【压轴卷】高三数学下期末模拟试题及答案(4)
2020-2021高三数学下期末模拟试卷(附答案)

2020-2021高三数学下期末模拟试卷(附答案)一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( ) A .B .C .D .2.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( )A .2i -+B .2i --C .12i +D .12i -+3.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2B .1C .-2D .-14.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2) B .(0,1) C .(-1,0) D .(1,2) 5.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i6.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙7.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)8.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭9.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,10.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对12.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .二、填空题13.设25a b m ==,且112a b+=,则m =______. 14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.16.若,满足约束条件则的最大值 .17.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.18.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.()sin 5013tan10+=oo________________.三、解答题21.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率): ①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.22.已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为25. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的右焦点F 作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求12λλ+的值.23.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.24.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED V ,DCF V 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.25.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值. 26.已知0,0a b >>. (1)211ab a b≥+ ; (2)若a b >,且2ab =,求证:224a b a b+≥-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据函数图象理解二分法的定义,函数f (x )在区间[a ,b ]上连续不断,并且有f (a )•f (b )<0.即函数图象连续并且穿过x 轴. 【详解】解:能用二分法求零点的函数必须在给定区间[a ,b ]上连续不断,并且有f (a )•f (b )<0A 、B 中不存在f (x )<0,D 中函数不连续. 故选C . 【点睛】本题考查了二分法的定义,学生的识图能力,是基础题.2.A解析:A【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB uuu r对应的复数为2i -+.故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.3.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算4.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.5.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.6.A解析:A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.7.B解析:B【解析】【分析】设圆和x轴相交于M点,根据圆的定义得到CA=CM=R,因为x=-2,是抛物线的准线,结合抛物线的定义得到M点为焦点.【详解】x+=相切的切点为A,与x轴交点为M,由抛物线的定圆心C在抛物线上,设与直线20x+=为抛物线的准线,故根据抛物线的定义得到该圆必义可知,CA=CM=R,直线202,0.过抛物线的焦点()故选B【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.8.C解析:C【解析】【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.9.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意; 当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩n , 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C .10.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x x=Q0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞U ,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.11.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.12.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x '=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.15.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n =4故答案为4【点睛】本题考 解析:4【解析】 【分析】利用通项公式即可得出. 【详解】解:(1+3x )n 的展开式中通项公式:T r +1rn =ð(3x )r =3r rn ðx r . ∵含有x 2的系数是54,∴r =2.∴223n =ð54,可得2n =ð6,∴()12n n -=6,n ∈N *.解得n =4.故答案为4.【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.16.3【解析】作出可行域如图中阴影部分所示由斜率的意义知yx是可行域内一点与原点连线的斜率由图可知点A(13)与原点连线的斜率最大故yx的最大值为3考点:线性规划解法解析:【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法17.【解析】【分析】由条件得MN则结合对数的运算法则可得αβ=1【详解】由条件得MN可得即α=loβ=lo所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】【分析】由条件,得M12,33⎛⎫⎪⎝⎭,N21,33⎛⎫⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】由条件,得M12,33⎛⎫⎪⎝⎭,N21,33⎛⎫⎪⎝⎭,可得1221,3333αβ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,即α=lo231 3g,β=lo132 3g.所以αβ=lo231 3g·lo1312 233·21 333lg lgglg lg==1.【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.18.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q 中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8 【解析】 【详解】由题意知a ∈P ,b ∈Q ,则a+b 的取值分别为1,2,3,4,6,7,8,11.故集合P+Q 中的元素有8个. 点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.19.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3. 【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.20.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】 【分析】利用弦化切的运算技巧得出()sin 50sin 501an10+=ooo利用辅助角、二倍角正弦以及诱导公式可计算出结果. 【详解】 原式()2sin 1030sin50cos102sin 40cos 40sin50cos10cos10cos10++=⋅==o o oo o o ooo oo()sin 9010sin80cos101cos10cos10cos10-====o oo o o o o . 故答案为:1. 【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.三、解答题21.(I )丙级;(Ⅱ)①;②.【解析】 【分析】(I )以频率值作为概率计算出相应概率,再利用判定规则的三个式子得出判断设备的性能等级。
【压轴卷】高中三年级数学下期末第一次模拟试卷带答案(4)

【压轴卷】高中三年级数学下期末第一次模拟试卷带答案(4)一、选择题1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24B .16C .8D .122.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .34.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -5.函数2||()x x f x e -=的图象是( )A .B .C .D .6.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称7.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确8.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A .2 B .3 C .2D .59.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒> D .22a b a b >⇒> 10.若实数满足约束条件,则的最大值是( )A .B .1C .10D .1211.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 212.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 二、填空题13.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________.14.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .15.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).16.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.17.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .20.函数()lg 12sin y x =-的定义域是________.三、解答题21.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:喜欢游泳不喜欢游泳合计男生10女生20合计已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为. (1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率. 下面的临界值表仅供参考:(参考公式:22n(ad bc)K (a b)(c d)(a c)(b d)-=++++,其中n=a+b+c+d )22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.在平面直角坐标系xOy 中,直线l 的参数方程为21x ty at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且AB =a 的值.24.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线:sin x aC y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π4⎛⎫⎪⎝⎭,,曲线C 的方程为r ρ=(0r >). (1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.26.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。
【压轴卷】高中三年级数学下期末模拟试卷(附答案)

【压轴卷】高中三年级数学下期末模拟试卷(附答案)一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( ) A .14B .13C .12D .233.数列2,5,11,20,x ,47...中的x 等于( ) A .28B .32C .33D .274.如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上一点(不同于A 、B )且PA =AC ,则二面角P -BC -A 的大小为( )A .60︒B .30°C .45︒D .15︒5.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 6.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .272207.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.258.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( ) AB .2CD9.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对10.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r11.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与CC .A 与DD .C 与D12.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.15.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.16.若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______.17.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .18.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.19.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积. 22.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.23.如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ; (2)若二面角D AP C --6,求PF 的长度. 24.选修4-5:不等式选讲:设函数()13f x x x a =++-.(1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围. 25.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u v u u u v.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意得在线性回归方程$ˆy bxa =+$中 1.23b =$,然后根据回归方程过样本点的中心得到$a的值,进而可得所求方程. 【详解】设线性回归方程$ˆy bxa =+$中,由题意得 1.23b =$, ∴$1.23ˆy x a=+. 又回归直线过样本点的中心()4,5,∴$5 1.234a=⨯+, ∴$0.08a=, ∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.C解析:C 【解析】 【分析】由题意,求得(),()P AB P A 的值,再由条件概率的计算公式,即可求解. 【详解】记事件A 表示“第一次正面向上”,事件B 表示“第二次反面向上”, 则P(AB)=,P(A)=,∴P(B|A)==,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.B解析:B 【解析】 【分析】通过观察,得出该数列从第二项起,后一项与前一项的差分别是3的倍数,由此可求得x 的值. 【详解】因为数列的前几项为2,5,11,20,,47x , 其中5213,11523,201133-=⨯-=⨯-=⨯, 可得2043x -=⨯,解得32x =,故选B. 【点睛】本题主要考查了数列的概念及其应用,其中解答中根据题意发现数列中数字的排布规律是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.C解析:C 【解析】由条件得:PA ⊥BC ,AC ⊥BC 又PA ∩AC =C ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C .点睛:二面角的寻找主要利用线面垂直,根据二面角定义得二面角的棱垂直于二面角的平面角所在平面.5.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.7.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.8.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y x a y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以21()5be a=+= D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.9.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2223524R =++2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.10.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.11.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.12.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.二、填空题13.【解析】【分析】由题意知渐近线方程是再据得出与的关系代入渐近线方程即可【详解】∵双曲线的两个顶点三等分焦距∴又∴∴渐近线方程是故答案为【点睛】本题考查双曲线的几何性质即双曲线的渐近线方程为属于基础题解析:y =±【解析】 【分析】由题意知,渐近线方程是b y x a =±,1223a c =⨯,再据222c ab =+,得出 b 与a 的关系,代入渐近线方程即可. 【详解】∵双曲线22221x y a b-= (0,0)a b >>的两个顶点三等分焦距,∴1223a c =⨯,3c a =,又222c a b =+,∴b =∴渐近线方程是by x a=±=±,故答案为y =±. 【点睛】本题考查双曲线的几何性质即双曲线22221x y a b-= (0,0)a b >>的渐近线方程为b y xa =±属于基础题.14.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)-??【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.15.【解析】【分析】画出两个函数图像求出三个交点的坐标由此计算出三角形的面积【详解】画出两个函数图像如下图所示由图可知对于点由解得所以【点睛】本小题主要考查正弦函数和正切函数的图像考查三角函数图像交点坐【解析】 【分析】画出两个函数图像,求出三个交点的坐标,由此计算出三角形的面积. 【详解】画出两个函数图像如下图所示,由图可知()()0,0,π,0A C ,对于B 点,由sin 1tan 2y xy x =⎧⎪⎨=⎪⎩,解得π3,3B ⎛⎫ ⎪ ⎪⎝⎭,所以133ππ2ABC S ∆=⨯⨯=.【点睛】本小题主要考查正弦函数和正切函数的图像,考查三角函数图像交点坐标的求法,考查三角函数面积公式,属于中档题.16.【解析】【分析】【详解】试题分析:当时的最大值为令解得所以a 的取值范围是考点:利用导数判断函数的单调性解析:1(,)9-+∞【解析】 【分析】 【详解】试题分析:2211()2224f x x x a x a ⎛⎫=-++=--++ ⎪⎝⎭'.当23x ⎡⎫∈+∞⎪⎢⎣⎭,时,()f x '的最大值为22239f a ⎛⎫=+ ⎪⎝⎭',令2209a +>,解得19a >-,所以a 的取值范围是1,9⎛⎫-+∞ ⎪⎝⎭.考点:利用导数判断函数的单调性.17.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.18.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】 【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-, 所以数列{}n a 是以-1为首项,以2为公比的等比数列,所以66(12)6312S --==--,故答案是63-.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.19.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值, 由2200x y y --=⎧⎨=⎩,解得(2,0)B , 此时max 3206z =⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.20.【解析】【分析】首先想到所选的人中没有女生有多少种选法再者需要确定从人中任选人的选法种数之后应用减法运算求得结果【详解】根据题意没有女生入选有种选法从名学生中任意选人有种选法故至少有位女生入选则不同 解析:16【解析】 【分析】首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人的选法种数,之后应用减法运算,求得结果.根据题意,没有女生入选有344C =种选法,从6名学生中任意选3人有3620C =种选法,故至少有1位女生入选,则不同的选法共有20416-=种,故答案是16. 【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.三、解答题21.(Ⅰ)见解析(Ⅱ)111632132C A DE V -=⨯⨯⨯⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分 所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分 由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分 所以三菱锥C ﹣A 1DE 的体积为:==1. 12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积 22.(1)见解析(22(321【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC中,由题设知AO 1CO ==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME中,11EM AB OE DC 122====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD中,CA CD 2AD ===,ACD1S 22==V ,由AO =1,知2CDE 1S 22==V ,由此能求出点E 到平面ACD 的距离. 【详解】(1)证明:连接OC ,∵BO =DO ,AB =AD ,∴AO ⊥BD , ∵BO =DO ,BC =CD ,∴CO ⊥BD .在△AOC中,由题设知1AO CO ==,AC =2, ∴AO 2+CO 2=AC 2,∴∠AOC =90°,即AO ⊥OC . ∵AO ⊥BD ,BD ∩OC =O , ∴AO ⊥平面BCD .(2)解:取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点, 知ME ∥AB ,OE ∥DC ,∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角. 在△OME中,111222EM AB OE DC ====, ∵OM 是直角△AOC 斜边AC 上的中线,∴112OM AC ==,∴1114cos OEM +-∠==, ∴异面直线AB 与CD(3)解:设点E 到平面ACD 的距离为h .E ACD A CDE V V --=Q ,1133ACD CDE h S AO S ∴=V V ...,在△ACD 中,22CA CD AD ===,,∴21272422ACDS ⎛⎫=⨯⨯-= ⎪ ⎪⎝⎭V , ∵AO =1,21332242CDE S =⨯⨯=V , ∴3121277CDE ACDAO S h S ⨯⋅===V V ,∴点E 到平面ACD 的距离为217.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题. 23.(1)见解析;(25【解析】 【分析】(1)先证明AB AF ⊥,又平面ABEF ⊥平面ABCD ,即得AF ⊥平面ABCD ;(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系,由题得26cos ,321411m AB m AB m ABλλ⋅===⎛⎫⋅++ ⎪-⎝⎭u u u vu u u v u u u v ,解方程即得解.【详解】(1)证明:∵90BAF ∠=︒,∴AB AF ⊥,又平面ABEF ⊥平面ABCD ,平面ABEF I 平面ABCD AB =,AF ⊂平面ABEF , ∴AF ⊥平面ABCD .(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系,则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D ,()0,0,1F ,∴()0,2,1FD u u u v =-,()1,2,0AC =u u u v,()1,0,0AB =u u u r由题知,AB ⊥平面ADF ,∴()1,0,0AB =u u u r为平面ADF 的一个法向量, 设()01FP FD λλ=≤<u u u v u u u v ,则()0,2,1P λλ-,∴()0,2,1AP λλ=-u u u v,设平面APC 的一个法向量为(),,x y z =m ,则00m AP m AC ⎧⋅=⎨⋅=⎩u u u v u u u v , ∴()21020y z x y λλ⎧+-=⎨+=⎩,令1y =,可得22,1,1m λλ⎛⎫=- ⎪-⎝⎭, ∴26cos ,321411m AB m AB m AB λλ⋅===⎛⎫⋅++ ⎪-⎝⎭u u u vu u u v u u u v ,得13λ=或1λ=-(舍去), ∴5PF =.【点睛】本题主要考查空间垂直关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力. 24.(1)15[,]42(2)(5,3)- 【解析】 【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)问题等价于关于x 的不等式14x x a ++-<有解,()min14x x a ++-<,求出a的范围即可. 【详解】解:(1)()1323f x x x a x =++-≤+可转化为14223x x x ≥⎧⎨-≤+⎩或114223x x x -<<⎧⎨-≤+⎩或12423x x x ≤-⎧⎨-≤+⎩,解得512x ≤≤或114x ≤<或无解. 所以不等式的解集为15,42⎡⎤⎢⎥⎣⎦. (2)依题意,问题等价于关于x 的不等式14x x a ++-<有解, 即()min14x x a++-<,又111x x a x x a a ++-≥+-+=+,当()()10x x a +-≤时取等号. 所以14a +<,解得53a -<<,所以实数a 的取值范围是()5,3-. 【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用。
【压轴题】高三数学下期末模拟试题及答案

【压轴题】高三数学下期末模拟试题及答案一、选择题1.若复数21iz =-,其中i 为虚数单位,则z = A .1+iB .1−iC .−1+iD .−1−i2.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对3.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .144.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .135.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4B .15x 4C .-20i x 4D .20i x 46.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( ) A 310B .310C 433- D 343-7.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i8.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,79.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭ C .2sin 23x y π⎛⎫=+⎪⎝⎭ D .2sin 23y x π⎛⎫=-⎪⎝⎭10.在ABC V 中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .411.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .0 12.已知复数z 满足()12i z +=,则复数z 的虚部为( )A .1B .1-C .iD .i -二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .15.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 16.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 17.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.18.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30°,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.19.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 20.如图,已知P 是半径为2,圆心角为3π的一段圆弧AB 上一点,2A B B C =u u u v u u u v ,则PC PA ⋅u u u v u u u v的最小值为_______.三、解答题21.已知直线35:{132x tl y t=+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为5l 的普通方程.23.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.24.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.(1)证明:AE ⊥平面ECD ;(2)求直线1A C 与平面EAC 所成角的正弦值.25.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式 6.92 2.63≈,若 ()2~,X Nμσ,则①()0.6827P X μσμσ-<+=…;② (22)0.9545P X μσμσ-<+=…;③ (33)0.9973P X μσμσ-<+=….(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?26.已知数列{n a }的前n 项和Sn =n 2-5n (n∈N +). (1)求数列{n a }的通项公式; (2)求数列{12nn a +}的前n 项和Tn .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:22(1i)1i,1i 1i (1i)(1i)z z +===+∴=---+,选B. 【考点】复数的运算,复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.2.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称. 考点:空间两点间的距离.3.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2,由a=b=2, 则输出的a=2. 故选B .4.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.5.A解析:A 【解析】 试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式可以写为,则其通项为,则含的项为.6.D解析:D 【解析】分析:先求出()cos 30α︒+的值,再把cos α变形为0cos[(30)30]α+-,再利用差角的余弦公式展开化简即得cos α的值. 详解:∵60150α︒<<︒, ∴90°<30α︒+<180°, ∴()cos 30α︒+=-45, ∵c os α=00cos[(30)30]α+-,∴c os α=-45×33134352-⨯=, 故选D.点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角,0(30)30αα=+-,把未知的角向已知的角转化,从而完成解题目标.7.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.8.B解析:B 【解析】 【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.9.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D求得函数值为0,2,3,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.10.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.11.C解析:C 【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.12.B解析:B 【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--(),2a bi b a i ⇒+=-+-() ,2a b b a =-⎧⇒⎨=-⎩1b ⇒=- ,故选B. 二、填空题13.1006【解析】试题分析:由题设可知在中由此可得由正弦定理可得解之得又因为所以应填1006考点:正弦定理及运用 解析:【解析】试题分析:由题设可知在中,,由此可得,由正弦定理可得,解之得,又因为,所以,应填.考点:正弦定理及运用.14.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.15.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立 15【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得315 ,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得3152P⎛-⎝⎭,所以1521512PFk==【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个解析:322+【解析】21a bQ+=,则1111223+322b aa ba b a b a b+=++=+≥+()()11a b+的最小值为322+点睛:本题主要考查基本不等式,解决本题的关键是由21a b+=,有11112a ba b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.17.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.18.【解析】【分析】作出立体图利用直角三角形中的三角函数关系求得对应的边长再利用余弦定理求解即可【详解】如图所示在中∵∴在中∵∴在中∴故答案为:【点睛】本题主要考查了解三角形求解实际情景中的角度问题依据 解析:30°【解析】 【分析】作出立体图,利用直角三角形中的三角函数关系求得对应的边长,再利用余弦定理求解cos ACB ∠即可. 【详解】如图所示,在Rt ACD V 中,∵10,45AC m DAC =∠=︒,∴10DC m = 在Rt DCB △中,∵30DBC ∠=︒,∴103BC m =. 在ABC V 中,)22210103103cos 210103ACB +-∠==⨯⨯,∴30ACB ∠=︒.故答案为:30° 【点睛】本题主要考查了解三角形求解实际情景中的角度问题,依据题意正确画出立体图形,确定边的关系再利用余弦定理求解即可.属于基础题.19.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题【解析】 【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值. 【详解】由于α为锐角,且4cos 5α=,故3sin 5α==,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故cos β===50=. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.20.5﹣【解析】【分析】设圆心为OAB 中点为D 先求出再求PM 的最小值得解【详解】设圆心为OAB 中点为D 由题得取AC 中点M 由题得两方程平方相减得要使取最小值就是PM 最小当圆弧AB 的圆心与点PM 共线时PM 最解析:5﹣【解析】 【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,再求PM 的最小值得解. 【详解】设圆心为O,AB 中点为D,由题得22sin2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PM PC PA AC ⎧+=⎨-=⎩u u u v u u u v u u u u v u u uv u u u v u u u v , 两方程平方相减得2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,要使PC PA ⋅u u u r u u u r取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=221113,()3222DM ∴=+=, 所以PM 有最小值为2﹣13, 代入求得PC PA ⋅u u u r u u u r的最小值为5﹣213. 故答案为5﹣213 【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1);(2).【解析】 【分析】 【详解】试题分析:(1)在方程=2cos ρθ两边同乘以极径ρ可得2=2cos ρρθ,再根据222=,cos x y x ρρθ+=,代入整理即得曲线C 的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到MA MB ⋅的值.试题解析:(1)=2cos ρθ等价于2=2cos ρρθ①将222=,cos x y x ρρθ+=代入①既得曲线C 的直角坐标方程为2220x y x +-=,②(2)将352132x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入②得253180t t ++=, 设这个方程的两个实根分别为12,,t t则由参数t 的几何意义既知,1218MA MB t t ⋅==.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用. 22.(Ⅰ) ()()22219x y -++=;(Ⅱ)34y x =和x=0. 【解析】 【分析】(I )将x cos y sin ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程,化简后可求得对应的直角坐标方程.(II )将直线的参数方程代入曲线方程,利用弦长公式列方程,解方程求得直线的倾斜角或斜率,由此求得直线l 的普通方程. 【详解】 解:(Ⅰ)将x cos y sin ρθρθ=⎧⎨=⎩代入曲线C 极坐标方程得:曲线C 的直角坐标方程为:22442x y x y +-=- 即()()22219x y -++=(Ⅱ)将直线的参数方程代入曲线方程:()()22cos 2sin 19t t αα-++=整理得24cos 2sin 40t t t αα-+-= 设点A ,B 对应的参数为1t ,2t , 解得124cos 2sin t t αα+=-,124t t ⋅=-则12AB t t =-===23cos 4sin cos 0ααα-=,因为0απ≤<得3tan 24παα==或,直线l 的普通方程为34y x =和x=0 【点睛】本小题主要考查极坐标方程和直角坐标方程互化,考查利用直线的参数方程来求弦长有关的问题,属于中档题.23.(1)见解析;(2)1[,)e+∞. 【解析】 【分析】(1)()f x 的定义域为()0,+∞,且()()()21x x e ax f x x --'=,据此确定函数的单调性即可;(2)由题意可知()10xb x e lnx --≥在[)1,+∞上恒成立,分类讨论0b ≤和0b >两种情况确定实数b 的取值范围即可. 【详解】(1)()f x 的定义域为()0,+∞ ∵()()()21x x e ax f x x --'=,0a <,∴当()0,1x ∈时,()0f x '<;()1,x ∈+∞时,()0f x '> ∴函数()f x 在()0,1上单调递减;在()1,+∞上单调递增.(2)当1a =-时,()1x f x bx b e x x ⎛⎫+--- ⎪⎝⎭()1xb x e lnx =-- 由题意,()10xb x e lnx --≥在[)1,+∞上恒成立①若0b ≤,当1x ≥时,显然有()10xb x e lnx --≤恒成立;不符题意.②若0b >,记()()1xh x b x e lnx =--,则()1xh x bxe x'=-, 显然()h x '在[)1,+∞单调递增, (i )当1b e≥时,当1x ≥时,()()110h x h be ≥=-'≥' ∴[)1,x ∈+∞时,()()10h x h ≥=(ii )当10b e <<,()110h be -'=<,1110b h e b e b ⎛⎫=-> ⎝'->⎪⎭∴存在01x >,使()0h x '=.当()01,x x ∈时,()0h x '<,()0,x x ∈+∞时,()0h x '> ∴()h x 在()01,x 上单调递减;在()0,x +∞上单调递增 ∴当()01,x x ∈时,()()10h x h <=,不符合题意 综上所述,所求b 的取值范围是1,e ⎡⎫+∞⎪⎢⎣⎭【点睛】本题主要考查导数研究函数的单调性,导数研究恒成立问题,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.24.(1)证明见解析;(2)9【解析】 【分析】(1)证明1AA CD ⊥,CD AD ⊥,推出CD ⊥平面11AA D D ,得到CD AE ⊥,证明AE ED ⊥,即可证明AE ⊥平面ECD ;(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值. 【详解】(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱, ∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥, 又CD AD ⊥,1AA AD A =I ,∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥,∵1AA AD ⊥,1AA AD =, ∴11AA D D 是正方形,∴AE ED ⊥, 又CD ED D =I ,∴AE ⊥平面ECD .(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D , ∴()0,2,2E , ∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==u u u u r u u u r u u u r,设平面EAC 的法向量为(),,n x y z =r ,则·0·0n AC n AE ⎧=⎨=⎩u u u v v u u u v v ,即240220x y y z +=⎧⎨+=⎩,不妨取()2,1,1n =--r,则直线1A C 与平面EAC 所成角的正弦值为444663666n AC n AC-+-==r u u u r g r u u u r g .【点睛】本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题.25.(1)17.4;(2)(i )14.77千元(ii )978位 【解析】 【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数; (2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解. 【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;(2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈, 所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元; (ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773,记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B : 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973kkk P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=,所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位. 【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.26.(1)26()n a n n N +=-∈;(2)112n nn T -=-- 【解析】 【分析】(1)运用数列的递推式:11,1,1n n n S n a S S n -=⎧=⎨->⎩,计算可得数列{n a }的通项公式;(2)结合(1)求得1322n n na n +-=,运用错位相减法,结合等比数列的求和公式,即可得到数列{12nn a +}的前n 项和n T . 【详解】(1)因为11,1,1n n n S n a S S n -=⎧=⎨->⎩,()25n S n n n N +=-∈所以114a S ==-, 1n >时,()()22515126n a n n n n n =---+-=- 1n =也适合,所以()+26N n a n n =-∈(2)因为1322n n na n +-=, 所以12121432222n n n n n T -----=++⋅⋅⋅++2311214322222n n n n n T +----=++⋅⋅⋅++ 两式作差得:1211211322222n n n n T +--=++⋅⋅⋅+- 化简得1111222n n n T +-=--, 所以112n nn T -=--. 【点睛】本题考查数列的通项公式的求法,等比数列的求和公式,考查数列的错位相减法,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.。
高三数学模拟考试卷压轴题押题猜题全国高中数学联赛福建赛区预赛试卷参考答案

高三数学模拟考试卷压轴题押题猜题全国高中数学联赛(福建赛区)预赛试卷参考答案(考试时间:9月16日上午8:0010:30)一、选择题(共6小题,每小题6分,满分36分,以下每小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个是正确的,请将正确选项的代号填入题后的括号里,不填、多填或错填均得零分)1.一个直角三角形的两条直角边长为b a ,满足不等式31634192622≤+-++-b b a a ,则这个直角三角形的斜边长为( )A .5B .30C .6D .40 答案:B解:原不等式化为34)32(1)23(22≤+-++-b a , 而3414)32(1)23(22=+≥+-++-b a , 所以32,23==b a .于是,斜边长为30.2.数812934756是一个包含1至9每个数字恰好一次的九位数,它具有如下性质:数字1至6在其中是从小到大排列的,但是数字1至7不是从小到大排列的.这样的九位数共有( )个.A .336B .360C .432D .504 答案:C解:在1,2,3,4,5,6中插入7,有6种放法,然后插入8和9,分别有8种和9种放法,所以,共有432986=⨯⨯个满足性质的九位数.3.一个三角形的最短边长度是1,三个角的正切值都是整数,则该三角形的最长边的长度为( ).A .5102 B .553 C .3 D .2 答案:B解:该三角形不是直角三角形.不妨设C B A ≤≤.则3tan ≤A ,又Z A ∈tan ,所以1tan =A .非直角三角形中,有恒等式C B A C B A tan tan tan tan tan tan =++, 即B tan 、C tan 是方程xy y x =++1的一组正整数解. 所以B tan =2,C tan =3.易解得最长边为553(另外一条边长为5102). 4.正三棱锥底面一个顶点与它所对侧面重心的距离为8,则这个正三棱锥的体积的最大值为( ).A .18B .36C .72D .144 答案:D解:设正三棱锥P -ABC 的底面边长为a ,高为h ,O 为三角形ABC 的中心,G 为侧面PBC 的重心,GH 垂直底面ABC ,垂足为H .则a a AD AH h PO GH 934239898,3131=⋅====, 由222AG GH AH =+得6491271622=+h a ,故276431622⋅=+h a , 由平均不等式得322222238833882764h a a h a a ⋅⋅≥++=⋅,所以,35762≤h a ,于是144123312≤==∆-h a h S V ABC ABC P . 当46=h a 时等号成立.故体积的最大值为144. 5.对每一个正整数k ,设k a k 1211 ++=,则49493212500)99753(a a a a a -++++等于( )A .-1025B .-1225C .-1500D .-2525 答案:B解:49493212500)99753(a a a a a -++++=4925004919931)9997(21)9975(1)9953(a -⨯++⨯++++⨯++++⨯+++ =492222222500491)4950(21)250(1)150(a -⨯-++⨯-+⨯-=4922500)4921()491211(50a -++-+++=1225)4921(-=+++- .6.集合{}7,6,5,4,3,2,1=S 的五元子集共有21个,每个子集的数从小到大排好后,取出中间的数,则所有这些数之和是( )A .80B .84C .100D .168 答案:B解:显然中间数只能是3,4,5.ABCDPH OG ah第4题答题 图以3为中间数的子集有24C 个,以4为中间数的子集有2323C C ⨯个,以5为中间数的子集有24C 个.所以,这些中间数的和为8454324232324=⨯+⨯⨯+⨯C C C C . 另解:对某个子集A ,用8-A 表示A 中每个元素被8减所得的集合,这个集合也是一个满足要求的5元子集.这是一个1-1对应.且这两个集合中中间数之和为8,平均为4.故所有的中间数的和为84421=⨯.二.填空题(共6小题,每小题6分,满分36分.请直接将答案写在题中的横线上)7.函数32)(2+-=x x x f ,若a x f -)(<2恒成立的充分条件是21≤≤x ,则实数a 的取值范围是.答案:1<a <4解:依题意知,21≤≤x 时,a x f -)(<2恒成立.所以21≤≤x 时,-2<a x f -)(<2恒成立,即2)(-x f <a <2)(+x f 恒成立. 由于21≤≤x 时,32)(2+-=x x x f =2)1(2+-x 的最大值为3,最小值为2, 因此,3-2<a <2+2,即1<a <4.8.在直角坐标平面上,正方形ABCD 的顶点A 、C 的坐标分别为(12,19)、(3,22),则顶点B 、D 的坐标分别为.(A 、B 、C 、D 依逆时针顺序排列)答案:(9,25)、(6,16)解:设线段AC 的中点为M ,则点M 的坐标为)241,215(,利用复数知识不难得到顶点B 和D 的坐标分别为(9,25)、(6,16).(或者利用向量知识)9.已知1F 、2F 分别是椭圆19222=+by x (0<b <3)的左、右焦点.若在椭圆的右准线上存在一点P ,使得线段1PF 的垂直平分线过点2F ,则b 的取值范围是.答案:)6,0(解:线段1PF 的垂直平分线过点2F ,等价于212F F P F =. 设椭圆的右准线cx 9=交x 轴于点K , 则在椭圆的右准线上存在一点P ,使得212F F P F =,等价于212F F K F ≤. 所以c c c29≤-,32≥c .因此692222≤-=-=c c a b 故b 的取值范围是]6,0(.10.方程10033100=+y x 的正整数解),(y x 有组.答案:4解:由题设可知,10≤x .两边模3,知)3(mod 1≡x ,所以,x =1,4,7,10,对应的y 分别为301,201,101,1.故满足方程的正整数解有4组. 11.设x xx x f +-++=11lg521)(,则不等式⎥⎦⎤⎢⎣⎡-)21(x x f <51的解集为.答案:)4171,21()0,4171(+⋃-解:原不等式即为⎥⎦⎤⎢⎣⎡-)21(x x f <)0(f .因为)(x f 的定义域为(-1,1),且)(x f 为减函数.所以⎪⎩⎪⎨⎧----0)21(1)21(1 x x x x .解得∈x )4171,21()0,4171(+⋃-12.设函数1321)(+--=x x x f ,如果方程a x f =)(恰有两个不同的实数根v u ,,满足102≤-≤v u ,则实数a 的取值范围是.答案:345≤≤-a 解:因为⎪⎪⎩⎪⎪⎨⎧--≤≤----+=.21,4211,251,4)(时当时,当时,当 x x x x x x x f当a >3时,a x f =)(无解;当a =3时,a x f =)(只有一个解.当329≤≤-a 时,直线a y =与4+=x y 和25--x y =有两个交点,故此时a x f =)(有两个不同的解;当a <29-时,直线a y =与4+=x y 和4--=x y 有两个交点,故此时a x f =)(有两个不同的解.对于上述两种情形,分别求出它们的解v u ,,然后解不等式102≤-≤v u ,可得实数a 的取值范围是345≤≤-a . 三、解答题:(共4小题,每小题20分,满分80分.要求写出解题过程)13.已知x x x f sin 22sin )(+=,xx x g 413)(+=,若对任意),0(,21∞+∈x x 恒有m x g x f +≥)()(21,试求m 的最大值.解:因为111sin 22sin )(x x x f +=,)1(cos sin 211+=x x[]31121)cos 1)(cos 1(4)(x x x f +-=)cos 1)(cos 1)(cos 1)(cos 33(341111x x x x +++-= 41111)4cos 1cos 1cos 1cos 33(34x x x x ++++++-⨯≤ =427所以233)(1≤x f . 又3413)(222≥+=x x x g , 所以233233=-≤m . 当63,321==x x π时,上述各式的等号成立,所以m 的最大值为23.14.已知1F 、2F 分别是双曲线1322=-y x 的左、右焦点,过1F 斜率为k 的直线1l 交双曲线的左、右两支分别于A 、C 两点,过2F 且与1l 垂直的直线2l 交双曲线的左、右两支分别于D 、B 两点.(1)求k 的取值范围;(2)设点P ),00y x (是直线1l 、2l 的交点为,求证:32020y x +>34; (3)求四边形ABCD 面积的最小值.解:(1)由条件知,1l 、2l 的方程分别为)2(+=x k y 、)2(1--=x ky .由⎩⎨⎧+==-)2(3322x k y y x ,得0344)3(2222=----k x k x k . 由于1l 交双曲线的左、右两支分别于A 、C 两点,所以22334kk x x C A ---=⋅<0,解得2k <3. 由⎪⎩⎪⎨⎧--==-)2(13322x k y y x ,得0344)13(222=--+-k x x k . 由于2l 交双曲线的左、右两支分别于D 、B 两点,所以133422---=⋅k k x x D B <0,解得2k >31. 因此,31<2k <3,k 的取值范围是)3,33()33,3(⋃--.(2)由条件知,21PF PF ⊥,点P 在以21F F 为直径的圆上.所以42020=+y x . 因此32020y x +>332020y x +=34. (3)由(1)知,2222222223)1(63344)34(11k k k k k k k x x k AC C A -+=---⨯--⋅+=-⋅+=.13)1(613344)134()1(1)1(122222222-+=---⨯---⋅-+=-⋅-+=k k k k k k x x k BD D B . ∴四边形ABCD 的面积)13)(3()1(18212222--+=⋅=k k k BD AC S .由于)13)(3()1(182222--+=k k k S =18)11313(41181131318222222222=+-++-⨯≥+-⨯+-k k k k k k k k .当且仅当 113132222+-=+-k k k k ,即1,12±==k k 时,等号成立. 所以,四边形ABCD 面积的最小值为18.15.如图,在锐角三角形ABC 中,1AA ,1BB 是两条角平分线,I ,O ,H 分别是ABC ∆的内心,外心,垂心,连接HO ,分别交AC ,BC 于点P ,Q .已知C ,1A ,I ,1B 四点共圆.(1)求证:︒=∠60C ;(2)求证:BQ AP PQ +=.证明:(1)因为C ,1A ,I ,1BAIB C ∠-︒=∠180C B A IBC IAB ∠-︒=∠+∠=∠+∠=21902121所以,︒=∠60C .(2)因为︒=∠-︒=∠120180C AHB , ︒=∠=∠1202ACB AOB , 所以,B O H A ,,,四点共圆,于是︒=∠-︒=∠=∠30)180(21AOB OBA PHA , 又︒=∠-︒=∠3090C PAH , 所以PHA PAH ∠=∠, 于是PH AP =,同理可得 QH BQ = 故,BQ AP PQ +=16.已知两个整数数列 ,,,210a a a 和 ,,,210b b b 满足 (1)对任意非负整数n ,有22≤-+n n a a ;(2)对任意非负整数,,n m 有22n m n m b a a +=+证明:数列 ,,,210a a a 中最多只有6个不同的数.证明:首先,一个整数若是4的倍数,则它一定能表示成22)2(n n -+,其中n 是非负整数.事实上,由22)1()1(4--+=k k k 便得.若,,n m (m >n )的奇偶性相同,则22n m -是4的倍数,设第15题答题 图B第15题 图22n m -=22)2(k k -+,所以 2222)2(n k k m ++=+ 于是由条件(2)知n k n k k m k m a a b b a a +===+++++2)2(2222,故k k n m a a a a -=-+2 所以,2≤-n m a a于是在 ,,,531a a a 中,任意两项的差的绝对值至多为2,所以,它们最多能取3个不同的值:2,1,++a a a .同样,在 ,,,420a a a 中,任意两项的差的绝对值也至多为2,所以,它们最多能取3个不同的值:2,1,++b b b .综上所述,数列 ,,,210a a a 中最多只有6个不同的数.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
【压轴卷】高中三年级数学下期末模拟试题(附答案)

【压轴卷】高中三年级数学下期末模拟试题(附答案)一、选择题1.如图所示的圆锥的俯视图为( )A .B .C .D .2.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .3.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0B .1C .2D .34.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2 B .1 C .-2 D .-1 5.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .246.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .47.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( )A .1x <-或4x >B .0x …或2x -…C .0x <或2x >D .12x -…或3x …8.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=9.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3210.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( ) A .1318B .322C .1322D .31811.已知,a b r r 是非零向量且满足(2)a b a -⊥r r r,(2)b a b -⊥,则a r 与b r 的夹角是( )A .6π B .3π C .23π D .56π 12.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -二、填空题13.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D 在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________ m.14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是16.复数()1i i +的实部为 .17.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.18.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 19.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==,2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为),离心率为3.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.已知函数()ln f x x x =. (1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1xf x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
2021届高三高考数学复习压轴题专练32—椭圆(4)【含答案】
2021届高三高考数学复习压轴题专练32—椭圆(4)【含答案】1.直线10x y -+=经过椭圆22221(0)x y a b a b+=>>的左焦点F ,交椭圆于A ,B 两点,交y轴于C 点,若2FC AC =,则该椭圆的离心率是( ) A .1022- B .312- C .222- D .21-解:如图所示:对直线10x y -+=,令0x =,解得1y =,令0y =,解得1x =-, 故(1,0)F -,(0,1)C ,则(1,1)FC =, 设0(A x ,0)y ,则00(,1)AC x y =--, 而2FC AC =,则00212(1)1x y -=⎧⎨-=⎩,解得001212x y ⎧=-⎪⎪⎨⎪=⎪⎩,点A 又在椭圆上,所以222211()()221a b-+=,222(1,)c a b c ==+, 整理得4224421a a a -=-, 所以235a +=所以241245(102)102354435c e a ---=-+.故选:A .2.已知椭圆2214x y +=的上顶点为A ,B 、C 为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0)B .(3,0)C .1(0,)2D .3(0,)5-解:因为AB AC ⊥,所以10AB AC k k =-<,所以直线BC 斜率存在,设直线:(1)BC l y kx m m =+≠,1(B x ,1)y ,2(C x ,2)y ,联立方程2244y kx mx y =+⎧⎨+=⎩, 消y 得222(41)8440k x kmx m +++-=,122814kmx x k -+=+,21224414m x x k -=+,(*) 又1212111AB AC y y k k x x --=⋅=-, 整理得1212(1)(1)0y y x x --+=, 即1212(1)(1)0kx m kx m x x +-+-+=,所以221212(1)(1)()(1)0(*)k x x k m x x m ++-++-=,代入得:2222224(1)(1)8(1)(1)01414k m k m m m k k+---+-=++, 整理得530m +=得35m =-,所以直线BC 过定点3(0,)5-.故选:D .3.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若OAB ∠,OAF ∠的平分线分别交x 轴于点D ,E ,且222||||||2||||AD AE DE AD AE +-=⋅,则椭圆C 的离心率为( ) A .22B .312- C .512- D .32解:如下图所示: 因为222||||||2|||AD AE DE AD AE +-⋅,所以由余弦定理得222||||||2||||22||||AD AE DE AD AE AD AE +-⋅=⋅,又(0,)2DAE π∠∈,所以45DAE ∠=︒.因为AD ,AE 分别为OAB ∠,OAF ∠的平分线,所以290BAF DAE ∠=∠=︒, 所以AB AF ⊥.由题意可知,点(,0)F c -,(0,)A b ,(,0)B a ,则(,),(,)AF c b AB a b =--=-. 由20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=, 在等式220c ac a +-=的两边同时除以2a ,可得210e e +-=, 因为01e <<,解得512e -=. 故选:C .4.如图,椭圆22221(0)x y a b a b +=>>的右焦点为F ,A ,B 分别为椭圆的上、下顶点,P 是椭圆上一点,//AP BF ,||||AF PB =,记椭圆的离心率为e ,则2(e = )A .22B .1718- C .12D .1518- 解:(0,)B b -,(,0)F c ,则BFb kc =,∴直线:bAP y x b c=+, 与椭圆方程联立,可得2222()20a c x a cx ++=,可得P 点的横坐标为2222a c x a c =-+,则322b y a c =-+,即2222(a c P a c -+,322)b a c -+,由||||AF PB =,得22||PB a =,即2322222222()()a c b b a a c a c+-+=++, 整理为:6244264320c a c a c a --+=,则64243210e e e --+=,即242(1)(41)0e e e -+-=, 210e -≠,42410e e ∴+-=,解得2171e -=或2171e --=. 故选:B .5.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A 和B ,P 是椭圆上不同于A ,B的一点.设直线AP ,BP 的斜率分别为m ,n ,则当239(3)(||||)32a ln m ln nb mn mn -+++取最小值时,椭圆C 的离心率为( ) A .223B .45C .32 D .15解:(,0)A a -,(,0)B a ,设0(P x ,0)y ,则2222002()b y a x a=-,则00y n x a =-,200y m x a =+,2202220y b mn x a a∴==--,则222222239239(3)(||||)(3)3232a a a a b ln m ln n ln b mn mn b b b a -+++=+-+ 322()3()393a a a a ln b b b b=-+-. 令322()3393f t t t t lnt =-+-,(1)t >,322292639(3)(23)()263t t t t t f t t t t t t-+--+'=-+-==, 故3t =时,()f t 取最小值, 椭圆C 22221b a -故选:A .6.卡西尼卵形线是1675年卡西尼在研究土星及其卫星的运行规律时发现的.在数学史上,同一平面内到两个定点(叫做焦点)的距离之积为常数的点的轨迹称为卡西尼卵形线.已知卡西尼卵形线是中心对称图形且有唯一的对称中心.若某卡西尼卵形线C 两焦点间的距离为2,且C 上的点到两焦点的距离之积为1,则C 上的点到其对称中心距离的最大值为( )A .1B .2C .3D .2解:设左、右焦点分别为1F ,2F ,以线段12F F 的中点为坐标原点, 1F ,2F 所在的直线为x 轴建立平面直角坐标系,则1(1,0)F -,2(1,0)F .设曲线上任意一点(,)P x y ,则2222(1)(1)1x y x y ++⋅-+=, 化简得该卡西尼卵形线的方程为22222()2()x y x y +=-,显然其对称中心为(0,0).由22222()2()x y x y +=-得222222()2()40x y x y y +-+=-, 所以22222()2()x y x y ++, 所以2202x y +,所以222x y +.当且仅当0,2y x ==±时等号成立,所以该卡西尼卵形线上的点到其对称中心距离的最大值为2. 故选:B .7.已知椭圆22143x y +=上有三个点A 、B 、C ,AB ,BC ,AC 的中点分别为D 、E 、F ,AB ,BC ,AC 的斜率都存在且不为0,若3(4OD OE OF k k k O ++=-为坐标原点),则111(AB BC ACk k k ++= ) A .1 B .1-C .34-D .34解:如图,设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,则 2211143x y +=,2222143x y +=, 两式作差得,12121212()()()()43x x x x y y y y -+-+=-,∴121212124()3()x x y y y y x x -+=--+,即143OD AB k k =-. 同理可得,143OE BC k k =-,143OF AC k k =-, ∴111443()()1334OD OE OF AB BC AC k k k k k k ++=-++=-⨯-=, 故选:A .8.已知点A 为椭圆2222:1(0)x y C a b a b+=>>的左顶点,(,0)F c 为椭圆的右焦点,B 、E 在椭圆上,四边形OABE 为平行四边形(O 为坐标原点),过直线AE 上一点P 作圆222()4b x c y -+=的切线PQ ,Q 为切点,若PQF ∆面积的最小值大于28b ,则椭圆C 的离心率的取值范围是( )A .102(0,)3- B .102(,1)3- C .51(0,)3- D .51(,1)3- 解:因为四边形OABE 为平行四边形, 所以//BE AO ,||||BE AO a ==,设E 点纵坐标为m ,代入椭圆的方程得22221x m a b+=,解得22a x b m b=-2222()a a b m b m a b b--=,解得3m =, 当3m =,可得223()22a ax b b b -=, (2aE 3),(,0)A a -, 所以直线AE 的方程为332())32b y x a x a a =+=+,3330bx ay ab -=,所以||min PF 即为点F 到直线AE 的距离223()39b a c d b a+=+,所以22221||4PQ d R d b =-=-,所以222111()||22248PFQ minb b S PQ R d b ∆=⋅=⋅⋅->, 整理得2212d b >,故22222222222223()3()(1)1393()942b a c a c b e b b b a a c a e +++==>+-+-, 所以221(1)(4)2e e +>-,所以23420e e +->, 所以210(3e s --<舍去)或1023e ->,所以e 的取值范围为102(3-,1). 故选:B . 二、多选题9.如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F 为圆心的圆形轨道Ⅰ上绕月飞行,然后在P 点处变轨进入以F 为一个焦点的椭圆轨道Ⅱ上绕月飞行,最后在Q 点处变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,设圆形轨道Ⅰ的半径为R ,圆形轨道Ⅲ的半径为r ,则( )A .椭圆轨道Ⅱ上任意两点距离最大为2RB .椭圆轨道Ⅱ的焦距为R r -C .若r 不变,则R 越大,椭圆轨道Ⅱ的短轴越短D .若R 不变,则r 越小椭圆轨道Ⅱ的离心率越大 解:由题可知椭圆轨道Ⅰ的半径为R ,Ⅱ为椭圆,设为22221x y a b+=,所以a c R +=①,Ⅲ为圆形轨道,半径为r ,所以a c r -=②,对于A :由题可知椭圆Ⅱ上任意两点最大距离为22a R r R =+≠,故A 不正确; 对于B :椭圆Ⅱ的焦距为2c , ①-②得,2c R r =-,故B 正确; 对于C :由①②得2R ra +=,2R r c -=,所以2222()()222244R r R r b a c Rr +-=-=-=, 若r 不变,R 越大,2b 越大,故C 不正确;对于222:1112R rc R r r D e R r R a R r R r r--====-=-++++, R 不变,r 越小,Rr 越大,21R r+越小,则e 越大,故D 正确.故选:BD .10.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点P 在椭圆C 上,点Q 在圆22:(3)(4)4E x y ++-=上,且圆E 上的所有点均在椭圆C 外,若||||PQ PF -的最小值为256-,且椭圆C 的长轴长恰与圆E 的直径长相等,则下列说法正确的是( )A .椭圆C 的焦距为2B .椭圆C 的短轴长为3C .||||PQ PF +的最小值为23D .过点F 的圆E 的切线斜率为473-± 解:对于A :因为椭圆C 的长轴长与圆E 的直径长相等, 所以24a =,即2a =, 设椭圆的左焦点(,0)F c '-,由椭圆的定义可知||||24PF PF a '+==,所以||||||(4||)||||4||4||24256PQ PF PQ PF PQ PF QF EF -=--'=+'-'-'--=, 所以22||25(3)(40)EF c '=-++-1c =或5, 因为2c a <=,所以1c =,即椭圆的焦距为22c =,故A 正确, 对于B :由2222213b a c =-=-=, 所以椭圆的短轴长为23,故B 错误, 对于22:||||||||||(13)(04)422C PQ PF QF EF EQ +-=++-=-,故C 错误,对于D :设过点F 的切线方程为(1)y k x =-, 则2|(31)4|21k k ---=+,解得473k -±=,故D 正确, 故选:AD .11.如图,已知椭圆221:14x C y +=,过抛物线22:4C x y =焦点F 的直线交抛物线于M ,N两点,连接NO ,MO 并延长分别交1C 于A ,B 两点,连接AB ,OMN ∆与OAB ∆的面积分别记为OMN S ∆,.OAB S ∆则下列命题:A .若记直线NO ,MO 的斜率分别为1k ,2k ,则12k k 的大小是定值14-B .OAB ∆的面积OAB S ∆是定值1C .线段OA ,OB 长度的平方和22||||OA OB +是定值5D .设OMNOABS S λ∆∆=,则5λ其中正确的命题有( )A .AB .BC .CD .D解:(0,1)F ,设直线MN 方程为1y k =+,代入抛物线方程得:2440x kx --=, 设1(M x ,1)y ,2(N x ,2)y ,则124x x k +=,124x x =-,1212121211164y y k k x x x x ===-,A 正确. 设直线OA 的方程为:1y k x =,由对称性令10k >, 代入椭圆的方程得:12211(1414A k k++,同理可得,22222(1414B kk++,212121||14k OA k+=+点B 到直线OA 的距离122221141d kk++,22121222221111214()4()1||12(14)(14)4(2)OABk k k k S OA d k k k k k k ∆--==++-+,B 正确. 22221222124444||||1414k k OA OB k k +++=+++ 222212212212(1)(14)(1)(14)4(14)(14)k k k k k k +++++=⨯++ 22122212555245244k k k k ++=⨯=++,C 正确. 221212||||||(14)(14)||||||A B x x OM ON k k OA OB x x λ⋅===++⋅2222121224()2422k k k k =+++⨯⋅=,当且仅当12k k =-时等号成立.D 不正确. 故选:ABC .12.已知椭圆22:14x C y +=的左、右两个焦点分别为1F 、2F ,直线(0)y kx k =≠与C 交于A 、B 两点,AE x ⊥轴,垂足为E ,直线BE 与椭圆C 的另一个交点为P ,则下列结论正确的是( )A .若1260F PF ∠=︒,则△12F PF 的面积为36B .四边形12AF BF ,可能为矩形C .直线BE 的斜率为12kD .若P 与A 、B 两点不重合,则直线PA 和PB 斜率之积为4-解:由椭圆22:14x C y +=,得2a =,1b =,3c =在△12PF F 中,由余弦定理可得,222121212||||||2||||cos60F F PF PF PF PF =+-︒, 即2212443||||c a PF PF =-,解得124||||3PF PF =, ∴12143323F PF S=⨯=,故A 错误; 若四边形12AF BF 为矩形,则11AF BF ⊥,即110F A F B ⋅=, 即()()0A B A B x c x c y y +++=, 联立2214y kx x y =⎧⎪⎨+=⎪⎩,得22(41)4k x +=, 得0A B x x +=,2441A B x x k =-+,22441A B k y y k =-+,即22244304141k k k -+-=++,得2810k -=,该方程有实根,故B 正确;由22(41)4k x +=,得2141x k =±+0k >,得21(241A k +241k +,21(41B k -+241k +,则21(241E k +0),则22414241BE kk k k +==-+,故C 正确;A PB P B PPA A P B P B Py y y y y y k x x x x x x ---+===---+,BE 所在直线方程为22()241k y x k =-+,与椭圆2214x y +=联立, 可得22222()4041x k x k +--=+,即22222244(1)404141k k k x x k k +-+-=++. 得22214141B P k x x k k +=⋅++, 2222221442()214141(1)41B P k k ky y k k k k k -+=⋅-=+++++,故12PA k k =-,则11224PA PB k k k k ⋅=-⋅=-,故D 错误. 故选:BC .三、填空题13.设椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,P 是椭圆上一点,且123F PF π∠=,若△12F PF 的外接圆和内切圆的半径分别为R ,r ,当4R r =时,椭圆的离心率为 .解:△12F PF 的外接圆的半径R ,由正弦定理1212||22sin sin 3F F cR F PF π==∠,所以23R =, 又由于4R r =,所以3r =, 在△12F PF 中,由余弦定理可得22212121212||||||2||||cos F F PF PF PF PF F PF =+-⋅∠,而123F PF π∠=,所以2212443||||c a PF PF =-,所以可得:22124||||()3PF PF a c =-,由三角形的面积相等可得:1212121211(||||||)||||sin 22PF PF F F r PF PF F PF ++⋅=∠,所以2243(22)()3a c r a c +=-所以223432(()3a c a c +=-, 整理可得:2320e e --=,解得23e =或1e =-, 故答案为:23. 14.已知(1,0)F 为椭圆2222:1(0)x y E a b a b+=>>的右焦点,过E 的下顶点B 和F 的直线与E的另一交点为A ,若45BF FA =,则a = .解:法(1)由椭圆的方程可得(0,)B b -,(1,0)F ,所以0()10BF b k b --==-, 所以直线:(1)BF y b x =-,联立2222(1)1y b x x y ab =-⎧⎪⎨+=⎪⎩,整理可得222(1)20a x a x +-=,可得0x =或2221a x a =+, 所以2221A a x a=+,所以22(1)1A b a y a -=+, 因为45BF FA =,则4(1,222)5(11a b a =-+,22(1))1b a a -+,所以22(1)451b a b a-=⋅+,解得29a =,即3a =, 法(2)作AH 垂直于x 轴于H ,易知Rt AHF Rt BOF ∆∆∽, 因为45BF FA =,所以||4||||||||5||||AF AH AH FH BF BO b OF ====, 所以A 的纵坐标为45b ,A 的横坐标为491155+⋅=,所以A 的坐标为:9(5,4)5b ,将A 点的坐标代入椭圆的方程:222294()()551b a b+=,解得29a =,即3a =,故答案为:3.15.曲面22z x y =+被平面1x y z ++=截成一椭圆,则椭圆上的点到原点距离的取值范围是 .解:设椭圆上的点(x ,y ,)z ,则椭圆上的点到原点的距离2222d x y z =++, x ,y ,z 满足的条件为:22z x y =+,1x y z ++=,作拉格朗日函数22222()(1)L x y z z x y x y z λμ=+++--+++-, 22022020x y zL x x L y y L z λμλμλμ=-+=⎧⎪=-+=⎨⎪=++=⎩,可得(1)()0x y λ--=, 所以有1λ=或x y =,有10λμ=⇒=,12z =-,不符合题意,所以舍弃,将x y =代入22z x y =+和1x y z ++=可得:22z x =,2212210x z x x +=⇒+-=, 解得:13x y -±==,3z =+ 113(M -+13-+23)-,213(M --13--23), 由题意可知这种距离的最大值和最小值一定存在,所以距离的最大值和最小值分别在这两点处取到处取得,而22132()3)95-±++=+3 所以最大值和最小值分别为:1953max M d d =+,2953min M d d ==-故答案为:[953-953]+.16.已知A 、B 为椭圆22:143x y C +=上两点,线段AB 的中点在圆221x y +=上,则直线AB 在y 轴上截距的取值范围为 .解:设点1(A x ,1)y 、2(B x ,2)y ,线段AB 的中点为(,)m n ,则221m n +=, ∴22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减整理得,121212123()4()y y x x x x y y -+=--+ ①当0n ≠,即10n -<或01n <时,121234y y mx x n-=--,此时直线AB 的方程为3()4my n x m n-=--, 令0x =,则222343(1)313()44444m n n n y n n n n n n +-=+==+=+,若10n -<,则13()4y n n=+在[1-,0)上单调递减,1y ∴-;若01n <,则13()4y n n =+在(0,1]上单调递减,1y ∴,(y ∴∈-∞,1][1-,)+∞;②当0n =时,直线AB 过点(1,0)或(1,0)-,且垂直于x 轴,在y 轴上无截距. 综上所述,直线AB 在y 轴上截距的取值范围为(-∞,1][1-,)+∞. 故答案为:(-∞,1][1-,)+∞.。
【压轴卷】高三数学下期末第一次模拟试卷含答案
【压轴卷】高三数学下期末第一次模拟试卷含答案一、选择题1.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件2.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0B .1C .2D .33.设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,( )A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大 D .()D ξ先增大后减小4.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种5.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i6.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤7.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}8.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( )A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,9.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A .53B .35C .37D .5710.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定 11.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( )Ax << B5x < C.2x <<D5x <<12.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,a A =,且C 为锐角,则ABC ∆面积的最大值为________.14.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.15.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC =u u u u v u u u v u u u v u u u v ,则AM AN ⋅u u u u v u u u v的取值范围是_________. 16.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.17.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________. 18.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 19.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____. 20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()5,0,离心率为5.(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为1231x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是22sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值. 23.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.24.如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ; (2)若二面角D AP C --6,求PF 的长度. 25.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =u u u v u u u v(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.26.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系2.A解析:A 【解析】 【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的. 【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.3.D解析:D 【解析】 【分析】先求数学期望,再求方差,最后根据方差函数确定单调性. 【详解】111()0122222p p E p ξ-=⨯+⨯+⨯=+Q , 2222111111()(0)(1)(2)2222224p p D p p p p p ξ-∴=--+--+--=-++, 1(0,1)2∈Q ,∴()D ξ先增后减,因此选D. 【点睛】222111(),()(())().nnni i i i i i i i i E x p D x E p x p E ξξξξ=====-=-∑∑∑4.B解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).5.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.6.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.7.A解析:A 【解析】 【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果. 【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=, 又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=. 故选A. 【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.8.C解析:C 【解析】由题意,不等式222424ax ax x x +-<+,可化为2(2)2(2)40a x a x -+--<, 当20a -=,即2a =时,不等式恒成立,符合题意;当20a -≠时,要使不等式恒成立,需2)2204(44(2)0a a a --<⎧⎨∆=+⨯-<⎩n , 解得22a -<<,综上所述,所以a 的取值范围为(2,2]-,故选C . 9.A解析:A 【解析】 由正弦定理可得:sin 5sin 3A aB b == . 本题选择A 选项.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得x >x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得0x <<x 的取值范x << A. 考点:余弦定理.12.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.二、填空题13.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主解析:4+【解析】 【分析】由4c =,a A =,利用正弦定理求得4C π=.,再由余弦定理可得2216a b =+,利用基本不等式可得(82ab ≤=+,从而利用三角形面积公式可得结果. 【详解】因为4c =,又sin sin c a C A==所以sin 2C =,又C 为锐角,可得4C π=.因为()2222162cos 222ab ab C a b ab ab =+-=+-≥-, 所以()82222ab ≤=+-, 当且仅当()822a b ==+时等号成立, 即12sin 44224ABC S ab C ab ∆==≤+, 即当()822a b ==+时,ABC ∆面积的最大值为442+. 故答案为442+. 【点睛】本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.14.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A 时取得最小值由解得代入计算所以的最小值为故答案为解析:-1 【解析】 【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y 2=-+的最小值. 【详解】画出约束条件102100x y x y x --≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y 2=-+过点A 时取得最小值,由{x 0x y 10=--=,解得()A 0,1-,代入计算()z 011=+-=-,所以1z x y 2=-+的最小值为1-.故答案为1-. 【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.15.【解析】【分析】画出图形建立直角坐标系利用比例关系求出的坐标然后通过二次函数求出数量积的范围【详解】解:建立如图所示的直角坐标系则设则所以因为二次函数的对称轴为:所以时故答案为:【点睛】本题考查向量解析:[2]5, 【解析】 【分析】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围. 【详解】解:建立如图所示的直角坐标系,则(2,0)B ,(0,0)A ,13,2D ⎛⎫ ⎪ ⎪⎝⎭,设||||||||BM CN BC CD λ==u u u u r u u u ru u u r u u u r ,[]0,1λ∈,则(22M λ+,3)λ,5(22N λ-,3), 所以(22AM AN λ=+u u u u r u u u r g ,35)(22λλ-g ,22353)542544λλλλλλ=-+-+=--+,因为[]0,1λ∈,二次函数的对称轴为:1λ=-,所以[]0,1λ∈时,[]2252,5λλ--+∈.故答案为:[2]5,【点睛】本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力,属于中档题.16.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间解析:6π-. 【解析】分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.17.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的解析:18【解析】 【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果. 【详解】Q 函数()21ln f x x x a x =-++在()0,∞+上单调递增()210af x x x'∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x > 根据二次函数的性质可知:当14x =时, ()max 18g x =18a ∴≥,故实数a 的最小值是18本题正确结果:18【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.18.【解析】试题分析:原式=考点:1指对数运算性质解析:278【解析】 试题分析:原式=344332542727log log 134588-⎡⎤⎛⎫+⨯=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 考点:1.指对数运算性质.19.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q 中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8 【解析】 【详解】由题意知a ∈P ,b ∈Q ,则a+b 的取值分别为1,2,3,4,6,7,8,11.故集合P+Q 中的元素有8个. 点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.20.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:【解析】试题分析:()f x 的定义域为()()10,,'f x ax b x+∞=--,由()'00f =,得1b a =-,所以()()()11'ax x f x x+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a=-.因为1x =是()f x 的极大值点,所以11a->,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 三、解答题21.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知553a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.22.(110y --=,22(1)(1)2x y -+-=;(2)1. 【解析】 【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以ρ,利用222,cos ,sin x y x y ρρθρθ=+== ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果. 【详解】(1)将直线l 的参数方程消去参数t 并化简,得直线l 10y --=.将曲线C 的极坐标方程化为2ρθθ⎫=⎪⎪⎝⎭. 即22sin 2cos ρρθρθ=+.∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为()()22112x y -+-=. (2)将直线l 的参数方程代入()()22112x y -+-=中,得22112222t ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭.化简,得(2130t t -++=.∵Δ>0,∴此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2.由根与系数的关系,得121t t +=,123t t =,即t 1,t 2同正. 由直线方程参数的几何意义知,12121PA PB t t t t +=+=+=.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成x 和y 即可. 23.(1){}|37x x -≤≤;(2)(],9-∞. 【解析】 【分析】(1)分别在1x ≤-、15x -<<、5x ≥三种情况下去掉绝对值符号得到不等式,解不等式求得结果;(2)将不等式变为()()27a f x x ≤+-,令()()()27g x f x x =+-,可得到分段函数()g x 的解析式,分别在每一段上求解出()g x 的最小值,从而得到()g x 在R 上的最小值,进而利用()min a g x ≤得到结果. 【详解】(1)当1x ≤-时,()154210f x x x x =--+-=-≤,解得:31x -≤≤- 当15x -<<时,()15610f x x x =++-=≤,恒成立 当5x ≥时,()152410f x x x x =++-=-≤,解得:57x ≤≤ 综上所述,不等式()10f x ≤的解集为:{}37x x -≤≤ (2)由()()27f x a x ≥--得:()()27a f x x ≤+-由(1)知:()42,16,1524,5x x f x x x x -≤-⎧⎪=-<<⎨⎪-≥⎩令()()()22221653,171455,151245,5x x x g x f x x x x x x x x ⎧-+≤-⎪=+-=-+-<<⎨⎪-+≥⎩当1x ≤-时,()()min 170g x g =-= 当15x -<<时,()()510g x g >= 当5x ≥时,()()min 69g x g == 综上所述,当x ∈R 时,()min 9g x =()a g x ≤Q 恒成立 ()min a g x ∴≤ (],9a ∴∈-∞【点睛】本题考查分类讨论求解绝对值不等式、含绝对值不等式的恒成立问题的求解;求解本题恒成立问题的关键是能够通过分离变量构造出新的函数,将问题转化为变量与函数最值之间的比较,进而通过分类讨论得到函数的解析式,分段求解出函数的最值. 24.(1)见解析;(2)3【解析】 【分析】(1)先证明AB AF ⊥,又平面ABEF ⊥平面ABCD ,即得AF ⊥平面ABCD ;(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系,由题得cos ,m AB m AB m AB⋅===u u u v u u u vu u u v ,解方程即得解.【详解】(1)证明:∵90BAF ∠=︒,∴AB AF ⊥,又平面ABEF ⊥平面ABCD ,平面ABEF I 平面ABCD AB =,AF ⊂平面ABEF , ∴AF ⊥平面ABCD .(2)以A 为原点,以AB ,AD ,AF 为x ,y ,z 轴建立如图所示的空间直角坐标系, 则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D,()0,0,1F ,∴()0,2,1FD u u u v =-,()1,2,0AC =u u u v,()1,0,0AB =u u u r由题知,AB ⊥平面ADF ,∴()1,0,0AB =u u u r为平面ADF 的一个法向量, 设()01FP FD λλ=≤<u u u v u u u v ,则()0,2,1P λλ-,∴()0,2,1AP λλ=-u u u v,设平面APC 的一个法向量为(),,x y z =m ,则0m AP m AC ⎧⋅=⎨⋅=⎩u u u v u u u v , ∴()21020y z x y λλ⎧+-=⎨+=⎩,令1y =,可得22,1,1m λλ⎛⎫=- ⎪-⎝⎭, ∴26cos ,321411m AB m AB m ABλλ⋅===⎛⎫⋅++ ⎪-⎝⎭u u u vu u u v u u u v ,得13λ=或1λ=-(舍去),∴5PF =.【点睛】本题主要考查空间垂直关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.(1) 2214x y += (2) 3.2【解析】 【分析】(1)设出A 、P 点坐标,用P 点坐标表示A 点坐标,然后代入圆方程,从而求出P 点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值. 【详解】解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =u u u v u u u v,可得点A 是BP 的中点, 故102x x +=, 所以12xx =, 又因为点A 在圆上,所以得2214x y +=,故动点P 的轨迹方程为2214x y +=.(2)设()11,P x y ,则10y ≠,且221114x y +=,当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x = 因为OP OQ ⊥, 即11,OQ x k y =-故1133,x Q y ⎛⎫- ⎪⎝⎭,OP ∴=OQ ==,221111322POQx y S OP OQ y ∆+==⋅①, 221114x y +=代入① 2111143334322POQy S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭()101y <≤设()()4301f x x x x=-<≤因为()24f x 30x'=--<恒成立, ()f x ∴在(]0,1上是减函数, 当11y =时有最小值,即32POQ S ∆≥, 综上:POQ S ∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值.26.(Ⅰ)0.55;(Ⅱ)详见解析 【解析】 【分析】 【详解】解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F , 则,,D E F 分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件.因为()0.6,()0.5,()0.5===P D P E P F ,()0.4,()0.5,()0.5∴===P D P E P F . 红队至少两人获胜的事件有:,,,DEF DEF DEF DEF ,由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3.又由(I )知,,DEF DEF DEF 是两两互斥事件,且各盘比赛的结果相互独立, 因此(0)()0.40.50.50.1P P DEF ξ===⨯⨯=,(1)()()()ξ==++P P DEF P DEF P DEF(1)0.40.50.50.40.50.50.60.50.50.35ξ==⨯⨯+⨯⨯+⨯⨯=P (3)()0.60.50.50.15P P DEF ξ===⨯⨯=,由对立事件的概率公式得(2)1[(0)(1)(3)]0.4.P P P P ξξξξ==-=+=+== 所以ξ的分布列为:因此。
【压轴卷】高三数学下期末模拟试卷(含答案)(2)
【压轴卷】高三数学下期末模拟试卷(含答案)(2)一、选择题1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是 A .24B .16C .8D .123.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( ) A .2B .1C .-2D .-14.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙5.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形6.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .C .10D .7.已知()3sin 30,601505αα︒+=︒<<︒,则cos α为( )A B .10- C D 8.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭9.若θ是ABC ∆的一个内角,且1sin θcos θ8=-,则sin cos θθ-的值为( )A .BC .2-D10.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定11.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O ),若双曲线的离心率为5,AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)12.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④二、填空题13.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 14.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.15.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .16.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.17.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.18.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 19.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.20.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.三、解答题21.在平面直角坐标系中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为244cos 2sin ρρθρθ-=-.(Ⅰ)写出曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,且AB 的长度为5l 的普通方程.22.已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.23.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.24.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1- (1)求m 的值; (2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 25.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.26.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B 【解析】 【分析】根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序;(2)将这个整体与英语全排列,排好后,有3个空位;(3)数学课不排第一行,有2个空位可选,在剩下的2个空位中任选1个,得数学、物理的安排方法,最后利用分步计数原理,即可求解。
【压轴卷】高三数学下期末第一次模拟试题(及答案)
【压轴卷】高三数学下期末第一次模拟试题(及答案)一、选择题1.已知平面向量a r=(1,-3),b r=(4,-2),a b λ+rr与a r垂直,则λ是( )A .2B .1C .-2D .-12.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1003.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组4.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A .19B .29C .49D .7185.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 ( )A .2B .3C .4D .56.函数()ln f x x x =的大致图像为 ( )A .B .C .D .7.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f x B .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i fξξ∈1[,]i i x x +)D .以上答案均正确8.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( ) A .1x <-或4x >B .0x …或2x -…C .0x <或2x >D .12x -…或3x …10.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定 11.由a 2,2﹣a ,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( ) A .1B .﹣2C .6D .212.函数()f x 的图象如图所示,()f x '为函数()f x 的导函数,下列数值排序正确是( )A .()()()()02332f f f f ''<<<-B .()()()()03322f f f f ''<<-<C .()()()()03232f f f f ''<<<-D .()()()()03223f f f f ''<-<<二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.在ABC V 中,60A =︒,1b =3sin sin sin a b cA B C++=++________.15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42a A =,且C 为锐角,则ABC ∆面积的最大值为________.16.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 17.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M,延长FA,与抛物线C的准线相交于点N,若:1:3FM MN=,则实数a的值为__________.18.在等腰梯形ABCD中,已知AB DCP,2,1,60,AB BC ABC==∠=o点E和点F分别在线段BC和CD上,且21,,36BE BC DF DC==u u u r u u u r u u u r u u u r则AE AF⋅u u u r u u u r的值为.19.如图,已知P是半径为2,圆心角为3π的一段圆弧AB上一点,2A BB C=u u u v u u u v,则PC PA⋅u u u v u u u v的最小值为_______.20.ABC△的内角,,A B C的对边分别为,,a b c.若π6,2,3b ac B===,则ABC△的面积为__________.三、解答题21.如图,在直四棱柱1111ABCD A B C D-中,底面ABCD是矩形,1A D与1AD交于点E.124AA AB AD===.(1)证明:AE⊥平面ECD;(2)求直线1A C与平面EAC所成角的正弦值.22.在平面直角坐标系xOy中,已知直线l的参数方程为1231x ty⎧=⎪⎪⎨⎪=-⎪⎩(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是2sin4πρθ⎛⎫=+⎪⎝⎭.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点()0,1P-.若直l与曲线C相交于两点,A B,求PA PB+的值.23.已知函数()32f x x ax bx c=+++,过曲线()y f x=上的点()()1,1P f处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式; (2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.24.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值 25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.26.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =I ,11A C EF Q =I .求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--r r ,由a b λ+r r 与a r 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=-r r r考点:向量垂直与坐标运算2.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.3.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.4.C解析:C 【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算.5.D解析:D 【解析】试题分析:根据题意可知34xi y i -=+,所以有3{4y x =-=,故所给的复数的模该为5,故选D.考点:复数相等,复数的模.6.A解析:A 【解析】 【分析】 【详解】∵函数f (x )=xlnx 只有一个零点,∴可以排除CD 答案又∵当x ∈(0,1)时,lnx <0,∴f (x )=xlnx <0,其图象在x 轴下方∴可以排除B 答案 考点:函数图像.7.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .8.B解析:B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义9.C解析:C 【解析】 【分析】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,题目可以转化为找x≤-12或x≥3的必要不充分条件条件,依次分析选项即可得答案. 【详解】根据题意,解不等式2x 2-5x-3≥0可得x≤-12或x≥3,则2x 2-5x-3≥0⇔x≤12-或3x …,所以可以转化为找x≤-12或x≥3的必要不充分条件; 依次选项可得:x 1<-或x 4>是12x ≤-或x≥3成立的充分不必要条件; x 0≥或x 2≤-是12x ≤-或x≥3成立的既不充分也不必要条件 x 0<或x 2>是12x ≤-或x≥3成立的必要不充分条件;x≤-12或x≥3是12x ≤-或x≥3成立的充要条件; 故选C . 【点睛】本题考查了充分必要条件,涉及一元二次不等式的解答,关键是正确解不等式2x 2-5x-3≥0.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.C解析:C 【解析】试题分析:通过选项a 的值回代验证,判断集合中有3个元素即可. 解:当a=1时,由a 2=1,2﹣a=1,4组成一个集合A ,A 中含有2个元素, 当a=﹣2时,由a 2=4,2﹣a=4,4组成一个集合A ,A 中含有1个元素, 当a=6时,由a 2=36,2﹣a=﹣4,4组成一个集合A ,A 中含有3个元素, 当a=2时,由a 2=4,2﹣a=0,4组成一个集合A ,A 中含有2个元素, 故选C .点评:本题考查元素与集合的关系,基本知识的考查.12.B解析:B 【解析】 【分析】根据导数的几何意义可对比切线斜率得到()()032f f ''<<,将()()32f f -看作过()()22f ,和()()3,3f 的割线的斜率,由图象可得斜率的大小关系,进而得到结果.【详解】由()f x 图象可知,()f x 在2x =处的切线斜率大于在3x =处的切线斜率,且斜率为正,()()032f f ''∴<<,()()()()323232f f f f --=-Q ,()()32f f ∴-可看作过()()22f ,和()()3,3f 的割线的斜率,由图象可知()()()()3322f f f f ''<-<,()()()()03322f f f f ''∴<<-<.故选:B . 【点睛】本题考查导数几何意义的应用,关键是能够将问题转化为切线和割线斜率大小关系的比较,进而根据图象得到结果.二、填空题13.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x >0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:解析:2 【解析】 【详解】当x≤0时,由f (x )=x 2﹣2=0,解得x=1个零点; 当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,则f (1)<0,f (3)>0,此时函数f (x )只有一个零点, 所以共有2个零点. 故答案为:2. 【点睛】判断函数零点个数的方法直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,图象法(利用图象交点的个数):画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数h(x)和g(x)的差,根据f(x)=0⇔h(x)=g(x),则函数f(x)的零点个数就是函数y=h(x)和y=g(x)的图象的交点个数,性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数14.【解析】【分析】由已知利用三角形面积公式可求c进而利用余弦定理可求a的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在【解析】【分析】由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】60A=︒Q,1b=11sin1222bc A c==⨯⨯⨯,解得4c=,由余弦定理可得:a===,所以sin sin sin sina b c aA B C A++===++【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.15.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主解析:4+【解析】【分析】由4c =,a A =,利用正弦定理求得4C π=.,再由余弦定理可得2216a b =+,利用基本不等式可得(82ab ≤=+,从而利用三角形面积公式可得结果. 【详解】因为4c =,又sin sin c a C A==所以sin 2C =,又C 为锐角,可得4C π=.因为(2222162cos 2a b ab C a b ab =+-=+≥,所以(82ab ≤=+,当且仅当a b =时等号成立,即1sin 424ABC S ab C ab ∆==≤+即当a b ==时,ABC ∆面积的最大值为4+. 故答案为4+. 【点睛】本题主要考查余弦定理、正弦定理以及基本不等式的应用,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.16.8【解析】∵函数(且)的图象恒过定点A ∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8. 点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.17.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准【解析】依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭,, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK = 13FM MN =Q ∶∶KN KM ∴=∶ 又01404FN K a a--==-,FN KN K KM ==-4a-∴=-a =点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到KN KM =∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值18.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积 解析:2918【解析】 在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o 得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r ,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.19.5﹣【解析】【分析】设圆心为OAB 中点为D 先求出再求PM 的最小值得解【详解】设圆心为OAB 中点为D 由题得取AC 中点M 由题得两方程平方相减得要使取最小值就是PM 最小当圆弧AB 的圆心与点PM 共线时PM 最 解析:5﹣【解析】【分析】设圆心为O,AB 中点为D,先求出2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r ,再求PM 的最小值得解.【详解】设圆心为O,AB 中点为D, 由题得22sin 2,36AB AC π=⋅⋅=∴=.取AC 中点M ,由题得2PA PC PM PC PA AC⎧+=⎨-=⎩u u u v u u u v u u u u v u u uv u u u v u u u v , 两方程平方相减得2221944PC PA PM AC PM ⋅=-=-u u u r u u u r u u u u r u u u r u u u u r , 要使PC PA ⋅u u u r u u u r 取最小值,就是PM 最小,当圆弧AB 的圆心与点P 、M 共线时,PM 最小.此时DM=1,2DM ∴==, 所以PM 有最小值为2﹣2, 代入求得PC PA ⋅u u u r u u u r 的最小值为5﹣故答案为5﹣【点睛】本题主要考查直线和圆的位置关系,考查平面向量的数量积及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 20.【解析】【分析】本题首先应用余弦定理建立关于的方程应用的关系三角形面积公式计算求解本题属于常见题目难度不大注重了基础知识基本方法数学式子的变形及运算求解能力的考查【详解】由余弦定理得所以即解得(舍去解析:【解析】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-, 所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 22ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题21.(1)证明见解析;(2 【解析】【分析】(1)证明1AA CD ⊥,CD AD ⊥,推出CD ⊥平面11AA D D ,得到CD AE ⊥,证明AE ED ⊥,即可证明AE ⊥平面ECD ;(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值.【详解】(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱,∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥,又CD AD ⊥,1AA AD A =I ,∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥,∵1AA AD ⊥,1AA AD =,∴11AA D D 是正方形,∴AE ED ⊥,又CD ED D =I ,∴AE ⊥平面ECD .(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D ,∴()0,2,2E ,∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==u u u u r u u u r u u u r ,设平面EAC 的法向量为(),,n x y z =r ,则·0·0n AC n AE ⎧=⎨=⎩u u u v v u u u v v ,即240220x y y z +=⎧⎨+=⎩, 不妨取()2,1,1n =--r ,则直线1A C 与平面EAC 所成角的正弦值为444663666n AC n AC-+-==r u u u r g r u u u r g . 【点睛】本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题.22.(1310x y --=,22(1)(1)2x y -+-=;(2)231.【解析】【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以ρ,利用222,cos ,sin x y x y ρρθρθ=+== ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果.【详解】(1)将直线l 的参数方程消去参数t 并化简,得直线l 310x y --=.将曲线C 的极坐标方程化为22222sin 22ρρθθ⎛⎫=+ ⎪ ⎪⎝⎭. 即22sin 2cos ρρθρθ=+.∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为()()22112x y -+-=.(2)将直线l 的参数方程代入()()22112x y -+-=中,得2211222t ⎫⎛⎫-+-=⎪ ⎪⎪⎝⎭⎝⎭.化简,得(2130t t -++=.∵Δ>0,∴此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2.由根与系数的关系,得121t t +=,123t t =,即t 1,t 2同正.由直线方程参数的几何意义知,12121PA PB t t t t +=+=+=.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成x 和y 即可.23.(1)()32245f x x x x =+-+;(2)13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴卷】高三数学下期末模拟试题及答案(4)一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.(1+2x 2 )(1+x )4的展开式中x 3的系数为A .12B .16C .20D .243.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ).A BC D4.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}5.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,b =c =( )A .B .2CD .16.下列函数中,最小正周期为π,且图象关于直线3x π=对称的函数是( )A .2sin 23y x π⎛⎫=+ ⎪⎝⎭B .2sin 26y x π⎛⎫=- ⎪⎝⎭ C .2sin 23x y π⎛⎫=+⎪⎝⎭D .2sin 23y x π⎛⎫=-⎪⎝⎭7.已知函数()2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2] 8.已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .29.若双曲线22221x y a b-=,则其渐近线方程为( )A .y=±2xB .y=C .12y x =±D .2y x =±10.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值等于( )A .1318B .322C .1322D .31811.渐近线方程为0x y ±=的双曲线的离心率是( )A .22B .1C .2D .212.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为( ) A .10组B .9组C .8组D .7组二、填空题13.事件,,A B C 为独立事件,若()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=,则()P B =_____.14.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.15.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.17.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.18.函数2()log 1f x x =-________. 19.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 20.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率. 22.已知2256x ≤且21log 2x ≥,求函数2()log 2x f x =⋅的最大值和最小值. 23.已知()f x 是二次函数,不等式()0f x <的解集是()0,5,且()f x 在区间[]1,4-上的最大值是12.(1)求()f x 的解析式;(2)设函数()f x 在[],1x t t ∈+上的最小值为()g t ,求()g t 的表达式. 24.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+=,M 为l 3与C 的交点,求M 的极径.25.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.(1)请你列出抽到的10个样本的评分数据; (2)计算所抽到的10个样本的均值x 和方差2s ;(3)在(2)条件下,若用户的满意度评分在(),x s x s -+之间,则满意度等级为“A 级”。
试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“A 级”的用户所占的百分比是多少?5.92≈≈≈) 26.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M (2)设,a b M ∈,证明:(ab)()()f f a f b >--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意得在线性回归方程$ˆy bxa =+$中 1.23b =$,然后根据回归方程过样本点的中心得到$a的值,进而可得所求方程. 【详解】设线性回归方程$ˆy bxa =+$中,由题意得 1.23b =$, ∴$1.23ˆy x a=+. 又回归直线过样本点的中心()4,5,∴$5 1.234a=⨯+, ∴$0.08a=, ∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.A解析:A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.3.B解析:B 【解析】 【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.4.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C.【点睛】本题主要考查交集的运算,属于基础题.5.B解析:B 【解析】1333,sin A ===3cos A =, 所以()222313232c c =+-⨯⨯,整理得2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想. 当求出3cos A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.6.B解析:B 【解析】 【分析】首先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值,而函数sin()y A x B ωϕ=++在对称轴处取最值,即可求出结果. 【详解】先选项C 中函数2sin 23x y π⎛⎫=+ ⎪⎝⎭的周期为2412T ππ==,故排除C,将3x π=,代入A,B,D 求得函数值为0,2,3,而函数sin()y A x B ωϕ=++在对称轴处取最值. 故选:B . 【点睛】本题考查三角函数的周期性、对称性,难度较易.7.B解析:B 【解析】 【分析】 【详解】试题分析:利用辅助角公式化简函数为()3sin 2cos 2f x x x m =+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.8.D解析:D 【解析】试题分析:()()()2312322f x x x x ==+'--,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.【考点】函数的导数与极值点【名师点睛】本题考查函数的极值点.在可导函数中,函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这个点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点.9.B解析:B 【解析】223a b +=b y x a =±,计算得2b a =方程为2y x =.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.10.B解析:B 【解析】 【分析】由题可分析得到()tan +tan 44ππααββ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由差角公式,将值代入求解即可 【详解】 由题,()()()21tan tan 3454tan +tan 21442211tan tan 544παββππααββπαββ⎛⎫+---⎪⎡⎤⎛⎫⎛⎫⎝⎭=+--=== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+⨯++-⎪⎝⎭,故选:B 【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题11.C解析:C 【解析】 【分析】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查. 【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c = 则该双曲线的离心率为e ca==, 故选C . 【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.12.B解析:B 【解析】由题意知,(14051)108.9-÷=,所以分为9组较为恰当,故选B.二、填空题13.【解析】【分析】【详解】分析:根据独立事件的关系列出方程解出详解:设因为所以所以所以点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系属于中档题解析:12【解析】 【分析】 【详解】分析:根据独立事件的关系列出方程,解出()P B . 详解:设()()()P A a,P B b,P C c ===, 因为()()()111,,688P A B P B C P A B C ⋅=⋅=⋅⋅=, 所以()()16118118ab b c ab c ⎧=⎪⎪⎪-=⎨⎪⎪-=⎪⎩所以111a ,b ,324c === 所以()1P B 2=点睛:本题主要考查相互独立事件的概率的乘法公式及对立事件的概率关系,属于中档题.14.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立【解析】 【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁. 【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得3152P ⎛- ⎝⎭,所以1521512PF k == 【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.15.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的 解析:64【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,1122,23BC C D BD ===16cos 22223C BD ∠==⨯⨯.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.16.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:1 2 -【解析】【详解】因为,所以,①因为,所以,②①②得,即,解得,故本题正确答案为17.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60【解析】【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.18.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.19.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题 解析:910 【解析】 【分析】 先求得tan α的值,然后求得tan β的值,进而求得cos β的值.【详解】由于α为锐角,且4cos 5α=,故23sin 1cos 5αα=-=,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故22222cos 1cos cos cos sin 1tan ββββββ===++910=. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.20.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:【解析】试题分析:()f x 的定义域为()()10,,'f x ax b x +∞=--,由()'00f =,得1b a =-,所以()()()11'ax x f x x+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a=-.因为1x =是()f x 的极大值点,所以11a->,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 三、解答题21.(1)0.5;(2)0.1【解析】【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出()4P X =所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【详解】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球”所以()20.50.40.50.60.5P X ==??(2)由题意可知,()4P X =包含的事件为“前两球甲乙各得1分,后两球均为甲得分” 所以()40.50.60.50.4+0.50.40.50.40.1P X ==创创创= 【点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及()4P X =所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.22.最小值为14-,最大值为2. 【解析】【分析】 由已知条件化简得21log 32x ≤≤,然后化简()f x 求出函数的最值 【详解】由2256x ≤得8x ≤,2log 3x ≤即21log 32x ≤≤ ()()()222231log 1log 2log 24f x x x x ⎛⎫=-⋅-=-- ⎪⎝⎭. 当23log ,2x = ()min 14f x =-,当2log 3,x = ()max 2f x =.【点睛】熟练掌握对数的基本运算性质是转化本题的关键,将其转化为二次函数的值域问题,较为基础.23.(1)2()210f x x x =-(2)223268,,22535(),,2225210,,2t t t g t t t t t ⎧--≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩【解析】(1)因为()f x 是二次函数,不等式()0f x <的解集是()0,5,所以可设()(5)(0).f x ax x a =->,然后因为-1比5离对称轴的距离远,所以最大值为(-1)=6a,求出a 值,从而求出f(x)的解析式.(II )本小题属于二次函数轴定区间动的问题,分三种情况讨论分别求其最小值即可. 解:(1)Q ()f x 是二次函数,且()0f x <的解集是(0,5),∴可设()(5)(0).f x ax x a =->()f x ∴在区间[]1,4-上的最大值是(1)6.f a -=由已知,得612,a =2,a ∴=2()2(5)210().f x x x x x x R ∴=-=-∈(2)由(1)知22525()2102.22f x x x x ⎛⎫∴=-=-- ⎪⎝⎭,开口向上,对称轴为52x = ①当512t +≤,即32t ≤时,()f x 在[],1t t +上是单调递减, ()()()2221101268g t t t t t ∴=+-+=--②当52t ≥时,()f x 在[],1t t +上是单调递减 ()22210210g t t t t t ∴=-=-③当512t t ≤≤+,即3522t ≤≤时,()f x 在对称轴处取得最小值 ()52522g t f ⎛⎫∴==- ⎪⎝⎭24.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+.设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠. (2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠. 联立()()222cos sin 4,cos sin 0ρθθρθθ⎧-=⎪⎨+=⎪⎩得()cos sin 2cos sin θθθθ-=+. 故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.25.(1)见解析;(2)均值83x =,方差233s =(3)50%【解析】【分析】(1)根据题意,由表格分析可得通过系统抽样分别抽取编号,据此可得样本的评分数据; (2)根据题意,由平均数和方差公式计算可得答案;(3)根据题意,分析评分在(83,即(77.26,88.74)之间的人数,进而计算进而可得答案.【详解】(1)通过系统抽样抽取的样本编号为:4,8,12,16,20,24,28,32,36,40 则样本的评分数据为:92,84,86,78,89,74,83,78,77,89.(2)由(1)中的样本评分数据可得 ()1928486788974837877898310x =+++++++++=, 则有()()()()()()()()()()222222222221928384838683788389837483838378837783898310S ⎡⎤=-+-+-+-+-+-+-+-+-+-⎣⎦33= 所以均值83x =,方差233s =.(3)由题意知评分在(83即()77.26,88.74之间满意度等级为“A 级”,由(1)中容量为10的样本评分在()77.26,88.74之间有5人,则该地区满意度等级为“A 级”的用户所占的百分比约为50.550%10== 【点睛】本题考查系统抽样方法以及数据方差的计算,关键是分析取出的数据,属于基础题. 26.(1){1M x x =<-或 }1x >;(2)证明见解析. 【解析】【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求交集,最后求并集(2)利用分析法证明,先根据绝对值三角不等式将不等式转化为证明1ab a b +>+,再两边平方,因式分解转化为证明()()22110a b -->,最后根据条件221,1a b >>确定()()22110a b -->成立.【详解】(1)∵()211f x x <+-,∴12110x x +-++<.当1x <-时,不等式可化为()12110x x --+++<,解得1x <-,∴1x <-; 当112x -≤≤-,不等式可化为()12110x x ++++<,解得1x <-, 无解; 当12x >-时,不等式可化为()12110x x +-++<,解得1x >,∴1x >. 综上所述,{1M x x =<-或}1x >.(2)∵()()()1111f a f b a b a b a b --=+--++--+=+≤,要证()()()f ab f a f b >--成立, 只需证1ab a b +>+, 即证221ab a b +>+,即证222210a b a b --+>,即证()()22110a b -->.由(1)知,{1M x x =<-或}1x >,∵a b M ∈、,∴221,1a b >>,∴()()22110a b -->成立.综上所述,对于任意的a b M ∈、都有()()()f ab f a f b >--成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。