=1
n n
V
有相同的敛散性;
若0=l 且级数∑∞
=1
n n
V
收敛,则级数
∑∞
=1
n n
U
收敛;
若+∞=l 且级数∑∞
=1
n n
V
发散,则级数
∑∞
=1
n n
U
发散。
7、定义判断:若
⇒
=∞
→C S n n lim 收敛,若n
n S ∞→lim 无极限⇒发散。
8、判断交错级数的敛散性(莱布尼茨定理):
满足1+≥n n U U ,⇒=∞→0lim n n U 收敛,其和1u S ≤。
9、绝对收敛:级数加上绝对值后才收敛。
条件收敛:级数本身收敛,加上绝对值后发散。
二、无穷级数的基本性质:
1、两个都收敛的无穷级数,其和可加减。
2、收敛的无穷级数
∑∞
=1
n n
U
,其和为S ,则∑∞
=1
n n
aU
,其和为aS (0≠a )
(级数的每一项乘以不为0的常数后,敛散性不变) 3、级数收敛,加括号后同样收敛,和不变。
(逆否命题:加括号后发散,则原级数发散)
加括号后级数收敛,原级数未必收敛。
.。