分类加法计数原理与分步乘法计数原理例题

分类加法计数原理与分步乘法计数原理例题
分类加法计数原理与分步乘法计数原理例题

分类加法计数原理与分步乘法计数原理

【基础知识】

1.分类加法计数原理

完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =m1+m2+…+m n种不同的方法.

2.分步乘法计数原理

完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.

3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.

[难点正本疑点清源]

分类加法计数原理与分步乘法计数原理是解决排列、组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相

互独立,多步完成”.

【题型讲解】

题型一分类加法计数原理的应用

分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.

例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.

(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?

(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多

少种不同的选法?

思维启迪:用分类加法计数原理.

解 (1)完成这件事有三类方法

第一类,从高三一班任选一名学生共有50种选法;

第二类,从高三二班任选一名学生共有60种选法;

第三类,从高三三班任选一名学生共有55种选法,

根据分类加法计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.

(2)完成这件事有三类方法

第一类,从高三一班男生中任选一名共有30种选法;

第二类,从高三二班男生中任选一名共有30种选法;

第三类,从高三三班女生中任选一名共有20种选法.

综上知,共有30+30+20=80种选法.

例2 王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从两个口袋里任取一张英语单词卡片,有多少种不同的取法?

[解析] 从口袋中任取一张英语单词卡片的方法分两类:

第一类:从左边口袋取一张英语单词卡片有30种不同的取法;

第二类:从右边口袋取一张英语单词卡片有20种不同的取法.

根据分类加法计数原理,所以从口袋中任取一张英语单词卡片的方法种类为30+20=50(种). 例3 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?

[分析] 该问题与计数有关,可考虑选用两个基本原理来计算,完成这件事,只要两位数的个位、十位确定了,这件事就算完成了,因此可考虑按十位上的数字情况或按个位上的数字情况进行分类.

[解析] 解法一:按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分为8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.

由分类加法计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个). 解法二:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理共有1+2+3+4+5+6+7+8=36(个).

例4 方程x 2m +y 2n

=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?

解 以m 的值为标准分类,分为五类.

第一类:m =1时,使n >m ,n 有6种选择;

第二类:m =2时,使n >m ,n 有5种选择;

第三类:m =3时,使n >m ,n 有4种选择;

第四类:m=4时,使n>m,n有3种选择;

第五类:m=5时,使n>m,n有2种选择.

∴共有6+5+4+3+2=20种方法,

即有20个符合题意的椭圆.

题型二分步乘法计数原理的应用

探究提高利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.

例1已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少个?

[解析]圆方程由三个量a,b,r确定,a,b,r分别有3种,4种,2种选法,由分步乘法计数原理,表示不同的圆的个数为3×4×2=24(个).

例1有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?

(不一定六名同学都能参加)

(1)每人恰好参加一项,每项人数不限;

(2)每项限报一人,且每人至多参加一项;

(3)每项限报一人,但每人参加的项目不限.

思维启迪:可以根据报名过程,使用分步乘法计数原理.

解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).

(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,

第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).

(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步

乘法计数原理,得共有不同的报名方法63=216(种).

例1已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:

(1)y=ax2+bx+c可以表示多少个不同的二次函数;

(2)y=ax2+bx+c可以表示多少个图像开口向上的二次函数.

解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx +c可以表示5×6×6=180(个)不同的二次函数.

(2)y=ax2+bx+c图像的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此

y=ax2+bx+c可以表示2×6×6=72(个)图像开口向上的二次函数.

例1(1)有5本书全部借给3名学生,有多少种不同的借法?

(2)有3名学生分配到某工厂的5个车间去参加社会实践,则有多少种不同分配方案?

[解析](1)中要完成的事件是把5本书全部借给3名学生,可分5个步骤完成,每一步把一本书借出去,有3种不同的方法,根据分步乘法计数原理,共有N=3×3×3×3×3=35=243(种)不同的借法.

(2)中要完成的事件是把3名学生分配到5个车间中,可分3个步骤完成,每一步分配一名学生,有5种不同的方法,根据分步乘法计数原理,共有N=5×5×5=53=125(种)不同的分配方案.

题型三两个原理的综合应用

例1一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书

(1)从书架上任取一本书,有多少种不同的取法?

(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?

[解析](1)从书架上任取一本书,有三类方法:

第一类方法:从书架上层任取一本数学书,有5种不同的方法;

第二类方法:从书架中层任取一本语文书,有3种不同的方法;

第三类方法:从书架下层任取一本英语书,有2种不同的方法.

只要在书架上任意取出一本书,任务即完成,由分类加法计数原理知,不同的取法共有N=5+3+2=10(种).

(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,可以分成三个步骤完成:第一步:从书架上层取一本数学书,有5种不同的方法;

第二步:从书架中层取一本语文书,有3种不同的方法;

第三步:从书架下层取一本英语书,有2种不同的方法.

由分步乘法计数原理知,不同的取法共有N=5×3×2=30(种).

所以从书架上任取三本书,其中数学书、语文书、英语书各一本,共有30种不同的取法.例1一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法________种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.

[答案]920

[解析]由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种,由分步乘法

计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种.

例1现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.

(1)从中任选一幅画布置房间,有几种不同的选法?

(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?

(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?

[解析](1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理共有5+2+7=14种不同的选法.(2)分为三步:国画、油画、水彩画各有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70种不同的选法.

(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10种不同的选法.第二类是一幅选自国画,一幅选自水彩画,有5×7=35种不同的选法.第三类是一幅选自油画,一幅选自水彩画,有2×7=14种不同的选法,所以有10+35+14=59种不同的选法.

例1有三只口袋装小球,一只装有5个白色小球,一只装有6个黑色小球,一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有多少种不同的取法?

[解析]分为三类:一类是取白球、黑球,有5×6=30种取法;一类是取白球、红球,有5×7=35种取法;一类是取黑球、红球,有6×7=42种取法.∴共有取法:30+35+42=107(种).

例1如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.

思维启迪:染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.

解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.

当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).

方法二以S、A、B、C、D顺序分步染色.

第一步,S点染色,有5种方法;

第二步,A点染色,与S在同一条棱上,有4种方法;

第三步,B点染色,与S、A分别在同一条棱上,有3种方法;

第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).

方法三按所用颜色种数分类.

第一类,5种颜色全用,共有A55种不同的方法;

第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;

第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.

由分类加法计数原理,得不同的染色方法总数为

A55+2×A45+A35=420(种).

探究提高用两个计数原理解决计数问题时,关键是明确需要分类还是分步.

(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原

理求和,得到总数.

(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原

理,把完成每一步的方法数相乘,得到总数.

(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.

例1有一项活动,需在3名老师、8名男生和5名女生中选人参加.

(1)若只需1人参加,有多少种不同选法?

(2)若需老师、男生、女生各一人参加,有多少种不同的选法?

(3)若需一名老师、一名学生参加,有多少种不同的选法?

解(1)分三类:取老师有3种选法;取男生有8种选法;取女生有5种选法,故共有3+8+5=16种选法.

(2)分三步:第一步选老师,第二步选男生,第三步选女生,

故共有3×8×5=120种选法.

(3)分两步:第一步选老师,第二步选学生.对第二步,又分为两类:第一类选男生,第

二类选女生,故共有3×(8+5)=39种选法.

对两个基本原理的特殊题型

典例:(1)(5分)把3封信投到4个信箱,所有可能的投法共有() A.24种B.4种C.43种D.34种

(2)(5分)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火

车有4趟,轮船有3次,问此人的走法可有________种.

易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算.解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于

(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意

....

到一封信只能投在一个信箱中

.............;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算.

解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.

(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都

能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).

答案(1)C(2)7

温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择.

(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什

么.选择合理的标准处理事情,可以避免计数的重复或遗漏.

用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位奇数?

[解析] 方法一:按末位是1,3,5分三类计数:第一类:末位是1,共有4×4×3=48个;第二类,末位是3的共有3×4×3=36个;第三类末位是5的共有3×4×3=36个,由分类加法计数原理知共有

48+36+36=120(个).

方法二:符合条件的数有

3×4×4×3-2×4×3=120(个).

3.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙2个不去巴黎游览,则不同的选择方案共有()

A.300种B.240种C.144种D.96种

[答案] B

[解析]能去巴黎的有4个人,依次去伦敦,悉尼,莫斯科的有5个人,4个人,3个人,故不同的选择方案为4×5×4×3=240(种).故选B.

5.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有________种不同的播放方式.(结果用数值表示) [答案]48

[解析]先安排首尾播放公益广告,共2种,再安排4种不同的商业广告共4×3×2×1=24种,由分步乘法计数原理得24×2=48种.

方法与技巧

1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.

2.混合问题一般是先分类再分步.

3.分类时标准要明确,做到不重复不遗漏.

4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.

失误与防范

1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.

2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.

3.确定题目中是否有特殊条件限制.

1.(2011·大纲全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()

A.4种B.10种C.18种D.20种

答案 B

解析依题意,就所剩余的一本画册进行分类计数:第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有C24=6(种).因此,满足题意的赠送方法共有4+6=10(种),选B.

2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.

答案32

解析每位同学有两种不同的报名方法,而且只有这5位同学全部报名结束,才算事件完成.所以共有2×2×2×2×2=32(种).

3.教学大楼共有4层,每层都有东西两个楼梯,由一层到4层共有走法种数为() A.6B.23 C.42 D.44

答案 B

解析由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择,∴23=8.

4.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()

A.16种B.18种C.37种D.48种

答案 C

解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37(种).

5.有不同颜色的4件上衣与不同颜色的3件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.

答案12

解析由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12(种)选法.

6.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当父母的血型中没有AB型时,子女的血型有可能是O型,若某人的血型是O型,则其父母血型的所有可能情况有()

A.6种B.9种C.10种D.12种

答案 B

解析找出其父母血型的所有情况分二步完成,第一步找父亲的血型,依题意有3种;

第二步找母亲的血型也有3种,由分步乘法计数原理得:其父母血型的所有可能情况有3×3=9种.

7.现安排一份5天的工作值班表,每天有一个人值日,共有5个人,每个人都可以值多天或不值班,但相邻两天不能同一个人值班,则此值日表共有__________种不同的排法.答案 1 280

解析完成一件事是安排值日表,因而需一天一天地排,用分步计数原理,分步进行:第一天有5种不同排法,第二天不能与第一天已排人的相同,所以有4种不同排法,依次类推,第三、四、五天都有4种不同排法,所以共有5×4×4×4×4=1 280种不同的排法.

8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.

答案16

解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4(场)比赛;根据分类加法计数原理共有2C24+4=16(场)比赛.

9.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为 ()

A.42 B.30 C.20 D.12

答案 A

解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).

10.已知I={1,2,3},A、B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A、B共有()

A.12对B.15对C.18对D.20对

答案 D

解析依题意,当A、B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A、B均有两个元素时,有3对;共20对,选择D.

11.若从集合P到集合Q={a,b,c}所有的不同映射共有81个,则从集合Q到集合P所有的不同映射共有()

A.32个B.27个C.81个D.64个

答案 D

解析可设P集合中元素的个数为x,由映射的定义以及分步乘法计数原理,可得P→Q 的映射种数为3x=81,可得x=4.反过来,可得Q→P的映射种数为43=64.

12.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有() A.6种B.5种C.4种D.3种

答案 C

解析若选甲、乙二人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A车床,共有2种选派方法;

若选甲、丙二人,则只有甲操作B车床,丙操作A车床这一种选派方法;

若选乙、丙二人,则只有乙操作B车床,丙操作A车床这一种选派方法.

故共2+1+1=4(种)不同的选派方法.故应选C.

13.由1到200的自然数中,各数位上都不含8的有______个.

答案162个

解析一位数8个,两位数8×9=72个.

3位数有9×9=81个,

另外1个(即200),

共有8+72+81+1=162个.

14.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有________个.

答案32

解析和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两个数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.

15.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.

答案12

解析分两步完成这件事,第一步取两个平行平面,有3种取法;第二步再取另外一个平面,有4种取法,由分步计数原理共有3×4=12种取法.

16. 如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种

颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()

A.288种B.264种C.240种D.168种

答案 B

解析分两类:第一类,涂三种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F 有2种方法,故有A34×2=48(种)方法;

第二类,涂四种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F有3C13种方法,故共有A34·3C13=216(种)方法.

由分类加法计数原理,共有48+216=264(种)不同的涂法.

17.标号为A、B、C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.

(1)若取出的两个球颜色不同,有多少种取法?

(2)若取出的两个球颜色相同,有多少种取法?

解析(1)若两个球颜色不同,则应在A、B袋中各取一个或A、C袋中各取一个,或B、C袋中各取一个.

∴应有1×2+1×3+2×3=11种.

(2)若两个球颜色相同,则应在B或C袋中取出2个.

∴应有1+3=4种.

18.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7个,

B型血的共有9个,AB型血的有3个.

(1)从中任选1人去献血,有多少种不同的选法?

(2)从四种血型的人中各选1个去献血,有多少种不同的选法?

解析从O型血的人中选1个有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人

有9种不同的选法,从AB型血的人中选1个人有3种不同的选法.

(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情已完

成,所以由分类计数原理,共有28+7+9+3=47种不同的选法.

(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1

人去献血”的事情才完成,所以用分步计数原理,共有28×7×9×3=5 292种不同的选法.

A组专项基础训练

(时间:35分钟,满分:57分)

一、选择题(每小题5分,共20分)

1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() A.3 B.4 C.6 D.8

答案 D

解析以1为首项的等比数列为1,2,4;1,3,9;

以2为首项的等比数列为2,4,8;

以4为首项的等比数列为4,6,9,共4个.

把这四个数列顺序颠倒,又得到4个数列,故所求数列有8个.

2.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有() A.238个B.232个C.174个D.168个

答案 C

解析由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复数字的四位数共有3A33=18(个),故共有192-18=174(个).

3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为() A.10 B.11 C.12 D.15

答案 B

解析方法一分0个相同、1个相同、2个相同讨论.

(1)若0个相同,则信息为:1001.共1个.

(2)若1个相同,则信息为:0001,1101,1011,1000.共4个.

(3)若2个相同,又分为以下情况:

①若位置一与二相同,则信息为:0101;

②若位置一与三相同,则信息为:0011;

③若位置一与四相同,则信息为:0000;

④若位置二与三相同,则信息为:1111;

⑤若位置二与四相同,则信息为:1100;

⑥若位置三与四相同,则信息为:1010.

共有6个.

故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.

方法二若0个相同,共有1个;

若1个相同,共有C14=4(个);

若2个相同,共有C24=6(个).

故共有1+4+6=11(个).

4 . 如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不

同,则不同的涂法有()

A.72种B.48种C.24种D.12种

答案 A

解析按要求涂色至少需要3种颜色,故分两类.一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72(种).

二、填空题(每小题5分,共15分)

5.(2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)

答案14

解析数字2,3至少都出现一次,包括以下情况:

“2”出现1次,“3”出现3次,共可组成C14=4(个)四位数.

“2”出现2次,“3”出现2次,共可组成C24=6(个)四位数.

“2”出现3次,“3”出现1次,共可组成C34=4(个)四位数.

综上所述,共可组成14个这样的四位数.

6.某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).

答案7 200

解析其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.

7.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.

答案 6

解析分两类:第一类,第一象限内的点,有2×2=4(个);

第二类,第二象限内的点,有1×2=2(个).

三、解答题(共22分)

8.(10分)某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?

解由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.

第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6×3=18(种);

第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1×2=2(种);

所以根据分类加法计数原理知共有18+2=20(种)选法.

9.(12分)直角坐标系xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有多少个?

解方法一对所构成的矩形中所含“小正方形”的个数进行分类:

①含1块:25个

②含2块:20+20=40个

③含3块:15+15=30个

④含4块:20+16=36个

⑤含5块:10个

⑥含6块:12+12=24个

⑦含8块:8+8=16个

⑧含9块:9个

⑨含10块:8个

⑩含12块:12个

?含15块:6个

?含16块:4个

?含20块:4个

?含25块:1个

总计:225个

方法二在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,4条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225个.

B组专项能力提升

(时间:25分钟,满分:43分)

一、选择题(每小题5分,共15分)

1.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有() A.6个B.9个C.18个D.36个

答案 C

解析由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;

第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.

2.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P?Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14 C.15 D.21

答案 B

解析当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.

3. 如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种

1种花,且相邻的2块种不同的花,则不同的种法总数为()

A.96 B.84 C.60 D.48

答案 B

解析可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类加法计数原理,不

同的种法种数为36+48=84.

二、填空题(每小题5分,共15分)

4.如图,某电子元件,是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.

答案15

解析方法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).

方法二恰有i个焊点脱落的可能情况为C i4(i=1,2,3,4)种,由分类加法计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).

5.一个乒乓球队里有男队员5名,女队员4名,从中选出男、女队员各一名组成混合双打,共有________种不同的选法.

答案20

解析“完成这件事”需选出男、女队员各一名,可分两步进行:第一步选一名男队员,有5种选法;第二步选一名女队员,有4种选法,共有5×4=20种选法.

6.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.

答案16

解析由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有A22A33=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有A22A22=4(个),综上,共有16个.

三、解答题

7.(13分)某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?

解用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法.

第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.

第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.

第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有

3×3×2×2×1×1=36种不同的播放方式.

由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.

第11章计数原理随机变量及其分布11.1分类加法计数原理与分步乘法计数原理

考点11.1 分类加法计数原理与分步乘法计数原理 概念方法微思考 1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理? 提示 如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理. 2.两种原理解题策略有哪些? 提示 ①明白要完成的事情是什么; ②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; ③有无特殊条件的限制; ④检验是否有重复或遗漏. 1.(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( )

A .4 B .8 C .12 D .16 【答案】D 【解析】根据正六边形的性质,则111D A ABB -,111D A AFF -满足题意, 而1C ,1E ,C ,D ,E ,和1D 一样,有248?=, 当11A ACC 为底面矩形,有4个满足题意, 当11A AEE 为底面矩形,有4个满足题意, 故有84416++= 故选D . 2.(2020?上海)已知{3A =-,2-,1-,0,1,2,3},a 、b A ∈,则||||a b <的情况有__________种. 【答案】18 【解析】当3a =-,0种, 当2a =-,2种, 当1a =-,4种; 当0a =,6种, 当1a =,4种; 当2a =,2种, 当3a =,0种, 故共有:2464218++++=. 故答案为:18. 3.(2018?新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有

分类计数原理和分步计数原理教案

分类计数原理和分步计数原理教案 教学内容: 分类计数原理和分步计数原理 教学目标: 理解两计数原理的内涵;能运用两计数原理解简单计数问题及综合问 题 教学重点: 分类计数原理和分步计数原理的定义 教学难点: 应用两计数原理解题 教学方法: 讲解法 教学过程: 例:从甲地到乙地每天有三趟火车和两趟汽车,一天里从甲地到乙地 共有多少种走发? (图) 从甲地到乙地要途经丙地,一天里从甲地到丙地有三趟火车,从丙 地到乙地有 两趟汽车.问甲地到乙地有多少种走法? (图) 1. 复习两原理. 2. 分类计数原理中每一种方法都完成了这件事.分步计数原理中完 成这件事的任何一种方法都要分成n 个步骤. 分类和分步都要有标准. 3. 例题讲解: 例:书架的第一层放有4本不同的计算机书,第二层放有3本不同 的文艺书,第三层放有2本不同的体育书. (1).从书架上任取1本书,有多少不同的取发? 4+3+2=9 (2).从书架的第1,2,3层各取1本书,有多少种不同的取法? 24234=?? (3).从中取出两本书,且计算机书,文艺书,体育书每种只能选1本, 有多少种不同的取法? 26232434=?+?+? 4.课堂练习: ● 有高一学生3名,高二学生5名,高三学生4名,选1名去参加接待外宾活 动,有多少种不同的选法? ● ()()()543214321321c c c c c b b b b a a a +++++++++展开后有多少 项? ● 在平面直角坐标系内,横坐标与纵坐标均在A={}5,4,3,2,1,0内取值的不 同点共有多少个? 5.布置作业: ● 复习资料第347页,课下知能提升1----6题.

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理(第一课时) 知识与技能: ①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法: ①通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分 析能力; ②通过对两个原理的应用,提高学生对数学知识的应用能力; 情感态度与价值观: ①了解学习本章的意义,激发学生的学习兴趣 ②引导学生形成“自主学习”与“合作学习”等良好的学习方式. 教学重点理解两个原理,并能运用它们来解决一些简单的问题. 教学难点弄清楚“一件事”指的是什么,分清是“分类”还是“分步”. 教学方法启发式 教具准备多媒体 教学过程 一、引入课题 引例:从甲地到乙地有3条路,从乙地到丁地有2条路;从甲地到丙地有3条路,从丙地到丁地有4条路,问:从甲地到丁地有多少种走法? 决问题. 设计意图:从贴近学生实际生活的实例出发,让学生明白本节课的教学内容,激发学生学习兴趣。 师生互动:老师提问学生回答。 二、讲授新课: 1、分类加法计数原理 问题1:(多媒体展示)十一你打算从甲地到乙地旅游,假设可以乘汽车和火车.一天中,汽车有3班,火车有2班.那么一天中乘坐这些交通工具从甲地到乙地共有多少种坐交通工具的方法?有3+2=5种方法 探究1:(多媒体展示)你能说说以上问题的特征吗?(分析要完成的“一件事”是什么.) 完成一件事有两类不同方案,在第1类方案中有3种不同的方法,在第2类方案中有2种不同的方法. 那么完成这件事共有3+2=5种方法。一件事就是从甲

地到乙地的一种乘坐交通工具的方式。 发现新知:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +???++=21种不同的方法.(也称加法原理) 设计意图:由特例到定义的设计思路让学生理解加法原理的概念,体现了一般存在于特殊之中的辩证法思想,便于让学生理解概念。 师生互动:由老师提问学生回答的方式进行。在本知识点中学生可能对“一件事”的概念的理解不是很好,在学生回答完后,老师应该进行点拨。 知识应用 例1:两个袋子里分别装有40个红球,60个白球,从中任取一个球,有多少种求法? 设计意图:通过本例及变式练习让学生进一步理解“分类”的含义。并向学生指出分类的关键是弄清“一件事”是什么。 师生互动:由老师引导学生回答例题,由学生独立解答变式,并回答“一件事”是什么。 分类加法计数原理特点: 分类加法计数原理针对的是“分类”问题,完成一件事的办法要分为若干类,各类的办法法相互独立,各类办法中的各种方法也相对独立,用任何一类办法中的任何一种方法都可以单独完成这件事. 设计意图:让学生总结加法原理的特点,加深对概念的理解。 师生互动:由学生总结,老师给以补充。 2 、分步乘法计数原理 问题2:(多媒体展示)从A 村道B 村的道路有3条,从B 村去C 村的路有2条,从C 村去D 的道路有3条,小明要从A 村经过B 村,再经过C 村,最后到D 村,一共有多少条路线可以选择? 从A 村经 B 村去C 村有 2 步, 第一步, 由A 村去B 村有 3 种方法, 第二步, 由B 村去C 村有 2 种方法, 第三步,从C 村到D村有3种方法 所以从A 村经 B 村又经过C 村到D村共有 3 ×2 ×3= 18 种不同的方法 探究2:(多媒体展示)你能说说这个问题的特征吗?(分析要完成的“一件事” 是什么.) 完成一件事需要有三个不同步骤,在第1步中有3种不同的方法,在第2步中有2种不同的方法,第三步有3种不同的方法. 那么完成这件事共有3 ×2 ×3= 18种不同的方法.一件事就是:从A村到D村的一种走法 发现新知 分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么

人教版高数选修2-3第一章11分类加法计数原理与分步乘法计数原理复习教案(教师版)

分类加法计数原理与分步乘法计数原理__________________________________________________________________________________ __________________________________________________________________________________ 1.掌握分类计数原理,分布计数原理的概念. 2.掌握分类计数原理与分布计数原理的区别. 3.能解决分类计数原理与分步计数原理的综合题. 1.分类计数原理与分步计数原理 (1)分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2 +…+m n种不同的方法 注意:○1分类计数原理又称为加法原理; ○2弄清楚完成“一件事”的含义,即知道做“一件事”或完成一个“事件”在题目中具体所指的内容; ○3解决“分类”问题,用分类计数原理,即完成事件通过途径A,就不必再通过途径B,可以单独完成; ○4每个题中,标准不同,分类也不同,分类的基本要求是:每一种方法必属于某一类(不漏),任意不同类的两种方法是不同的方法(不重). (2)分步计数原理: 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法. 注意:○1分步计数原理又称为乘法原理; ○2弄清楚完成“一件事”的含义,即知道完成一个“事件”在每个题中需要经过哪几个步骤; ○3解决“分步”问题,用分步计数原理,需要分成若干个步骤,每个步骤都完成了,才算完成一个事件,注意各步骤间的连续性; ○4每个题中,标准不同,分步也不同,分步的基本要求:一是完成一件事,必须且只需连续做完几步,既不漏步也不重步;二是每个步骤之间的方法是无关的,不能相互替代. 2.分类计数原理和分步计数原理的区别 辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事。 类型一分类计数原理 例1:王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从口袋里任取一张英语单词卡片,有多少种不同的取法? [解析]从口袋中任取一张英语单词卡片的方法分两类,第一英:从左边口袋取一张英语单词卡片,有30种不同的取法;第二类:从右边口袋取一张英语单词卡片,有20种不同的取法,上述任何一种取法都能独立完成取一张英语单词卡片的事件,应用分类计数原理,所以从口袋里任取一张英语单词卡片有30+20=50种不同取法.

高二数学分类计数原理与分步计数原理教案

高二数学分类计数原理与分步计数原理教案 教学目标: 掌握分类计数原理与分步计数原理,并能用这两个原理分析和解决一些简单问题. 教具准备:投影胶片(两个原理). 教学过程: [设置情境] 先看下面的问题: 2002年夏季在韩国与日本举行的第17届世界杯足球赛共有32个队参赛.它们先分成8个小组进行循环赛,决出16强,这16个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名.问一共安排了多少场比赛? 要回答上述问题,就要用到排列、组合的知识.排列、组合是一个重要的数学方法,粗略地说,排列、组合方法就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类计数原理与分步计数原理,下面我们举一些例子来说明这两个原理. [探索研究] 引导学生看下面的问题.(出示投影) 从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有 3+2=5 种不同的走法,如图所示. 一般地,有如下原理:(出示投影) 分类计数原理完成一件事,有类办法,在第1 类办法中有种不同的方法,在第2类办法中有 种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: 种不同的方法.

再看下面的问题.(出示投影) 从甲地到乙地,要从甲地选乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班.那么两天中,从甲地到乙地共有多少种不同的走法(如图)? 这个问题与前一个问题不同.在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地. 这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有3×2=6 种不同的走法.(让学生具体列出6种不同的走法) 于是得到如下原理:(出示投影) 分步计数原理完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第 种不同的方法. 教师提出问题:分类计数原理与分步计数原理有什么不同? 学生回答后,教师出示投影:分类计数原理与分步计数原理都是涉及完成一件事的不同方法的种数的问题,它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成. (出示投影) 例1 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的取法? (解答略) 教师点评:注意区别“分类”与“分步”. 例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理 教学目的 1了解学习本章的意义,激发学生的兴趣. 2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力. 3.会利用两个原理分析和解决一些简单的应用问题. 教学重点 分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点: 分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 教 具 多媒体、实物投影仪 教学过程 一、引入课题 今天我们来学习两个计数原理:分类加法计数原理和分类乘法计数原理。这两个原理不仅是我们解决计数问题的依据,也是我们学习排列组合和概率论的基础。 二、引出两个原理 问题1: 重庆的王先生欲回老家广州过年,从重庆到广州可以乘坐火车或者汽 车,一天中,火车有3班,汽车有2班,问从重庆到广州共有多少种不同的走法? 分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从 重庆到广州,所以,共有3+2=5种不同的走法。 由问题1引出分类加法计数原理: 完成一件事情,有两类办法,在第1类办法中有m 种不同的方法,在第2类办法中有n 种不同的方法,那么完成这件事共N=m+n 种不同的方法.(也称加法原理)(板书) 追问:如果完成一件事情有 n 类不同方案,在第1类办法中有1m 种不同的方法, 在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的 方法.那么完成这件事共多少种不同的方法?.(口述) 回答:有n m m m N +???++=21种方法。 问题2:王先生在广州过完年后要去北京拜访朋友.第一天他必须乘火车去天津 办一件事,然后次日再乘汽车到北京。一天中,广州到天津的火车有3

最新《分类加法计数原理与分步乘法计数原理》练习题

1 2 4 5 3 《分类加法计数原理与分步乘法计数原理》基本练习 一、 选择题 1.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( ) A.25 B.20 C.16 D.12 2.由0,1,2,3,...,9十个数码和一个虚数单位i 可以组成虚数的个数为( ) A.100 B .10 C .9 D .90 3.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( ) A .10种 B .52种 C.25种 D.42种 4.三边长均为正整数,且最大边长为11的三角形的个数为( ) A.25 B.26 C.36 D.37 5.4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数 ( ) A .24 B .4 C .34 D .43 6.甲、乙、丙三个电台,分别有3、4、4人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话( ) A .40次 B .48次 C .36次 D .24次。 7.编号为A ,B ,C ,D ,E 的五个小球放在如图所示五个盒子中。要求每个盒子只能放一个小球,且A 不能放1,2号,B 必须放在与A 相邻的盒子中。则不同的放法有( )种 A.42 B.36 C.32 D.30 8.一只青蛙在三角形ABC 的三个顶点之间跳动,若此青蛙从A 点起跳,跳4次后仍回到A 点,则此青蛙不同的跳法的种数是( ) A .4 B .5 C .6 D .7 9.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有( ) A .6种 B .8种 C .36种 D .48种 10.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( ) A.1024种 B.1023种 C.1536种 D. 1535种 11.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线 12.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________. 13.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生 _________种不同的信息. 14.在1,2,3,4,5这五个数字所组成的没有重复数字的三位数中,其各位数字之和为9的三位数共有________

分类加法计数原理和分步乘法计数原理(教案)

分类加法计数原理和分步乘法计数原理讲义 教学目标: 知识与技能:①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法:培养学生的归纳概括能力; 情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 第一课时 引入课题 先看下面的问题: ①从我们班上推选出两名同学担任班长,有多少种不同的选法? ②把我们的同学排成一排,共有多少种不同的排法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理. 1 分类加法计数原理 (1)提出问题 问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码? 问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 探究:你能说说以上两个问题的特征吗?

(2)发现新知 分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有 m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N += 种不同的方法. (3)知识应用 例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下: A 大学 B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢? 分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有 5+4=9(种). 变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种? 探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法? 如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?

(完整版)分类计数原理和分步计数原理练习题

1、一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_________________种。 2、一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有_________________种不同的选法。 3、一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有 __________种。 4、从分别写有1,2,3,…,9九张数字的卡片中,抽出两张数字和为奇数的卡片,共有_________________种不同的抽法。 5、某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成,(1)从中选出1人担任组长,有多少种不同选法? (2)从中选出两位不同国家的人作为成果发布人,有多少种不同选法? 6、(1)3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,问有多少种不同的报名方案? (2)若有4项冠军在3个人中产生,每项冠军只能有一人获得,问有多少种不同的夺冠方案? 7、用五种不同颜色给图中四个区域涂色,每个区域涂一种颜色, (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法? 8、从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有_________________种不同的走法。 9、某电话局的电话号码为,若后面的五位数字是由6或8组成的,则这样的电话号码一共有_________________个。 10、从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有_________________种。

分类加法计数原理与分步乘法计数原理

分类分步计数原理 理解排列、组合的概念. 能用计数原理证明二项式定理. 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了 理解古典概型及其概率计算公式. 理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对 1.两个计数原理

分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这 件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事 才算完成. 判断正误(正确的打“√”,错误的打“×”) (1)在分类加法计数原理中,两类不同方案中的方法可以相同.( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( ) (3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( ) (4)在分步乘法计数原理中,事件是分两步完成的,其中任何一个单独的步骤都能完成 这件事.( ) 答案:(1)× (2)√ (3)√ (4)× 从0,1,2,3,4,5这六个数字中,任取两不同数字相加,其和为偶数的不同取法 的种数有( ) A .30 B .20 C . 10 D .6 解析:选D.从0,1,2,3,4,5六个数字中,任取两不同数和为偶数可分为两类,① 取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加 法计数原理得共有N =3+3=6(种). 某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果 将这3个新节目插入节目单中,那么不同的插法种数为( ) A .504 B .210 C .336 D .120 解析:选A.3个新节目一个一个插入节目单中,分别有7,8,9种方法,所以不同的插 法种数为7×8×9=504. 某同学逛书店,发现有三本喜欢的书,决定至少买其中一本,则购买的方案有 ________种. 解析:至少买其中一本的意思是买一本或买两本或买三本,故分三类.第一类:买一本

分类计数原理与分步计数原理教学设计

分类计数原理与分步计数原理

课题: 分类计数原理与分步计数原理 教材分析: 《分类计数原理与分步计数原理》,是高中数学第十章排列、组合的第一节课,是排列、组合的基础,学生对这两个原理的理解、掌握和运用,是学好本章的一个关键。 教学目标: 知识与技能目标: 准确理解两个原理,弄清它们的区别,培养学生分析问题、理解问题、归纳问题的能力 过程与方法目标: 通过例题让学生理解两个计数原理,并能够将两个技术原理应用到实际问题中去。 情感、态度与价值观目标: 培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。 教学重点: 分类计数原理和分步计数原理内容及两者的区别 教学难点: 对较为复杂事件的分类和分步 教学方法: 启发引导式教学 教具准备: 作图工具 课型: 新授课 教学过程: 问题引入一 问题1从芜湖到合肥,可以乘火车,也可以乘汽车,还可以乘轮船。假若一天中,火车有4班, 汽车有20班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 分析:从甲地到乙地有3类方法,

第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有20种方法; 第三类方法, 乘轮船, 有3种方法; 所以从甲地到乙地共有4+20+3=27种方法。 问题 2 在全班同学中选出一名同学做班长,有多少种选择? 新知探究一 分类计数原理:如果计数的对象可以分成若干类,使得每两类没有公共元素,那么分别对每一类里的元素计数,然后把各类的元素数目相加,便得出所要计数的对象的总数。 说明: (1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理。 (2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数。 例1 在填写高考志愿表时,一名高中毕业生了解到A 大学有5个自己感兴趣的强项专业,B 大学有4个自己感兴趣的强项专业,如果这名同学只能选一个专业,那么他共有多少种选择呢? 解:根据分类计数原理:这名同学可能的专业选择共有5+4=9种。 问题引入二 问题3 如图,假设由芜湖去巢湖的道路有3条,由巢湖去合肥的道路有2条。从芜湖经巢湖去合肥,共有多少种不同的走法? 分析: 芜湖经巢湖去合肥有2步, 第一步, 由芜湖去巢湖有3种方法, 第二步, 由巢湖去合肥有2种方法, 所以芜湖经巢湖去合肥共有3×2=6种不同的方法。 问题 4 在全班每个组中都选出一名同学做组长,有多少种选择? 新知探究二 分步计数原理:如果计数的对象可以分成若干步骤来完成, 并且对于前面几芜湖北 南 北

(完整版)分类加法计数原理与分步乘法计数原理综合测试题(有答案)

分类加法计数原理与分步乘法计数原理综合测试题(有答案) 选修2-3 1.1第一课时分类加法计数原理与分步乘法计数原理 一、选择题 1.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为( ) A.182 B.14 C.48 D.91 [答案] C [解析] 由分步乘法计数原理得不同取法的种数为6×8=48,故选C. 2.从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为( ) A.13种 B.16种 C.24种 D.48种 [答案] A [解析] 应用分类加法计数原理,不同走法数为8+3+2=13(种).故选A. 3.集合A={a,b,c},B={d,e,f,g},从集合A到集合B的不同的映射个数是( ) A.24 B.81 C.6 D.64 [答案] D [解析] 由分步乘法计数原理得43=64,故选D. 4.5 本不同的书,全部送给6位学生,有多少种不同的送书方法( ) A.720种 B.7776种 C.360种 D.3888种 [答案] B [解析] 每本书有6种不同去向,5本书全部送完,这件事情才算完成.由乘法原理知不同送书方法有65=7776种. 5.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法种数是( ) A.8种 B.9种 C.10种 D.11种 [答案] B [解析] 设四个班级分别是A,B,C,D,它们的老师分别是a,b,c,d,并设a监考的是B,则剩下的三个老师分别监考剩下的三个班级,共有3种不同的方法;同理当a监考C,D时,剩下的三个老师分别监考剩下的三个班级也各有3种不同的方法.这样,用分类加法计数原理求解,共有3+3+3=9(种)不同的安排方法.另外,本题还可让a先选,可从B,C,D中选一个,即有3种选法.若选的是B,则b从剩下的3个班级中任选一个,也有3种选法,剩下的两个老师都只有一种选法,这样用分步乘法计数原理求解,共有3×3×1×1=9(种)不同的安排方法. 6.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从 “×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A.2 000 B.4

分类计数原理和分步计数原理

分类计数原理与分步计数原理 年级__________ 班级_________ 学号_________ __________ 分数____ 总分一二三 一、选择题(共33题,题分合计165分) 1.从甲地到乙地每天有直达班车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地,不同的乘车法有 A.12种 B.19种 C.32种 D.60种 2.若x∈{1,2,3},y∈{5,7,9},则x·y的不同值有 A.2个 B.6个 C.9个 D.3个 3.七名男同学和九名女同学,组成班组乒乓球混合双打代表队,共可以组成 A.7队 B.8队 C.15队 D.63队 4.集合A={1,2,3,4},B={a,b,c},从集合A到集合B的不同映射f个数有 A.24个 B.4个 C.34个 D.43 5.计算1!+2!+3!+…+100!得到的数,其个位数字是 A.2 B.3 C.4 D.5 6.已知集合 {}{}7,6,5,4 ,3,2 ,1- - = - =N M,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐 得分阅卷人

标系中可表示第一、二象限不同的点的个数是 A.18 B.10 C.16 D.14 7.用1,2,3,4四个数字中任取数(不重复取)作和,则取出这些数的不同的和共有 A.8个 B.9个 C.10个 D.5个 8.若 100 100 5 5 4 4 3 3 2 2 1 2 A A A A A A S+ + + + + + = ,则S的个位数字是 A.8 B.5 C.3 D.0 9.7名同学排成一排,其中甲、乙必须排在一起的不同排法有 A.720种 B.360种 C.1440种 D.120种 10.有三位同学去阅览室借5本不同的书,不同的借法种数有 A.3 B.5 C.35 D.53 11.某同学逛书店,发现三本喜欢的书,决定至少买其中一本,则购买方案有 A.3种 B.6种 C.7种 D.9种 12.某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有 A.510种 B.105种 C.50种 D.以上都不对 13.三位同学分别从"计算机"及"英语打字"两项活动中选修一项,不同的选法种数有 A.3 B.6 C.8 D.9 14.从1~8这八个数字中任取两个数相加(不重复取),其和是偶数的种数比其和是奇数的种数 A.多1种 B.多4种 C.少2种 D.少4种 15.正方体的每一条对角线与正方体的棱可以组成异面直线的对数最多是 A.3对 B.6对 C.12对 D.24对 16.从6本不同的书中任意取出4本分给四位同学,每人一本,不同的分法共有 A.24种 B.120种 C.360种 D.1440种 17.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有 A.5种 B.6种 C.7种 D.8种 18.有4部车床,需加工3个不同的零件,其不同的安排方法有 A.34 B.43 C.A 3 4 D.44 19.5名同学去听同时进行的4个课外知识讲座,每个同学可自由选择,则不同的选择种数是

2015高考数学(理)一轮题组训练:11-1分类加法计数原理与分步乘法计数原理

第十一篇计数原理 第1讲 分类加法计数原理与分步乘法计数原理 基础巩固题组 (建议用时:40分钟) 一、填空题 1.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有________. 解析按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种). 答案960种 2.(2012·新课标全国卷改编)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有________. 解析分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2种选派方法; 第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6种选派方法.由分步乘法计数原理,不同选派方案共有2×6=12(种). 答案12种 3.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有________. 解析第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种). 答案480种

4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为________. 解析以1为首项的等比数列为1,2,4;1,3,9; 以2为首项的等比数列为2,4,8; 以4为首项的等比数列为4,6,9; 把这四个数列顺序颠倒,又得到4个数列, ∴所求的数列共有2(2+1+1)=8(个). 答案8 5.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P?Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是________. 解析当x=2时,x≠y,点的个数为1×7=7(个). 当x≠2时,由P?Q,∴x=y. ∴x可从3,4,5,6,7,8,9中取,有7种方法. 因此满足条件的点共有7+7=14(个). 答案14 6.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答). 解析第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法. 第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法. 由分步乘法计数原理可得,不同的选法共有3×4×3=36(种). 答案36 7.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.

《分类加法计数原理与分步乘法计数原理》教学设计

《分类加法计数原理与分步乘法计数》教学设计(2)

知识网络

12.1 分类加法计数原理与分步乘法计数原理 典例精析 题型一分类加法计数原理的应用 【例1】在1到20这20个整数中,任取两个数相加,使其和大于20,共有种取法. 【解析】当一个加数是1时,另一个加数只能是20,有1种取法; 当一个加数是2时,另一个加数可以是19,20,有2种取法; 当一个加数是3时,另一个加数可以是18,19,20,有3种取法; …… 当一个加数是10时,另一个加数可以是11,12,…,19,20,有10种取法; 当一个加数是11时,另一个加数可以是12,13,…,19,20,有9种取法;

…… 当一个加数是19时,另一个加数只能是20,有1种取法. 由分类加法计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法. 【点拨】采用列举法分类,先确定一个加数,再利用“和大于20”确定另一个加数. 【变式训练1】(2017济南市模拟)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( ) A.3 B.4 C.6 D.8 【解析】当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等 比数列可为1,3,9;当公比为3 2 时,等比数列可为4,6,9.同理,公比为 1 2 、 1 3 、 2 3 时, 也有4个.故选D. 题型二分步乘法计数原理的应用 【例2】从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有种. 【解析】能去张家界的有4人,依此能去韶山、衡山、桃花源的有5人、4人、3人.则由分步乘法计数原理得不同的选择方案有4×5×4×3=240种. 【点拨】根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步之间既不能重复也不能遗漏. 【变式训练2】(2017湘潭市调研)要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有种不同的排法. 【解析】依题意,值班表须一天一天分步完成.第一天有5人可选有5种方法,第二天不能用第一天的人有4种方法,同理第三天、第四天、第五天也都有4种方法,由分步乘法计数原理共有5×4×4×4×4=1 280种方法. 题型三分类和分步计数原理综合应用 【例3】(2017长郡中学)如图,用4种不同的颜色对图中5个区域涂色

11分类加法计数原理与分步乘法计数原理.doc

人教A版选修2—3 精讲细练 1.1分类加法计数原理与分步乘法计数原理 、知识精讲 .计数原理 .计数原理选取 对于两个计数原理的综合应用问题,一般是先分类再分步,分类时要设计好标准, 设计好分类方案,防止重复和遗漏;分步时要注意步与步之间的连续性,同时应合理设计步骤顺序,使各步互不干扰. 二、典例细练 【题型一】:分类加法计数原理的简单应用 例题1:书架上层放有13本不同的数学书,中层放有14本不同的语文书,下层

放有15本不同的化学书,某人从中取出一本书,有多少种不同的取法? 【解析】要完成“取一本书”这件事有三类不同的取法: 第1类,从上层取一本数学书有13种不同的方法; 第2类,从中层取一本语文书有14种不同的方法; 第3类,从下层取一本化学书有15种不同的方法. 其中任何一种取法都能独立完成取一本书这件事, 故从中取一本书的方法种数为13+14+15=42. 【点评】分类的原则:标准一致,不重复,不遗漏. 变式训练:某校高三共有三个班,其各班人数如下表: (1)从三个班中选一名学生会主席,有多少种不同的选法? (2)从1班、2班男生中或从3班女生中选一名学生任学生会生活部部长,有多少种不同的选法? 【解析】:(1)从三个班中任选一名学生,可分三类: 第1类,从1班任选一名学生,有50种不同选法; 第2类,从2班任选一名学生,有60种不同选法; 第3类,从3班任选一名学生,有55种不同选法. 由分类加法计数原理知,不同的选法共有N = 50+60+55=165(种) (2)由题设知共有三类: 第1类,从1班男生中任选一名学生,有30种不同选法; 第2类,从2班男生中任选一名学生,有30种不同选法; 第3类,从3班女生中任选一名学生,有20种不同选法; 由分类加法计数原理知,不同的选法共有

分类计数原理与分步计数原理练习测验题

分步计数原理与分类计数原理 基本知识点复习 1.分步计数原理: 2.分类计数原理: 复习练习题选 一、选择题 1.甲组有5名男同学、3名女同学,乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出地4人中恰好有1名女同学地选法有( )A.150种 B.180种 C.300种 D.345种2.某班新年联欢会原定地5个节目已排成节目单,开演前又增加了2个新节目,如果将这2个节目插入原节目单中,那么不同地插法地种类为( )A.42 B.30 C.20 D.12 3.甲、乙两人从4门功课中各选修2门,则甲、乙所选地课程中至少有一门不相同地选法共有( ) A.6种 B.12种 C.30种 D.36种 4.三边长均为整数,且最大边长为11地三角形地个数是( ) A.25 B.26 C.36 D.37 5.设集合I={1,2,3,4,5},选择I 地两个非空子集A 、B 要使B 中最小地数大于A 中最大地数,则不同地选择方法共有( )A.50种 B.49种 C.48种 D.47种 6.设P 、Q 是两个非空集合,定义P*Q=},|),{(Q b P a b a ∈∈,若P={0,1,2},Q={1,2,3,4},则P*Q 中地元素地个数是( )A.4 B.7 C.12 D.16 7.从长度分别为1,2,3,4,5地五条线段中任取三条地不同取法有n 种,以取出地 三条线段为边可组成地钝角三角形地个数为m ,则n m 等于( )A.101 B.51 C.103 D.5 2 8.若)(x f y =是定义域为A={}*,71|N x x x ∈≤≤,值域为{0,1}地函数,则这样地函数共有( ) A.128个 B.126个 C.14个 D.16个 9.已知直线01=++by ax 中地a,b 是取自集合}2,1,0,1,2,3{---中地两个不同地元素,并且直线地倾斜角大于060,那么符合这些条件地直线共有( )A.8条 B.11条 C.13条 D.16条 10.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程122 22=+n y m x 中地m 和n ,

分类计数原理与分步计数原理

《分类计数原理与分步计数原理(一)》教学设计 柳州地区民族高级中学覃艳莉 相关教材:人民教育出版社的全日制普通高级中学教科书(必修)《数学》第二册(下B) 一、教学内容解析: 1.教学内容: 分类计数原理、分步计数原理,这两个原理也是本次课的教学重点。 2.概念解析: 分类计数原理和分步计数原理都是计算完成一件事共有多少种不同方法数的原理,也叫加法原理和乘法原理。其区别在于:运用加法原理的前提条件是完成一件事有n类办法,选择任何一类办法中任何一种方法都可以独立完成此事,就是说,完成这件事的各种方法是相互独立的,所以总方法数为各类方法数之和;运用乘法原理的前提条件是完成一件事需n个步骤,只有依次完成所有步骤后才能完成这件事,就是说,完成这件事的各个步骤是相互依存的,所以总方法数为各步骤方法数之积。 3.两个计数原理的地位和作用: 分类计数原理与分步计数原理是人们在大量实践经验的基础上归纳出来的基本规律,体现了解决问题时将其分解的两种常用方法,即分类解决或分步解决。这不仅是今后推导排列数与组合数计算公式的依据,而且这种解决问题的思想与方法贯穿于本章的始终。 二、教学目标设置: 1.知识与技能目标:理解并掌握分类计数原理与分步计数原理,能用它们分析和解决一些简单的应用问题。 2.过程和方法目标:创设情境,将一些实际问题归结为一个分类或分步的计数问题,使学生的建构思维能力得到提升;在总结时用到特殊到一般的思想;在解题时通过类比,举一反三,使学生对两个计数原理有一个更深刻的理解。 3.情感与态度目标:通过学生小组活动,培养学生周密思考、细心分析的良好的学习习惯,使学生在现实生活中面对复杂的事务和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,认识数学知识与现实生活的内在联系及不可分割性。让学生感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。 三、学生学情分析: 1.认知基础分析: 学生在初中学习过用列举法或树状图来解决一些计数问题,已经具备了一定的归纳、类比能

相关文档
最新文档