煤的气化技术
洁净煤燃烧技术——煤的热解与气化ppt课件

26
2020年5月3日
27
一、简介
煤炭气化技术 煤炭气化是将固体(煤、半焦、焦炭)或液体燃料(水煤浆)与气化剂(空气、 氧气、富氧气、水蒸气或二氧化碳等)作用而转变成燃料煤气或合成煤气。
28
29
30
三、煤气化技术主要工艺
31
1、固定床气化
也称移动床气化。因为在气化过程中,煤料与气化剂 逆流接触,相对于气体的上升速度而言,煤料下降很 慢,甚至可视为固定不动,因此称之为固定气化床, 实际上,煤料在气化过程中的确是以很慢的速度向下 移动的,故以称为移动床气化
第一阶段:鼓空气燃烧煤蓄热,生产空气煤气
第二阶段:鼓水蒸气,生产热解煤气和水煤气
45
2、煤炭地下气化方法及工艺
46
47
48
总结
一、煤热解及意义 二、煤热解的分类及过程 三、煤炭热解技术与工艺 四、煤炭气化技术 五、煤炭地下气化技术
49
32
2、流化床气化(沸腾床气化)
以小颗粒煤为原料,并在气化炉内使其悬浮分散在垂 直上升的气流中,煤粒类似于沸腾的液体剧烈地运动 ,从而使得煤粒层几乎没有温度梯度和浓度梯度,从 而使得煤粒层内温度均一,易于控制,提高气化效率 。
33
3、气化床气化
34
Байду номын сангаас
4、熔浴床气化
也称熔融床气化,将煤粉和气化剂以切线方向 高速喷入一温度较高且高度稳定的熔池内,池 内熔融物保持高速旋转。作为粉煤与气化剂的 分散介质的熔融物可以是熔融的灰渣、熔盐等 可熔融的金属。
项目三 煤转化为燃料的技术
任务一 煤的热解与气化技术
1
任务一 煤的热解与气化技术
一、什么是煤热解及意义 二、煤热解的分类及过程 三、煤炭热解技术与工艺 四、煤炭气化技术 五、煤炭地下气化技术
煤气化技术简介

量较高 (>30%) 时,气化炉的经济性会急剧下降。因而要求煤炭灰熔点
FT<1500℃,灰含量在8%~20%之间; (4) Shell气化炉要把煤炭的含水量降低到很小的值 (烟煤的含水量降至2%, 褐煤降至 6%),因此在煤炭处理的时候需要有烘干设备,不宜利用含水量
较高的煤炭;
(5) 干法进料系统的粉尘排放远大于水煤浆进料系统; (6) 气化炉结构过于复杂,加工难度大。
按进料方式分类 按气化介质分类
水煤浆气化
粉煤气化
纯氧或富氧气化
空气气化
Texaco
Shell、GSP、 三菱
Shell、Texaco GSP、BGL
三菱
2. 典型的煤气化技术
2.1 煤气化技术
研发机构 GE 西门子 Shell 英国煤气公司 日本三菱公司 华东理工与兖矿集团 华东理工 西安热工研究院 西北化工研究院 北京航天万源煤化工 气化技术 Texaco水煤浆加压气化技术 GSP干煤粉加压气化技术 Shell干煤粉加压气化技术 BGL气化技术 吹空气煤气化技术 多喷嘴水煤浆气化技术 四喷嘴对置式干煤粉加压气化技术 两段式干煤粉加压气化技术 多元料浆单喷嘴顶置气化技术 航天炉
循环发电。
2. 典型的煤气化技术
2.2 Texaco气化炉
结构组成: 由喷嘴、气化室、激冷室(或 废热锅炉)组成。 水煤浆(58~62wt%)供料 液态排渣炉 内壁衬里有多层耐火砖 水煤浆和氧气从炉顶的燃烧 器高速连续喷入气化室,高 温状态下工作的喷嘴设有冷 却水装置,水煤浆喷入气化 炉内迅速发生反应,数秒钟 内完成气化过程。 气化炉的下部因冷却方式不 同有2种形式,一种激冷型 冷却方式,一种废热锅炉型。
空分装置投资。
煤的气化_

-482185 -567326 -42361 -206664
2.2×1017 2.4×1015 1.04 0.577
4.4×1011 4.9×1010
0.333 1.77×10-4
6
5.1.2 煤气化的物理化学基础
典型气化反应的化学平衡 ✓ 水蒸气和碳反应以及二氧化碳的还原反应为吸热反应,与碳的燃烧反应
5.1.2 煤气化的物理化学基础
气化反应化学平衡
反应
反应式
非均相反应 燃烧 部分燃烧 炭与水蒸气反应 Boudouard反应 加氢反应 均相反应 氢燃烧 CO燃烧 水煤气反应 甲烷化反应
C+O2=CO2 2C+O2=CO C+H2O=CO+H2 C+CO2=2CO C+2H2=CH4
2H2+O2=2H2O 2CO+O2=2CO2 CO+H2O=CO2+H2 CO +3H2=CH4+H2O
发生炉与气化过程示意图
1.炉体;2.加料装置;3.炉栅; 4.送风口;5.灰盘
5.1.1 煤气化过程
发生炉中中各层作用 -灰渣层可预热气化剂和保护炉栅不会受到高温的伤害; -氧化层进行碳的燃烧反应,反应速率快,氧化层温度最高,高度较小; -还原层进行二氧化碳和水蒸气的还原反应,为吸热反应,所需热量由氧 化层带人,反应速率较慢,因而还原层高度超过氧化层。制造煤气的反 应主要发生在氧化层和还原层中,所以称氧化层和还原层为气化区; -干燥层和干馏层进行原料的预热、干燥和干馏。 实际操作中,发生炉内进行的气化反应并不会在截然分开的区域中进行 ,各区域无明显的分界线。
14
5.1.3 煤性质对气化的影响
(c)灰熔点与结渣性 煤中矿物质,在气化和燃烧过程中,由于灰分 软化熔融而变成炉渣的性能称为结渣性。对移动床气化炉,大块的炉渣将会 破坏床内均匀的透气性,严重时炉篦不能顺利排渣,需用人工破渣,甚至被 迫停炉。另外炉渣包裹了未气化的原料,使排出炉渣的含碳量增高。对流化 床来说,即使少量的结渣,也会破坏正常的流化状况,另外在炉膛上部的二 次风区的高温,会使熔渣堵塞气体出口处等。
煤气化原理及不同煤气化技术对比

热值:煤炭热值就是煤炭在发热量测定仪中经过燃烧所产生的 热量即为煤炭热值(煤的发热量)。气化用煤热值一般50006000大卡/kg。
*
(二)气化剂
氧气O2:来源于空分,氧气纯度>99%,压力要求高于气化压力。
煤气化基础知识培训
*
主要内容
一 二 三 四 什么是煤气化 煤气化技术分类 煤气化简要流程 煤气化在合成氨生产中的特征
*
一、什么是煤气化
*
什么是煤气化
以煤为原料,以氧气(空气、富氧或纯氧)、水蒸气等 做气化剂,在高温条件下在气化炉炉内通过化学反应将煤或 煤焦中的可燃部分转化为气体产品的过程。 关键词:煤、气化剂、气化炉、气体产品
煤粉制备 气化反应 气体净化 渣水处理
• 制备90μm粉煤 • 高温反应生成合成气 • 合成气湿法除尘 • 灰水闪蒸、沉降、过滤
*
*
*
*
*
*
*
四、煤气化在合成氨中的特征
*
1、投资最大,占合成氨投资约,约60%(煤、电、煤浆添加剂、 灰水处理药剂,氧气能耗未分摊)。 3、自动化程度高,仪表自控投资占总投资26%。
*
3、其它
灰熔点:煤灰熔融性是动力和气化用煤的重要指标。煤灰是由 各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔 化温度的范围。煤灰熔融性又称灰熔点。灰熔点的测定方法常 用角锥法。将煤灰与糊精混合塑成三角锥体,放在高温炉中加 热,根据灰锥形态变化确定DT(变形温度)、ST(软化温 度)、HT(半球温度)和FT(熔化温度)。
工业分析 项目 单位 数值 水分Mar wt% 16.45 灰分Ad wt% 12 挥发分Vd wt% 31.57 固定碳FCd wt% 56.43
煤炭气化原理

煤炭气化原理一、引言煤炭气化是一种将煤炭转化为合成气的技术,通过高温和缺氧环境下的反应使煤炭中的有机物发生热解、干馏、燃烧等化学变化,产生一种含有一氧化碳和氢气的混合气体,称为合成气。
本文将对煤炭气化的原理进行全面、详细、完整且深入地探讨。
二、煤炭气化的基本反应煤炭气化的主要反应可以分为三个步骤:热解、干馏和燃烧。
2.1 热解煤炭在高温下分解,释放出挥发性物质和焦炭。
这个过程称为热解反应。
热解主要由以下三个步骤组成: 1. 原煤脱水:煤炭中的水分在高温下蒸发。
2. 碳氢化合物分解:煤炭中的碳氢化合物(如烃类)在高温下发生热解,产生小分子气体和炭质残留物。
3. 炭质残留物退变:煤炭中的炭质残留物在高温下发生退变,产生焦油和焦炭。
2.2 干馏在热解的基础上,进一步进行干馏反应。
干馏是指将挥发性物质和焦炭分离的过程。
干馏过程主要包括以下几个步骤: 1. 挥发性物质分离:将挥发性物质(包括一氧化碳、二氧化碳、水蒸气、重烃等)从煤中分离出来。
2. 固体焦炭生成:将挥发性物质分离后得到的残渣进一步热解,生成固体焦炭。
2.3 燃烧燃烧是指将产生的一氧化碳(CO)和水蒸气(H2O)与外部供气中的氧气(O2)反应,产生二氧化碳(CO2)和热能的过程。
煤炭气化中的燃烧反应主要包括以下几个步骤: 1. 供气:将外部的氧气供应到煤炭气化反应器中。
2. 氧化反应:一氧化碳与氧气发生氧化反应,生成二氧化碳。
3. 氢化反应:水蒸气与一氧化碳发生氢化反应,生成二氧化碳和水。
4. 燃烧释能:燃烧反应放出的热能可以用于产生蒸汽、发电等。
三、煤炭气化的影响因素煤炭气化过程受到许多因素的影响,主要包括以下几个方面:3.1 温度温度对煤炭气化速率和产物组成有显著影响。
较高的温度可以促进煤炭中的碳氢化合物热解和干馏反应,加快气化反应速率。
同时,高温条件下还有利于催化剂的活性和稳定性。
3.2 压力压力对气化反应的平衡和速率同样具有重要影响。
煤的气化与液化技术及应用前景

煤的气化与液化技术及应用前景煤炭作为我国主要的能源资源之一,一直以来都发挥着重要的作用。
然而,由于煤炭的高含碳量以及燃烧产生的大量二氧化碳等有害气体,煤炭的利用也面临着环境污染和能源可持续性的挑战。
为了解决这些问题,煤的气化与液化技术应运而生,并在能源转型中发挥着重要作用。
煤的气化技术是将煤炭在高温和高压下与水蒸气或氧气反应,产生一系列气体和化学品的过程。
其中最为重要的产物是合成气,即一氧化碳和氢气的混合物。
合成气可以用于发电、制造燃料和化学品等多个领域。
此外,气化技术还可以将煤炭中的硫、氮等有害物质去除,减少环境污染。
煤的液化技术则是将煤炭在高温和高压下与溶剂反应,将固态煤转化为液体燃料。
这种液体燃料可以直接用于发电、交通运输等领域,也可以作为化工原料进行进一步加工。
与气化技术相比,液化技术更适合于煤炭资源分布不均的地区,可以将煤炭资源转化为可储存和运输的液体能源,提高能源利用效率。
煤的气化与液化技术在我国的应用前景广阔。
首先,气化与液化技术可以实现煤炭资源的高效利用,提高能源利用率。
目前,我国煤炭资源丰富,但由于煤炭的高含碳量,传统燃烧方式会导致大量的二氧化碳排放。
而通过气化与液化技术,可以将煤炭转化为合成气和液体燃料,减少二氧化碳的排放,实现低碳经济发展。
其次,气化与液化技术可以提高我国能源供应的多样性。
我国依赖进口石油和天然气的程度较高,而煤炭资源丰富,通过气化与液化技术将煤炭转化为气体和液体燃料,可以降低对进口能源的依赖,增加能源供应的稳定性。
此外,气化与液化技术还可以推动煤炭产业的转型升级。
传统的煤炭开采和燃烧方式会对环境造成严重的污染,而气化与液化技术可以将煤炭转化为清洁能源,减少环境污染。
同时,通过进一步加工合成气和液体燃料,可以生产出更多高附加值的化工产品,提高煤炭产业的附加值。
然而,煤的气化与液化技术也面临一些挑战。
首先是技术难题。
气化与液化技术需要高温和高压的条件,对设备和工艺要求较高,技术难度较大。
国内外煤气化技术比较

国内外煤气化技术比较随着煤炭资源的日益短缺,煤的高效利用已成为世界各国关注的重点。
煤气化技术,将煤转化为可燃气体并用于热能、电力和化学前驱体等领域,是当前实现煤高效清洁利用的重要技术之一。
本文将比较国内外煤气化技术的发展现状、技术路线和应用前景。
一、发展现状国内煤气化技术大多起步较晚,主要集中在购买国外设备和技术转化方面。
目前,中国已拥有天然气化工、华能大庆气化、山东诸城气化等多家成熟的煤炭气化企业。
其中,天然气化工主要生产合成气、氢气、苯乙烯等高附加值产物,煤气化率可达到92%以上。
华能大庆气化项目,煤气化率达到了80%以上,年生产合成气、苯乙烯、丙烯、氢气等150万吨。
山东诸城气化项目可生产甲醇、甲醛、乙醇、合成天然气和合成油等。
同时,国内目前正在进行的煤气化项目还有多个,如鄂尔多斯兴隆煤气化、华电集团新能源与煤制氢等。
而国外煤气化技术研究与应用较早,煤气化率和产物种类也较为丰富。
美国、德国、日本、澳大利亚等国家的煤气化技术都十分成熟,其中美国的煤气化产业发展历史最久,技术和产业规模也最大。
美国能源部现有10多个煤气化项目,年产能均在100万吨以上,产物种类包括合成天然气、液体燃料、合成酒精、硫酸、氮肥、尿素、润滑油和化肥等。
二、技术路线国内煤气化技术路线主要有三种:固定床煤气化技术、流化床煤气化技术和煤浆气化技术。
其中,固定床煤气化技术为中国比较成熟的技术路线,常用于生产油制气。
流化床煤气化技术则常用于生产合成气和聚烯烃等化工产品,煤浆气化技术则更适用于城市垃圾热解和冶金煤气化等领域。
目前,煤浆气化技术在国内尚处于探索阶段,需要进一步进行实验研究和工程应用。
而国外煤气化技术路线更为多样化,包括了上文提到的固定床、流化床、煤浆气化以及自动旋转床、堆积流化床、内循环流化床、熔融盘煤气化等。
三、应用前景煤气化技术的应用前景广阔。
其一是消费后果,煤气化技术生产的氢气、合成气、甲醇等化学中间体和化学品可以替代天然气和石油制品,进而推进煤的多元化消费。
煤气化工艺流程

煤气化工艺流程煤气化工艺是将固体煤转化为气体能源的一种方法。
它是一项非常重要的技术,可以将煤转化为合成气,用于发电、燃料和化工等领域。
煤气化工艺流程包括煤气化反应、气体净化和气体利用三个主要阶段。
首先是煤气化反应阶段。
煤气化是指将煤在高温、高压和缺氧的条件下转化为气体。
在煤气化反应过程中,煤被加热到高温,以使其发生热解反应,生成一系列气体。
这些气体主要包括一氧化碳(CO)、氢气(H2)、二氧化碳(CO2)和少量甲烷(CH4)。
煤气化反应通常在反应器中进行,反应器可以是固定床、流化床或喷射床等形式。
接下来是气体净化阶段。
在煤气化反应产生的气体中,含有一些杂质和有害成分,如硫化物、氯化物和灰分等。
这些杂质和有害成分会对后续的气体利用和环境造成一定影响,因此需要进行净化处理。
气体净化通常包括除尘、脱硫和脱氯等步骤。
除尘主要通过过滤、静电除尘或洗涤等方法去除气体中的固体颗粒;脱硫可以采用吸收剂或催化剂吸收硫化物,使其转化为硫酸;脱氯也可采用类似的方法。
通过气体净化,可以得到高纯度的合成气。
最后是气体利用阶段。
经过煤气化反应和气体净化后,得到的合成气可以作为一种重要的能源来源。
合成气常被用作燃料,如用于发电和工业燃烧;同时也可以通过合成反应转化为化学品,如合成石油、合成天然气和合成醇等。
气体的利用方法取决于不同的应用领域和需求。
在发电中,合成气可以作为燃料供给燃气轮机或燃气锅炉;在化工中,合成气可以经过进一步的化学反应,得到不同的化学品。
总结起来,煤气化工艺流程包括煤气化反应、气体净化和气体利用三个主要阶段。
通过这些步骤,可以将固体煤转化为气体能源,并用于发电、燃料和化工等领域。
煤气化工艺在能源转化和资源利用方面具有重要意义,可以提供可再生的替代能源,并减少对化石燃料的依赖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤的气化技术
1. 介绍
煤是一种常见的化石燃料,在世界范围内广泛使用。
然而,煤的燃烧产生大量的二氧化碳等温室气体,对环境造成严重影响。
为了减少对环境的污染并提高能源利用效率,煤的气化技术应运而生。
煤的气化技术是将煤转化为合成气(syngas)的过程,合成气主要由一氧化碳(CO)、氢气(H2)和少量的二氧化碳(CO2)、氮气(N2)等组成。
合成气可以
用作燃料,也可以作为化学原料,用于制造化学品、肥料和液体燃料等。
2. 煤的气化过程
煤的气化主要通过以下两个步骤完成:
2.1. 干燥和预气化
在气化反应器中,煤被加热至高温。
在这个过程中,煤中的水分被蒸发出来,并与空气中的氧气反应生成二氧化碳和水蒸气。
这一步骤主要起到预热作用,为下一步的反应做准备。
2.2. 煤的部分氧化
在气化反应器中,预热的煤与氧气反应,生成一氧化碳和水蒸气。
主要的反应方程式如下所示:
C + O2 -> CO2 C + CO2 -> 2CO
通过控制反应温度和氧气供应量,可以调节合成气中一氧化碳和氢气的比例。
高温和富氧条件下可以生成较多的一氧化碳,而低温和贫氧条件下可以生成较多的氢气。
3. 煤的气化技术分类
煤的气化技术可以分为以下几种类型:
3.1. 固定床气化
固定床气化是最早开发的气化技术之一,也是最常用的气化技术之一。
在这种气化方式下,煤被放置在气化反应器中的固定床上,并通过气化剂(如空气或蒸汽)流过床层。
随着气化反应的进行,煤逐渐转化为合成气,反应产物从顶部排出。
固定床气化适用于各种类型的煤,具有反应稳定、设备简单的优点,但存在反应温度不均匀、产物中存在固体颗粒等问题。
3.2. 流化床气化
流化床气化是一种将煤颗粒悬浮在气化剂中进行气化的技术。
在气化反应器中,通过气化剂(通常为空气或蒸汽)的上升流动,使煤颗粒保持悬浮状态。
在高温和富氧条件下,煤颗粒发生气化反应,生成合成气。
流化床气化技术具有高反应效率、适应多种煤种和煤质的优点,但也存在气固分离和热传递问题。
3.3. 顺流煤气化
顺流煤气化是一种将煤颗粒与气化剂在多级气化反应器中逆流接触进行气化的技术。
气化反应发生在高温和高压条件下,煤颗粒逐渐转化为合成气。
顺流煤气化技术具有高气化效率、灵活性好的特点,但需要较复杂的气体分离和净化设备。
4. 煤气化技术的应用
煤的气化技术在能源和化工领域有着广泛的应用。
4.1. 煤气作为燃料
合成气可以作为燃料用于锅炉、热电厂和内燃机等设备中。
由于合成气中含有一氧化碳,因此可以通过进一步处理将其转化为氢气和二氧化碳,用于燃料电池等设备。
4.2. 化学品制造
合成气是生产许多化学品的重要原料,例如甲醇、氨、丙烯和乙二醇等。
通过对合成气的进一步处理和催化反应,可以将其转化为这些化学品,从而实现煤的资源化利用。
4.3. 液体燃料制造
通过对合成气进行加氢处理和催化反应,可以将其转化为液体燃料,例如合成柴油和合成液化天然气(LNG)。
这些液体燃料可以替代传统的石油燃料,减少对石油
资源的依赖。
5. 煤气化技术的发展趋势
煤的气化技术在能源转型和环境保护方面具有重要意义。
未来,随着对清洁能源和可持续发展的需求增加,煤气化技术将继续发展和完善。
5.1. 高效能源利用
煤气化技术的发展趋势是提高能源利用效率。
通过改进气化反应器和气化剂的循环利用等技术,可以减少能源损失,提高合成气的产率和质量。
5.2. 清洁合成气生产
煤气化技术的另一个发展方向是减少气化过程中的温室气体排放,例如二氧化碳的排放。
通过发展新的气化剂和反应器设计,可以实现低碳排放的合成气生产。
5.3. 生物质气化技术
生物质气化技术是将可再生生物质(如木材、秸秆等)转化为合成气的过程。
与煤气化技术相比,生物质气化技术具有低碳排放、可持续发展等优势。
未来,生物质气化技术有望与煤气化技术相结合,实现清洁能源的生产和利用。
结论
煤的气化技术是一种将煤转化为合成气的重要技术,具有广泛的应用前景。
通过不断提高能源利用效率和减少环境污染,煤气化技术有望成为清洁能源转型和可持续发展的重要手段。
未来,我们可以期待煤气化技术在能源和化工领域的更广泛应用。