牛顿迭代法讲解

合集下载

牛顿迭代法

牛顿迭代法
建立迭代公式
xn1
xn
xne xn 1 e xn (1 xn )
xn
xn exn 1 xn
取x0=0.5,逐次计算得 x1=0.57102, x2=0.56716, x3=0.56714
1.5 牛顿下山法
通常,牛顿迭代法的收敛性依赖于初始值 x0 的选取,
如果 x0 偏离所求的根 x* 比较远,则牛顿法可能发散。
由定理2.2知,牛顿迭代法在 x* 附近局部收敛。又由 定理2.3知, 迭代公式至少具有二阶收敛速度。
利用泰勒公式
0
f (x*)
f (xk )
f (xk )(x*
xk )
f ( ) (x*
2
xk )2 ,
xk
x*
f f
(xk ) (xk )来自f 2f( )
(xk )
(x*
xk
)2
x*, xk
为了防止迭代发散,我们对牛顿迭代法的迭代过程再附
加一项要求,即具有单调性
f (xk1) f (xk )
满足这项要求的算法称下山法。 将牛顿迭代法与下山法结合起来使用,即在下山
法保证函数值下降的前提下,用牛顿迭代法加快收敛 速度。把这一算法称为牛顿下山法。即
xk 1
xk
f (xk ) f (xk )
xk
f (xk ) f (xk )
x*
f ( ) (x*
2 f (xk )
xk )2
所以
xk 1
x*
f ( )
2 f (xk )
(x*
xk
)2
lim x* xk1 f (x* ) k x* xk 2 2 f (x* )
证毕
1.3 牛顿迭代法的收敛性

第三节 牛顿迭代法

第三节 牛顿迭代法
10.4 牛顿迭代法
一 牛顿法及其收敛性
牛顿法是一种线性化方法,其基本思想是将非线性方 程 f (x)逐 步0 归结为某种线性方程来求解.
设已知方程 f (x有) 近0似根 (假定xk 将函数 f (在x)点 展x开k ,有
),f (xk ) 0
f (x) f (xk ) f (xk )( x xk ),
C )2; C )2.
(3.5)
6
以上两式相除得
xk 1 xk 1
C C
xk xk
2
C C
.
据此反复递推有
xk 1 xk 1
C C
x0 x0
2k
C C
.

q x0 C , x0 C
整理(3.6)式,得
(3.6)
7
q 2k xk C 2 C 1 q2k .
对任意 x0,总0有 ,q故由1上式推知,当 时 xk ,C即迭代过程恒收敛.
10
在(3.7)中取 C ,1则称为简化牛顿法,这
f ( x0 )
类方法计算量省,但只有线性收敛,其几何意义是用平行 弦与 x轴交点作为 x的*近似. 如图7-4所示.
图7-4
11
(2) 牛顿下山法.
牛顿法收敛性依赖初值 的x0选取. 如果 偏离x0所求根 x较* 远,则牛顿法可能发散.
例如,用牛顿法求方程
牛顿法(2)的收敛性,可直接由上节定理得到,对(2) 其迭代函数为
g(x) x f (x) , f (x)
由于
g(x)
f (x) [ f (
f (x) x)]2
.
假定 x是* f 的(x一) 个单根,即 f (x*) 0,, f (x*) 0 则由上式知 g(x*),于0是依据可以断定, 牛顿法在根 x *的邻近至少是平方收敛的.

牛顿迭代法

牛顿迭代法
10.4 牛顿迭代法
一 牛顿法及其收敛性
牛顿法是一种线性化方法,其基本思想是将非线性方 程 f ( x) 0逐步归结为某种线性方程来求解. 设已知方程 f ( x) 0 有近似根 xk(假定 f ( xk ) 0), 将函数 f ( x) 在点 xk 展开,有
f ( x) f ( xk ) f ( xk )( x xk ),
x
表7 5 计算结果 k 0 1 2 3 xk 0.5 0.57102 0.56716 0.56714
5
二 牛顿法应用举例 对于给定的正数 C,应用牛顿法解二次方程
x 2 C 0,
可导出求开方值 C 的计算程序
xk 1 1 C ( xk ). 2 xk
(3.5)
这种迭代公式对于任意初值 x0 0 都是收敛的. 事实上,对(3.5)式施行配方手续,易知
10
在(3.7)中取C
1 ,则称为简化牛顿法,这 f ( x0 )
类方法计算量省,但只有线性收敛,其几何意义是用平行 弦与 x 轴交点作为 x *的近似. 如图7-4所示.
图7-4
11
(2)
牛顿下山法.
牛顿法收敛性依赖初值 x0的选取. 如果x0 偏离所求根 x* 较远,则牛顿法可能发散.
xk 1 xk 1 1 C ( xk 2 xk C 1 ( xk 2 xk C )2 ; C )2 .
6
以上两式相除得
xk 1 xk 1 xk C x C k C . C
2
据此反复递推有
xk 1 xk 1 x0 C x C 0 C C .
14
x1 17.9,它不满足条件(3.10).

牛顿迭代法原理

牛顿迭代法原理

牛顿迭代法原理牛顿迭代法是一种数值计算方法,用于寻找方程的根。

它是由英国科学家牛顿提出的,因此得名。

牛顿迭代法的原理非常简单,但却在实际应用中具有广泛的意义和价值。

首先,让我们来了解一下牛顿迭代法的基本原理。

假设我们要求解一个方程f(x)=0的根,我们可以先随机选择一个初始值x0,然后利用切线的斜率来不断逼近方程的根。

具体来说,我们可以利用方程f(x)的导数f'(x)来得到切线的斜率,然后通过迭代的方式不断更新x的取值,直到满足精度要求为止。

具体的迭代公式如下: \[x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}\]其中,\(x_n\)表示第n次迭代的值,\(x_{n+1}\)表示第n+1次迭代的值,f(x)表示方程,f'(x)表示方程的导数。

牛顿迭代法的原理就是利用切线不断逼近方程的根,通过迭代更新x的取值,最终找到方程的根。

这种方法的优点在于收敛速度快,但也存在一些局限性,比如对初始值的选择比较敏感,可能会导致迭代过程发散。

接下来,让我们通过一个具体的例子来说明牛顿迭代法的原理。

假设我们要求解方程\(x^2-2=0\)的根,我们可以先对方程进行求导,得到导数为2x。

然后,我们随机选择一个初始值x0=1,带入迭代公式进行计算,直到满足精度要求为止。

具体的迭代过程如下:\[x_1 = x_0 \frac{x_0^2-2}{2x_0} = 1 \frac{1^2-2}{21} = 1.5\]\[x_2 = x_1 \frac{x_1^2-2}{2x_1} = 1.5 \frac{1.5^2-2}{21.5} = 1.4167\]\[x_3 = x_2 \frac{x_2^2-2}{2x_2} = 1.4167\frac{1.4167^2-2}{21.4167} = 1.4142\]通过不断迭代,我们可以得到方程\(x^2-2=0\)的根为 1.4142。

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton‘s Method)

牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。

考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。

函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。

牛顿法利用极小点的必要条件:这就是牛顿迭代法。

迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。

因此使用牛顿法是有问题的。

如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。

这种情况可以通过正则化Hessian矩阵来避免。

常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。

正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。

牛顿迭代法及其应用

牛顿迭代法及其应用

牛顿迭代法及其应用牛顿迭代法是一种求解函数零点的迭代方法,具有快速收敛、精度高等优点,被广泛应用于计算机、数学、物理等领域。

本文将从理论和实际应用两方面介绍牛顿迭代法,并对其应用进行探讨。

一、理论基础牛顿迭代法是通过一点处的切线来逼近函数零点的方法。

设$f(x)$在$x_0$点有一个零点,且其导数$f'(x_0)$存在且不为零,那么该零点可以通过一点$(x_0,f(x_0))$处的切线与$x$轴的交点来逐步逼近。

假设切线的方程为$y=f'(x_0)(x-x_0)+f(x_0)$,则其中$x$轴上的交点为$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$,这是零点的一个更好的近似值。

用$x_1$代替$x_0$,再利用同样的方法得到$x_2$,不断重复这个过程,即可逐步逼近零点。

这个过程可以用下面的公式表示:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$这就是牛顿迭代法的基本公式。

从初始值$x_0$开始迭代,不断利用公式进行逼近,直到找到满足$f(x_n)=0$的解。

二、实际应用牛顿迭代法在实际应用中广泛存在,比如在计算机图形学中,通过牛顿迭代法可以精确计算出圆的周长、面积等参数,也可以实现快速的路径追踪和光线追踪。

在金融领域中,牛顿迭代法可以用来计算隐含波动率,即在期权定价模型中,寻找满足期权定价公式的波动率。

由于这个过程中往往要用到反函数,所以牛顿迭代法可以快速找到隐含波动率。

另外,在机器学习、神经网络中,多次用到牛顿迭代法进行梯度下降,智能化运用牛顿迭代法可以提高计算效率,降低误差。

三、应用探讨牛顿迭代法的应用范围较广,但在实际应用中也存在一些问题。

如何避免迭代过程中出现抖动、越界、阻尼等现象,可以通过设置收敛条件、调整步长等方式进行优化。

此外,当函数的导数存在零点或迭代公式不存在时,牛顿迭代法也会失效。

因此,在选择牛顿迭代法时,需要了解函数特性,根据情况选择适合的迭代方法。

牛顿迭代法的基本原理知识点

牛顿迭代法的基本原理知识点

牛顿迭代法的基本原理知识点牛顿迭代法是一种求解方程近似解的数值计算方法,通过不断逼近方程的根,以获得方程的解。

它基于牛顿法则和泰勒级数展开,被广泛应用于科学和工程领域。

本文将介绍牛顿迭代法的基本原理和相关知识点。

一、牛顿迭代法的基本原理牛顿迭代法的基本原理可以总结为以下几个步骤:1. 假设要求解的方程为 f(x) = 0,给定一个初始近似解 x0。

2. 利用泰勒级数展开,将方程 f(x) = 0 在 x0 处进行二阶近似,得到近似方程:f(x) ≈ f(x0) + f'(x0)(x - x0) + 1/2 f''(x0)(x - x0)^23. 忽略近似方程中的高阶无穷小,并令f(x) ≈ 0,得到近似解 x1:0 ≈ f(x0) + f'(x0)(x1 - x0) + 1/2 f''(x0)(x1 - x0)^2求解上述方程,得到近似解 x1 = x0 - f(x0)/f'(x0)。

4. 通过反复迭代的方式,不断更新近似解,直到满足精度要求或收敛于方程的解。

二、牛顿迭代法的收敛性与收敛速度牛顿迭代法的收敛性与收敛速度与初始近似解 x0 的选择和方程本身的性质有关。

1. 收敛性:对于某些方程,牛顿迭代法可能无法收敛或者收敛到错误的解。

当方程的导数为零或者初始近似解离根太远时,迭代可能会发散。

因此,在应用牛顿迭代法时,需要对方程和初始近似解进行合理的选择和判断。

2. 收敛速度:牛顿迭代法的收敛速度通常较快,二阶收敛的特点使其在数值计算中得到广泛应用。

在满足收敛条件的情况下,经过每一次迭代,近似解的有效数字将至少加倍,迭代次数的增加会大幅提高精度。

三、牛顿迭代法的优点与局限性1. 优点:1) 收敛速度快:牛顿迭代法的二阶收敛特性决定了它在求解方程时的高效性和快速性。

2) 广泛适用:牛顿迭代法可以用于求解非线性方程、方程组和最优化问题等,具有广泛的应用领域。

牛顿迭代法

牛顿迭代法

一 .牛顿迭代法简介1.牛顿迭代法的产生背景牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。

另外该方法广泛用于计算机编程中。

利用牛顿迭代法来解决问题需要做好的工作:(1)确定迭代变量。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

(2)建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

(3)对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

2.牛顿迭代法的概述牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿迭代法讲解
牛顿迭代法是一种优秀的高精度计算方法,其能够快速地求解函数零点和方程的根。

该方法利用了函数在某一点处的导数信息,通过迭代的方式不断逼近真实解,具有快速收敛、高效稳定等优点。

下面将详细地介绍牛顿迭代法的原理和步骤。

一、牛顿迭代法的原理
牛顿迭代法的基本思想是:一条曲线在某一点的切线斜率可以近似代替该点处的函数斜率,通过连续斜线的交点,不断逼近真实解。

由此可知,牛顿迭代法的基本原理是利用局部的导数信息来近似全局的函数性质,从而加速问题的求解。

与其他迭代方法相比,牛顿迭代法具有收敛速度快、精度高等优点。

对于平滑的函数而言,它的收敛速度甚至可以达到二次速度,这使得它成为许多求解方程的首选算法。

二、牛顿迭代法的步骤
下面我们将介绍牛顿迭代法的具体步骤。

1.确定迭代公式
设函数f(x)在x0点可导,则其在x0点的导数可以用以下公式表示:
f'(x0) = lim(x->x0) [f(x)-f(x0)]/(x-x0)
当x逐渐逼近x0时,上式右边的分数会逼近导数。

因此,我们可以用该式确定迭代公式:
xk+1 = xk - f(xk) / f'(xk)
其中,x0是初始估计值,xk+1为新的迭代值,xk为上一次的迭代值,f(xk)是函数在xk处的函数值,f'(xk)是函数在xk处的导数值。

2.计算迭代值
通过迭代公式,我们可以计算新的迭代值xk+1。

由于初始估计值x0不一定能够很好地逼近真实解,因此我们需要多次迭代,直到迭代值足够接近真实解。

3.判断是否收敛
在计算新的迭代值后,我们需要检查其与上一个迭代值之间的差距是否足够小,如果达到了我们预设的收敛精度,则停止计算。

否则,我们需要继续迭代,直到收敛。

4.使用牛顿迭代法求函数零点和方程的根
通过上述过程,我们可以利用牛顿迭代法求解函数的零点和方程的根。

具体操作方法如下:
(1)将目标函数转化成零点函数,即f(x) = 0
(2)选择一个初始估计值x0
(3)利用迭代公式计算新的迭代值xk+1 = xk - f(xk) / f'(xk)
(4)判断是否达到了收敛精度,如果是,则输出最终结果;如果否,
则继续迭代。

(5)迭代至收敛后,输出最终结果,即为函数的零点或方程的根。

综上所述,牛顿迭代法是一种高精度、高效稳定的求解方法,它利用
了函数的局部性质来近似全局性质,通过迭代不断逼近真实解。

在实
际问题中,我们可以通过该方法求解复杂的数学模型,帮助我们更好
地理解和解决实际问题。

相关文档
最新文档