汽车起重机技术规格大全d

汽车起重机技术规格大全d
汽车起重机技术规格大全d

QY16D汽车起重机技术规格

一、技术介绍

1、底盘部分

徐工设计、制造,左侧驾驶室,3桥底盘,

驱动/转向:6×4×2。

1.1、车架

徐工设计、制造,抗扭箱型结构,高强度钢制造。

支腿箱体位于1桥和2桥之间以及车架后端,具有前后牵引挂钩。

全覆盖走台板。

1.2、底盘发动机

制造商:上海柴油机股份有限公司;

型号:SC8DK230Q3(东风牌);

型式:直列、六缸、水冷、蜗轮增压、电控柴油发动机;

环保性:符合欧洲Ⅲ号规范;

燃料箱容量:约260L 。

1.3、动力传动系统

1.3.1、变速箱

手动机械操纵,五档变速箱,稳定、可靠。

1.3.2、车桥

高强度车桥,维护简便;

第一桥:单胎,转向不驱动;

第二桥:双胎,驱动不转向;

第三桥:双胎,驱动不转向。

1.3.3、传动轴

驱动轴均采用端面齿连接,优化动力传输,传递扭矩大。

1.4、桥悬挂

前悬挂:纵置钢板弹簧式,筒式减震器

后悬挂:纵置钢板弹簧式,双轴平衡。

1.5、转向

机械式转向机构,带有液压助力。

1.6、轮胎

斜交轮胎,11.00-20,适用于重型汽车,通用性强。标配1个备胎。

1.7、制动

行车制动:脚踏板操纵,双回路气压制动。第一回路作用于一轴车轮上,第二回路作用于二、三轴车轮上

驻车制动:手制动可兼作应急制动和驻车制动,通过各轴上的弹簧储能制动气缸起作用的。

连续制动:发动机排气制动。

1.8、底盘驾驶室

左侧式半头驾驶室,标配收放音机,可调式座椅和方向盘,大视野后视镜,手动门窗升降器,标配暖风。

可选单冷空调。

1.9、液压系统

定量泵,通过取力器联接至变速箱,控制下车液压支腿并为起重作业提供动力。

1.10、液压支腿

“H”型支腿,4点支撑,水平和垂直支腿全液压操纵,底盘两侧装有操纵手柄,操纵手柄旁装有水平仪和油门操纵开关。支脚盘铰接在垂直支腿下面。

1.11、电气设备

24V DC,负极搭铁,2个储电池,照明按中国道路交通规范,包括前大灯,雾灯,倒车灯等。

1.12、工具

随车配置一套维修工具。

2、起重机上车部分

单排四点接触球内齿式回转支承,可360°连续回转,回转支承滚柱轨道密封,可防水防尘。

2.1、转台结构

采用细晶粒高强度钢全焊接抗扭框架结构,承载能力高。

2.2、液压系统

上车液压系统开式液压系统,动力来源下车三联齿轮泵,通过上车多路阀控制起重机进行起升、伸缩、变幅、回转等动作。

液压油箱有效容积 355L。

2.3、控制

机械控制,通过安装在座椅前部的4个操纵杆控制,起重机的全部动作和速度可通过系统进行无级控制。

2.4、主起升机构

轴向柱塞马达驱动,两级齿轮减速机,有外抱式/常闭多片式制动器和快速分离机构。专用防乱绳卷筒。具有重力快速降钩的功能。

主起升机构,单绳拉力29KN,钢丝绳直径φ14mm,长度130m。

副起升机构,单绳拉力29KN,钢丝绳直径φ14mm,长度85m。

2.5、变幅机构

单缸前支变幅,变幅角度:-2°~78°;

2.6、回转机构

液压马达驱动,内置行星齿轮减速机和常闭式制动器。回转速度可无级调速。

2.7、主起重臂

由1节基本臂和3节伸缩臂组成,采用抗扭曲设计,高强度结构钢制造。起重臂截面为圆弧角八边形,起重作业稳定性好。单缸加绳排伸缩机构,同步伸缩。

臂头滑轮组规范配置为3个滑轮。

2.8、上车操纵室

按照人机工程学设计的、安全舒适,装有安全玻璃和防护栏。车窗装有遮阳帘,外开式车门,可调式坐椅。

可选装冷暖空调。

2.9、安全装置

液压系统配置有液压平衡阀、液压溢流阀、液压双向锁等装置,保证系统稳定安全;

徐州赫斯曼力矩限制器包括显示处理器、长度角度传感器、压力传感器和高度限位开关。为操作者提供有关吊臂长度、吊臂角度、高度、工作幅度、额定载荷和实际载荷等方面的信息。

卷扬设置三圈保护器,防止钢丝绳过放。

臂头设置高度限位器,防止钢丝绳过卷。

2.10、配重

配重块固定在起重机转台尾段;配重重量:2040kg;

2.11、副起重臂

高强钢桁架式结构,长7.5 m ,

公路行驶时固定在主臂右侧,安装时侧向摆动;

2.12、吊钩

3、颜色

起重机底盘:黑色;驾驶室,起重机上车:工程黄色。

三、QY16D汽车起重机性能参数

2、QY16D起重作业状态主要技术参数表

3、QY16D汽车起重机起重性能表

3.1、QY16D汽车起重机主臂起重性能表单位:kg

4、QY16D起升高度曲线

汽车起重机技术规格QY20G

一、技术介绍

1、底盘部分

徐工设计、制造,“豪华”全头驾

驶室,3桥底盘,驱动/转向:6×4×2。

1.1、车架

徐工设计、制造,抗扭箱型结构,

高强度钢制造。支腿箱体位于1桥和2桥之间以及车架后端,具有前后牵引挂钩。

全覆盖走台板。

1.2、底盘发动机

制造商:上海柴油机股份有限公司

型号:SC8DK260Q3(东风牌)

型式:直列、六缸、水冷、增压电控柴油发动机;

环保性:符合欧洲Ⅲ号规范;

燃料箱容量:约260L 。

1.3、动力传动系统

1.3.1、变速箱

机械操纵,6档变速箱,稳定、可靠。

1.3.2、车桥

高强度车桥、维护方便。

第一桥:单胎,转向但不驱动;

第二桥:双胎,驱动但不转向;

第三桥:双胎,驱动但不转向。

1.3.3、传动轴

驱动轴均采用端面齿连接,优化动力传输,传递扭矩大。

1.4、桥悬挂

前悬挂:纵置钢板弹簧式悬架,筒式减震器。

后悬挂:纵置钢板弹簧式悬架,双轴平衡。

1.5、转向

机械式转向机构,带有液压助力。

1.6、轮胎

斜交轮胎,11.00-20,广泛适用于重型汽车,通用性强。标配1个备胎。

1.7、制动

行车制动:脚踏板操纵,双回路气压制动。第一回路作用于一轴车轮上,第二回路作用于二、三轴车轮上

驻车制动:手制动可兼作应急制动和驻车制动,通过各轴上的弹簧储能制动气缸起作用的。

连续制动:发动机排气制动。

1.8、底盘驾驶室

MQ100门式起重机总体计算书(附cad图)

MQ100 门式起重机总体 设 计 计 算 书 (共16页,含封面) XXX机械工程研究所 2004年4月

一. 总体计算 计算原则:MQ100门式起重机设计计算完全按《起重机设计规范》GB3811执行,并参照下列标准进行设计计算: 《塔式起重机设计规范》GB/T13752-92 《法国塔式起重机设计规范》NFE52081 工作级别 A 5 利用等级 U 5 起升机构 M 5 变幅机构 M 4 回转机构 M 4 行走机构 M 4 最大幅度 13m 最大起重量 8000Kg (一) 基本参数: 回转速度 0.7r/min 回转制动时间 5s 行走速度 12.5/25m/min 行走制动时间 6s 回转惯性力 ()Kg RM M g t R n F 002242.0.60..25.1=?? =π回 其中 g=9.81 n=0.7r/min t=5s 行走惯性力: ()Kg M M g t v F 0106184.0.605.1=?? =行 其中 g=9.81 V=25m/min t=6s

(二) 载荷组合: 自重力矩、惯性力及扭矩 上表中的回转惯性力到轨顶面的力矩总计为:-1971kg.m 上表中的行走惯性力到轨顶面的力矩总计为:5378kg.m

(三)起重小车、吊钩和吊重载荷 起重小车265kg 绳60kg 吊钩230kg 起升动载系数(起升机构用40RD20): =1.136, q=8t V=16m/min时, 2 吊重q=8000kg, 幅度R=13m (1) 吊载 Q=(8000+230+60/2)×1.136+(265+60/2)×1.1 =9708kg M=9708×13=126204kg.m (2) 风载(包括起重小车、吊钩和吊重) 迎风面积A=5.52+1.6×82/3=11.92m2 风力:F=11.92×25=298kg =298×13=3874kg.m 风扭矩:T n 风力到轨道上平面的力矩:M=298×12=3576kg.m (3) 回转惯性力 F=0.002242×(8000+230+265+60)×13=249kg =249×13=3237kg.m 回转惯性扭矩: T n 回转惯性力到轨道上平面的力矩:M=249×12=2988kg.m (4)行走惯性力 F=0.0106184×(8000+230+265+60)=91kg

汽车起重机构造与原理

汽车起重机构造与原理 一、汽车起重机基本术语 1、汽车起重机 起重作业部分安装在专用或通用汽车底盘上的起重机。参见图一 2、整机。 具有齐全的上车、下车及附属装置的起重机。 3、上车(起重机部分) 包括回转支承及其以上的全部机构的总和。 4、下车(运载车部分) 回转支承以下部分,包括底架、底盘、支腿等各部件、机构和装置的统称。(包括支腿在内的装载上车而行走的运载车)。 5、起重性能参数(参见表一) 5.1起重量:起吊物体的质量。 5.2总起重量:起吊物体的质量与取物装置质量之和。 5.3额定总起重量 起重机在各种工况和规定的使用条件下所允许起吊的最大总起重量。(工况,指不同的臂长和仰角;规定的使用条件,如打支腿、地面的平整度、风力、设备状况等规定的使用条件) 5.4最大额定总起重量 起重机用基本臂处于最小额定幅度,用支腿进行作业所允许的额定总起重量,并以此作为起重机的名义起重量。 6、幅度(参见图二、图三) 6.1幅度:起重机空钩时,回转中心垂线与吊钩中心之间的水平距离。 6.2工作幅度:起重作业时,回转中心垂线与吊钩中心之间的水平距离。 6.3最小工作幅度:起重机处于最大仰角时的工作幅度。 6.4额定幅度:某一额定总起重量所允许的最大工作幅度。 6.5最小额定幅度:最大额定总起重量所允许的最大工作幅度。 7、起重力矩:总起重量与相应的工作幅度的乘积。 8、起升高度:起重机起升到最高位置时,起重钩钩口中心到支承地面的距离。 9、倍率:动滑轮组的承载钢丝绳数与引入卷筒的钢丝绳数之比。 10、起升速度:平稳运动时,起吊物体的垂直位移速度。 10.1单绳速度:动力装置在额定转速下,在卷筒计算直径处第n层的钢丝绳速度。 10.2起重钩的起升(下降)速度 钢丝绳单绳速度除以起升滑轮组倍率得到的值。 11、变幅时间(速度) 变幅作业时,幅度从最大(最小)变到最小(最大)所用的时间。 12、最大回转速度 空载状态下,基本臂在最大仰角时,所能达到的最快回转速度。 13、起重臂伸(缩)时间(速度) 空载状态下,起重臂处于最大仰角,使吊臂由全缩(伸)状态运动到全伸(缩)状态所用的时间。 14、支腿收放时间(速度) 支腿以全收(放)状态,运动到全放(收)状态所用的时间。 15、仰角:(参见图二、图三) 在起升平面内,起重臂纵向中心线与水平线的夹角。 16、副臂安装角:(参见图二、图三) 起重机主臂轴线与副臂轴线在起升平面内的夹角。 17、起重臂长: 沿起重臂轴线方向,其根部销轴中心到头部定滑轮组中心的轴线距离。 18、起重特性曲线: 表示起重机作业性能的曲线。 18.1起重量特性曲线(参见表一) 在以总起重量和工作幅度为坐标轴的直角坐标系中,以一定臂长在不同工作幅度时的额定起重量为坐标点编制的曲线。

汽车吊车计算书-修订稿

庆鼎精密电子(淮安)有限公司 吊 装 计

现场预备吊装构建重量计算图表如下: GJ-01、GJ-02均由五榀钢梁连接成一整体:重量分别L1:5420.27kg、L2:5618.37kg、 L3:6241.16kg、 L4:5613.79kg、L5:5275.76kg 现场钢梁在地面组拼进行3+2吊装法:L1+L2+=11.03T、L3=6.241T、L4+L5=10.89T分三组进 行吊装。 2

GJ吊车自F轴向A轴吊装,100吨汽车吊性能表如下所示: 100吨汽车吊 可以看出100吨汽车吊在主臂32.468m,作业半径为9m时候可以吊装27.87T吨,满足吊装工况要求。

液压汽车起重机工况核算计算书 计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 、基本参数 、计算示意图 4

、起重机核算 5 1 = 一一.

建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中 心的竖直线为Y轴, A点坐标: X A=R+b3=9+2.67=11.67m y A=Om B点坐标: X B=S/2=2/2=1m y B=h3-h b=24.8-3.3=21.5m C点坐标: x c=Om y c=h 什h2+h3-h b=2+6.798+24.8-3.3=30.298m 直线AC的倾角: a1=arctg(y c/x A)= arctg(30.298/11.67)=68.935 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角: a=arctg(y B/(X A-X B))+arcsi n( (f+d/2)/ (y B2+(x A-x B)2)0.5)=arctg(21.5/(11.67-1))+arcsi n((1+1/2)/(21.52+(11.67-1)2)0.5)=67.189 起重臂仰角:a =1=68.935 ° 最小臂长:L= X A /cos a =32.468 m 幅度:R=9m 6 J ■ 「

汽车起重机构造一

第一篇基础知识 第七章起重机的工作原理与构造 本章要求熟悉汽车式起重机泵驱动装置、支腿、回转、伸缩、变幅、起升机构的构造及 其工作原理。熟悉履带式起重机的构造及工作原理。了解起重机的类型,掌握起重机的技术 参数。了解起重机上机电路,掌握起重机系统的液压原理。 第一节起重机的类型及技术参数 一、起重机类型 按构造类型起重机械可分为轻小型起重设备、起重机和升降机三大类。 1、轻小型起重设备 轻小型起重设备一般只有一个升降机构,常见的有千斤顶、电动或手拉葫芦、绞车、滑车等。其特点是轻便,结构紧凑,动作简单。 2、起重机 当起重设备除了具有起升机构以外,还有其他运动机构时,其结构组成必然比单机构的轻小型起重设备复杂得多,我们称这类起重设备为起重机。根据金属结构的类型不同,起重机可分为桥架类型起重机和臂架类型起重机两大类别。其特点是可以使挂在起重吊钩或其他取物装置上的重物在空间实现垂直升降和水平运移。即起重机对重物能同时完成垂直升降和水平移动,在工业和民用建筑工程中作为主要施工机械而得到广泛应用。起重机种类繁多,在建筑施工中常用的为流移动式起重机,包括:塔式起重机、汽车式起重机、轮胎式起重机、履带式起重机等。常用起重机的特点和适用范围见表1 - 1。 表1-1 用起重机的特点和适用范围

3、升降机 常见的有垂直升降机、电梯等。升降机类起重设备只有一个升降机构。由于出于安全性考虑,电梯配有完善的安全装置及其他附属装置,其复杂程度是轻小型起重设备不能相比的,所以,列为单独一类。 在所有各类起重机械中,桥架类型起重机和臂架类起重机是使用量最大、功能最强的主体起重设备,现在,我们重点来认识一下起重机械设备中的这一大类别。 (1)桥架类型起重机 桥架类型起重机的最大特点,是以桥形金属结构作为主要承载构件,取物装置悬挂在可

详细介绍汽车起重机的种类及构造

详细介绍汽车起重机的种类及构造 汽车起重机的种类 汽车起重机的种类很多,其分类方法也各不相同,主要有: 按起重量分类:轻型汽车起重机(起重量在5吨以下),中型汽车起重机(起重量在5-15吨),重型汽车起重机(起重量在5-50吨),超重型汽车起重机(起重量在50吨以上)。近年来,由于使用要求,其起重量有提高的趋势,如已生产出50-100吨的大型汽车起重机。 按支腿型式分:蛙式支腿、x型支腿、h型支腿。蛙式支腿跨距较0?仅适用于较小吨位的起重机;x型支腿容易产生滑移,也很少采用;h型支腿可实现较大跨距,对整机的稳定有明显的优越性,所以中国目前生产的液压汽车起重机多采用h型支腿。 按传动装置的传动方式分:机械传动、电传动、液压传动三类。 按起重装置在水平面可回转范围(即转台的回转范围)分:全回转式汽车起重机(转台可任意旋转360°)和非全回转汽车起重机(转台回转角小于270°)。

按吊臂的结构形式分:折迭式吊臂、伸缩式吊臂和桁架式吊臂汽车起重机。 汽车起重机的基本构造 汽车起重机主要由起升、变幅、回转、起重臂和汽车底盘组成。由于液压技术,电子工业,高强度钢材和汽车工业的发展,促进了汽车起重机的发展。自重大,工作准备时间长的机械传动式汽车起重机已被液压式汽车起重机所代替。 液压汽车起重机的液压系统采用液压泵、定量或变量马达实现起重机起升回转、变幅、起重臂伸缩及支腿伸缩并可单独或组合动作。马达采用过热保护,并有防止错误操作的安全装置。大吨位的液压汽车起重机选用多联齿轮泵,合流时还可实现上述各动作的加速。在液压系统中设有自动超负荷安全阀、缓冲阀及液压锁等,以防止起重机作业时过载或失速及油管突然破裂引起的意外事故发生。汽车起重机装有幅度指示器和高度限位器,防止超载或超伸距,卷筒和滑轮设有防钢丝绳跳槽的装置。 对于16t以下的起重机要求设置起重显示器,16t及16t以上的起重机设置力矩限制器,且有报警装置。液压汽车起重机的起重臂由多节臂段组成,可以根据对起升高度的不同要求设计。起重臂的伸缩方式一种是顺序伸缩,另一种是同步伸缩。大吨位的起重机为了提高起重能力大多数都采用同步伸缩。各臂段的伸缩由油压控制,伸缩自如。带副臂的起重机,在行驶状态时,副臂一般安置于主臂的侧方或下方。转台主要用来布置起升机构、回转机构、起重臂及变幅油缸的下支点和操纵装置。对于中、大吨位的起重机,有的还在转台上安置发动机。转台与底架之间用能承受垂直载荷、水平载荷及倾覆力矩的回转支承联接。为了防止在行驶时转台发生滑转,设有转台锁定装置。回转机构由定量马达驱动。 回转机构的输出齿轮与回转支承齿轮啮合。实现起重机转台沿回转中心作360°回转。起重臂的变幅,由单只或双只液压油缸通过油液控制完成。起重机构由油液控制变量或定量马达通过减速机驱动卷筒。由于采用液力变矩器,起重机各机构的运动能无级变速,可使载荷在微动速度下由动力控制下降。为了防止过卷,设有钢丝绳三圈保护装置及报警装置。中、大吨位的汽车起重机可根据市场需要配置副起升机构,以供双钩作业。 本文章由:起重机限制器https://www.360docs.net/doc/bb5417630.html,编辑发表

汽车起重机总体及吊臂结构设计开题报告

长安大学毕业设计(设计)开题报告表 课题名称汽车起重机总体及吊臂结构设计 课题来源自选项目课题类型工程设计指导教师温素英 机械设计制造及学生姓名郑冰学号2504080530 专业 其自动化

一、选题的意义 此次以汽车起重机的吊臂机构为设计重点,以及电动机、联轴器、缓冲器、制动器的选用,零件的校核计算及结构设计,使起重设备运行平稳,定位准确,安全可靠,技术性能先进。其主要目的是汽车起重机的结构和工作原理,掌握汽车起重机的设计方法,通过学习起重机的设计方法和步骤,提高学生分析问题和解决问题的能力,将自己所学的理论知识应用到实际工作生产中,培养实际动手能力。同时让我们了解制造业的发展,为以后工作做准备。另外这对我们顺利完成从学校到社会的过渡将会起到很大的作用。 二、汽车起重机在国内外的研究现状和发展趋势 2.1国内起重机的发展状况及趋势 在中国移动起重机领域,汽车起重机占据了80%以上的市场份额。从2000年到2009年,中国汽车起重机市场年增长率已经超过20%;2008年更是历史性地突破了2万台的销售成绩;这使得2009年中国汽车起重机引发大规模投资风潮,中国汽车起重机不但抵抗了金融危机负面影响,而且在销售以及市场份额中取得实质性增长。 依托强大的需求,中国是世界上最大的起重机生产和消费国家;徐工成为世界上最大的起重机制造商,在中国起重机市场,徐工的市场份额已接近60%;在国际市场上,它拥有超过30%的市场份额。中联重科则是另一个领先的起重机企业,受益于庞大的(中国)国内市场,它在全球起重机企业中排名前七。 当前中国新一代汽车起重机产品,起重作业的操作方式,大面积应用先导比例控制,具有良好的微调性能和精控性能,操作力小,不易疲劳。通过先导比例手柄实现比例输送多种负荷的无级调速,有效防止起重作业时的二次下滑现象,极大的提高了起重作业的安全性、可靠性和作业效率。

液压汽车起重机工况核算计算书

液压汽车起重机工况核算计算书计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 一、基本参数 起重机种类液压汽车起重机起重机型号QY-50 起重臂顶端至吊钩底面最小距离h1(m) 2.5 起重臂宽度d(m) 1.2 起重臂铰链中心至地面距离h b(m) 3 起重机外轮廓线至起重机回转中心距 离b2(m) 2.8 起重臂铰链中心至起重机回转中心距离b3(m) 2 吊钩底面至吊装构件顶部距离h 2(m) 1 吊装构件顶部至地面距离h3(m) 5 吊装构件中心至起重机外轮廓线最小 距离b1(m) 2 吊装构件直径S(m) 6.2 吊装构件与起重臂的间隙f(m) 0.4 幅度R(m) 6 二、计算示意图

参数示意图

起重臂坐标示意图 三、起重机核算 建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中心的竖直线为Y轴, A点坐标: x A=R+b3=6+2=8m y A=0m B点坐标: x B=S/2=6.2/2=3.1m y B=h3-h b=5-3=2m C点坐标: x C=0m

y C=h1+h2+h3-h b=2.5+1+5-3=5.5m 直线AC的倾角: α1=arctg(y C/x A)= arctg(5.5/8)=34.509° 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角:α2=arctg(y B/(x A-x B))+arcsin((f+d/2)/ (y B2+(x A-x B)2)0.5)=arctg(2/(8-3.1))+arcsin((0.4+1.2/2)/(22+(8-3.1)2)0.5)=33.095°起重臂仰角:α=α1=34.509° 最小臂长:L= x A/cosα=9.708 m 幅度:R=6m

汽车起重机吊臂结构与伸缩原理

汽车起重机吊臂结构与伸缩原理 发布日期:2012-05-03 来源:网络我要评论(0) 核心提示:汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 一、汽车起重机的吊臂结构 汽车起重机的吊臂一般包括主臂和副臂两部分。汽车起重机主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。 汽车起重机副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 二、汽车起重机的吊臂伸缩原理 (一)汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构--伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构--伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构--各节臂能独立进行伸缩的机构。 4、组合伸缩机构--当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 (二)汽车起重机按伸缩机构的技术分,可以分为无销全液压伸缩机构和自动插销式伸缩机构。

小型汽车吊上楼面验算计算书

小型汽车吊上楼面验算计算书 专业:结构 总设计师(项目负责人):__ _ 审核: ____ ____ _ 校对: ____ __ _ ____ 设计计算人: ____ _________ _ ***********所有限公司 2018年1月

汽车吊上楼面施工作业存在两种工况:工况一为汽车吊在楼面上行走的工况,工况二为汽车吊吊装作业时的工况。 一、楼面行走工况 1、设计荷载 根据原结构设计模型,四层楼面设计恒荷载9kN/m2,楼面设计活荷载 8kN/m2,四层楼面楼板厚度120mm,楼板自重恒荷载3kN/m2。因此,汽车吊楼面行走工况下,等效均布荷载不超过(9-3)+8=14kN/m2为宜。汽车吊行走区域如下图所示。 图1汽车吊行走区域布置图 2、吊车荷载及尺寸 质量参数行驶状态自重(总质量)kN 150 前轴荷kN 66 后轴荷kN 84 尺寸参数支腿纵向距离m 支腿横向距离m 3、汽车吊行驶相关参数 15吨小型汽车吊基本尺寸、轮宽及其行驶过程中各轮位置对楼板产生的荷

载如下图所示: 图2汽车荷载参数 4、承载力校核 15吨汽车吊行走时,后两轮居于板跨中为最不利工况,如下图: 图 3 汽车楼面行走计算简图 基本资料 工程名称:局部承压计算 周边支承的双向板,按上下和左右支承单向板的绝对最大弯矩等值, 板的跨度Lx =3250mm,Ly =8000mm,板的厚度h =120mm 局部荷载 第一局部荷载 局部集中荷载N =42kN,荷载作用面的宽度btx =200mm,荷载作用面的宽度bty =600mm; 垫层厚度s =0mm 荷载作用面中心至板左边的距离x =1625mm,最左端至板左边的距离

汽车起重机构造二汇总

三、油泵驱动传动轴取力器的输出轴,经传动轴带动油泵。传动轴的结构见图2-12。 图2-10油门液压总泵 1.泵体 2.活塞总成2-1.活塞2-2.O型圈2- 3.皮碗2- 4.阀杆2- 5.阀门皮碗2- 6.阀门簧2- 7.套管10.回位簧11.限位螺杆12、13、20.佃14.卡簧15.推杆总成15-1.推杆15-2.止动圈1 8.防尘套1 9.管接头21.放气塞 图2-11油门工作缸 1.油缸2.活塞3.皮碗4.弹簧5.卡簧6.护尘套7.排气阀 图2-12油泵驱动轴 1.传动轴总成 2.凸缘 3.垫 4.接盘5、6、7、8.螺栓9、10、11.弹簧垫12、13、14.螺母

传动轴的主要构件由传动轴总成1、凸缘2、接盘4和螺栓等组成。取力器输出轴的凸缘经接盘4而联结传动轴前端,凸缘2联结传动轴后端及液压泵。 第三节支腿机构 为了增加汽车起重机的稳定性,减轻轮胎负担,吊装作业时,将液压支腿伸出,把车辆支承于平整、坚固的地面上,加大承载面跨矩。作业完毕,将支腿收回,车辆便可行驶。一、液压支腿的布置形式 支腿的布置形式大多数采用“H"型支腿,少数小吨位车采用蛙式支腿等。 1、蛙式支腿 主要构件有驱动支腿旋转的液压缸,防止支腿自行下沉的液压锁,支腿安装底架以及防止支腿自行落下的机械安全销(见图3-1)。 图3-1蛙型支腿 1.底架2.支腿座3.安全插销4.液压缸5.旋转支腿6.液压锁7.支座四支蛙式支腿分别布置在下车中后部的四个角落。操作支腿控制杆,液压缸的活塞杆伸出,使支腿旋转落地,将车辆架起。液压缸活塞杆缩回,使支腿旋转向上,后轮胎落地,便可移动车辆。四支支腿可分别操作,以便将车辆支平。架起车辆后,插上安全销。支腿伸出后,液压锁将液压油封闭在支腿油缸中,防止支腿油路因泄漏而造成“软腿”,同时,一旦油管损坏,支腿仍能可靠支承。支腿收起后,插上安全销,进一步起到保险作用,否则,车辆行驶中某一支腿自行落下,就会触击地面,造成支腿损坏或行车事故。蛙式支腿结构简单、制造容易,但支承面小,仅适用于小吨位汽车起重机采用。 2、H型支腿 所谓H型支腿,是支腿伸出后与车身呈H形,广泛应用在中等吨位以上的车辆,其支承跨度大,具有很高的起重稳定性。 在下车车架中后部,分别固定着前后支腿箱(见图3-2)。每个支腿箱中又各有两支支腿伸缩梁,支腿伸缩梁在支腿箱中可以左右滑动。支腿伸缩梁由水平液压缸驱动,油缸体端用螺栓21和压盖6固定在支腿箱的支承架上,水平油缸活塞杆端安装耳轴5,并用压盖14、螺栓18固定在支腿伸缩梁上。水平油缸的伸缩便可驱动支腿伸缩梁在支腿箱中左右移动。

吊车计算书

鼎轩钢结构工程南通有限公司 吊装计

—一:起重机的选型 1:起重力 起重机的起重力C W Q1+Q2 Q—构件的重量,本工程柱子分两级吊装,下柱重量为30吨,上柱 7.5 吨。 Q2帮扎索具的重量。取2吨 Q=32+2=34屯 2:起重高度 起重机的起重高度为H三h i+h2+h3+h4 式中h i---安装支座表面高度(M),柱子吊装不考虑该内容. H 2---安装间隙,视具体情况定,一般取0.3 —0.5米 H 3帮扎点至构件吊起后地面距离(M); H 4吊索高度(m),自帮扎点至吊钩面的距离,视实际帮扎情况定. 下柱长30.3米.上柱长9.1米 上柱:H=0.3+30.3+3=33.6 米,下柱:H=0.5+30.3+9.1+3=43.9 米3:回转半径 R=b+Lcon a b—起重臂杆支点中心至起重机回转轴中心的距离. L; a分别为所选择起重机的臂杆长度和起重机的仰角 R=16.32米,主臂长选用54.8米 根据求出的Q;H;R查吊机性能表,采用150吨履带吊,其性能能满足吊

装上下柱的要求,在回转半径16米,主臂长54.8米时可吊装35吨二:履带式起重机稳定性计算 1:起重机不接长稳定性计算 履带式起重机采用不原起重臂杆稳定性的最不利情况为车身与履带 成90度,要使履带中心点的稳定力矩Mr大于倾覆力矩Mou,并按下列条件核算. 当考虑吊装荷载以及所有附加荷载时: K1= Mr/Mou= 〔GL1+GL2+GLHG h+Gh2+Gh0+Gh3)sin [3 -G s L s+M+Mg+M〕/(Q+q)(R-L2) > 1.15 只考虑吊装荷载,不考虑附加荷载时: K 2=Mr/Mou=(GL1+GL2+GL o-G3L3)/(Q+q)(R-L 2) > 1.4 式中:G1 -起重机机身可转动部分的重力,取451KN G 2---起重机机身不转动部分的重力,取357KN G 0—平衡重的重力,取280KN G 3---起重臂重力,取85.1KN Q---- 吊装荷载(包括构件重力和索具重力) q---- 起重滑车组的重力 L1—G重心至履带中心点的距离 L2—G重心心至履带中心点的距离 L3—G重心到履带中心点的距离 L0—G重心到履带中心点的距离 H—G重心到地面的距离 2.33 米

汽车吊车计算书稿.doc

庆鼎精密电子(淮安)有限公司 吊 装 计 算 书

现场预备吊装构建重量计算图表如下: GJ-01、GJ-02均由五榀钢梁连接成一整体:重量分别L1:、L2:、L3:、L4:、L5: 现场钢梁在地面组拼进行3+2 吊装法:L1+L2+= 、L3=、L4+L5=分三组进行吊装。

GJ吊车自F轴向A轴吊装,100吨汽车吊性能表如下所示: 可以看出100吨汽车吊在主臂,作业半径为9m时候可以吊装吨,满足吊装工况要求。 液压汽车起重机工况核算计算书计算依据:

1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 一、基本参数 起重机种类液压汽车起重起重机型号AC100 机 起重臂顶端至吊钩底面最小距 2 起重臂宽度d(m) 1 离h1(m) 起重臂铰链中心至地面距离h b( 起重机外轮廓线至起重机回转m) 中心距离b2(m) 起重臂铰链中心至起重机回转 吊钩底面至吊装构件顶部距离 中心距离b3(m) h2(m) 吊装构件顶部至地面距离h3(m 吊装构件中心至起重机外轮廓 2 ) 线最小距离b1(m) 吊装构件直径S(m) 2 吊装构件与起重臂的间隙f(m) 1 幅度R(m) 9 二、计算示意图

三、起重机核算

建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中心的竖直线为Y轴, A点坐标: x A=R+b3=9+= y A=0m B点坐标: x B=S/2=2/2=1m y B=h3-h b= C点坐标: x C=0m y C=h1+h2+h3-h b=2++ 直线AC的倾角: α1=arctg(y C/x A)= arctg= ° 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角:α2=arctg(y B/(x A-x B))+arcsin((f+d/2)/ (y B 2+(x A-x B)2)=arctg)+arcsin((1+1/2)/+2)= ° 起重臂仰角:α=α1=° 最小臂长:L= x A /cosα= m 幅度:R=9m

MQ3235门座式起重机总体计算书

MQ3235门座式起重机总体计算书 1计条件与工作状况 1.1设计风速 工作时: 20/ m s 非工作时:50/ m s 1.2温度 最高温度500C,最低温度00C。 1.3湿度 相对湿度 100% 1.4工作条件 每天三班四倒工作制(每班7小时),每年工作天数300~320天,门机使用寿命20年。 1.5门机工作级别: 利用等级 U8 载荷状态 Q3 工作级别 A8 1.6机构工作级别 表1 机构工作级别 1.7其它 有雾气和湿热海洋性气候侵蚀。 起重机承受最大地震烈度为7度。 2设计参数

3.1采用图解法确定臂架各部分的尺寸和大拉杆下铰点位置 图1 初步确定的臂架尺寸和大拉杆下铰点位置

图2臂架尺寸和大拉杆下铰点位置 表3 臂架各部分尺寸 图3 物品的水平位移 ①吊重全幅度水平落差应满足:

max max min 4370.02()0.02(3510)0.5y h R R m ?==???=?(不满足要求) ③象鼻梁端点水平速度应满足: 1 02 cos cos A r v v L r βωβ==平 0ω—臂架摆动角速度 max min 2.095 2.852 2.60.735 v v ==>平平(不满足) 3.2臂架系统自重平衡和合成力矩(初步估算,选配重29t ) 表5 不平衡力矩 表6 最大和最小不平衡力矩

检验不平衡力矩: M ?—臂架系统自重的不平衡力矩 Q M —吊重不平衡力矩 ① 最大幅度时 0M ?< 且 0 0Q M M ?+<(满足) 最小幅度时 0M ?> 且 0 0Q M M ?+>(满足) ② max 3203511200Q M QR kNm ==?= max 1266.060.10.1112001120Q M kNm M kNm ?=>=?=(不满足) 4稳定性验算 4.1.起重机各部分重心 4.2.载重稳定性验算 4.2.1.第一种计算工况 计算位置取起重机臂架垂直于运行轨道方向(因为轨距小于基距)、倾覆棱

起重机设计计算书

起重机设计计算书

————————————————————————————————作者:————————————————————————————————日期: ?

桁架式双梁门式起重机 设计计算书 设计: 审核:

第一章 型式及主要技术参数 一、型式及构造特点 ME型桁架式双梁门式起重机,主要适用于大型料场、铁路货站、港口码头等装卸、搬运;还可以配以多种吊具进行各种特殊作业。 正常使用的工作环境温度为-25℃~+40℃范围内。安装使用地点的海拔高度不得超过2000m,超过1000m时,应对电动机容量进行校核。 整机主要由门架、小车、大车运行机构及电气控制设备四大部分组成:门架采用桁架结构,具有自重轻、用料省、刚度大、迎风面积小等特点。本机小车有两个吊钩,分为主、副钩,小车副钩可在额定负荷范围内,协同主钩进行工作(但决不允许两钩同时提放两个重物),物体的重量不得超过主钩的额定起重量。 二、主要技术参数和结构简图 主要技术参数 工作级别:A5、操纵方式:地操、单边悬臂长:9.1m 起重量:主钩75t 副钩20t 跨度:27 m 起升高度:11/13m 主钩起升速度:3.7m/min 副钩起升速度:6m/min (1)

小车运行速度:27m/min 大车运行速度:34.1m/min 小车轮距:2800mm小车车轮:4-φ500 小车轨距:3600mm 小车轨道:P43 大车轮距:10600mm 大车车轮:8-φ700 大车轨距:27000mm大车轨道:QU80 起重机总重:117067kg 其中:小车运行机构:22080kg 大车运行机构:12780kg 电气设备(含电缆卷筒)等:4120kg 门架金属结构部件重量: 主梁:2x24751=49502kg 支腿(Ⅰ):2x2835.3=5670.3kg 支腿(Ⅱ):2x2245=4490kg 联系梁:2x992.4=1984.8kg 马鞍梁: 2962.6kg 下横梁:2x4871=9742kg 电缆滑车架: 1332kg 梯子、平台、栏杆等:1720kg 电缆拖车自重:1320㎏ (2)

3t起重机计算书

3t起重机设计计算书 1.计算依据: 1.1依据起重机设计规范GB3811-2008, 依据《电动葫芦门式起重机技术条件》 JB/T5663-2008设计。 1.2主要技术参数 主结构:桁架结构 支腿结构:桁架结构 额定起重量:3t 实验负荷静载起重量:3.75t 实验负荷动载荷起重量:3t 吊钩起升速度:7m/min 吊钩行走速度:20m/min 吊钩有效起升高度:24m,4m(桥上)+20m(桥下) 大车行走速度:0-60m/min 大车设计轮压:8t以下 供电方式:自带发电机(低噪音环保型) 工作电源:380v/5Hz 工作状态风压:≤6级(即:250N/m2) 非工作状态风压:≤11级(即:800N/m2) 龙门吊工作级别:A3 起升机构工作级别:M3 大车走行机构工作级别:M4 跨度:9.65m 悬臂:两侧有效悬臂各4米 适应坡度:±2% 走行方式:轮胎式 2.计算说明: 载荷组合计算 2.1载荷计算 2.1.1结构自重载荷 龙门吊大车结构自重约12000kg. 2.1.2起升载荷P Q =30kN 起升冲击系数φ 1 因为0.9≤φ 1≤1.1,取φ 1 =1.05 轮胎式起重机运行冲击系数φ 4 φ 4 =1.3 2.1.5起升载荷动载系数φ 2 φ 2 =1+0.71*V=1+0.71*0.117=1.08 式中:V----起升速度,V=7m/min=0.117m/s 2.1.6运行加速度α 按行程很长的低速与中速的起重设备,根据葫芦的运行速度V=20m/min=0.33m/s,加减速时间按 4.5s考虑。α =0.07m/s2 大车运行速度V=60m/min=1m/s,加减速时间按4.5s考虑,a=0.22m/s2.

汽车起重机吊臂结构与伸缩原理

汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 一、汽车起重机的吊臂结构 汽车起重机的吊臂一般包括主臂和副臂两部分。汽车起重机主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。汽车起重机副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 二、汽车起重机的吊臂伸缩原理 (一)汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构--伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构--伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构--各节臂能独立进行伸缩的机构。 4、组合伸缩机构--当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 (二)汽车起重机按伸缩机构的技术分,可以分为无销全液压伸缩机构和自动插销式伸缩机构。 1、无销全液压伸缩机构的优点是臂长变化容易,工作臂长种类多,实用性很强。缺点是自重大,对整机稳定性的影响较大。 无销全液压伸缩机构有不同的组合形式,可以是多液压缸加一级绳排,可以是单液压缸或多液压缸加两级绳排。 多液压缸加一级绳排的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用油缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。

汽车起重机构造二

汽车起重机构造二

————————————————————————————————作者:————————————————————————————————日期: ?

三、油泵驱动传动轴取力器的输出轴,经传动轴带动油泵。传动轴的结构见图2-12。 图2-10油门液压总泵 1.泵体 2.活塞总成2-1.活塞2-2.O型圈2- 3.皮碗2- 4.阀杆2- 5.阀门皮碗2-6.阀门簧2-7.套管10.回位簧11.限位螺杆12、13、20.佃14.卡簧15.推杆总成15-1.推杆15-2.止动圈18.防尘套19.管接头21.放气塞 图2-11油门工作缸 1.油缸2.活塞3.皮碗4.弹簧5.卡簧6.护尘套7.排气阀 图2-12油泵驱动轴

1.传动轴总成 2.凸缘3.垫4.接盘5、6、7、8.螺栓9、10、11.弹簧垫12、13、14.螺母 传动轴的主要构件由传动轴总成1、凸缘2、接盘4和螺栓等组成。取力器输出轴的凸缘经接盘4而联结传动轴前端,凸缘2联结传动轴后端及液压泵。 第三节支腿机构 为了增加汽车起重机的稳定性,减轻轮胎负担,吊装作业时,将液压支腿伸出,把车辆支承于平整、坚固的地面上,加大承载面跨矩。作业完毕,将支腿收回,车辆便可行驶。一、液压支腿的布置形式 支腿的布置形式大多数采用“H"型支腿,少数小吨位车采用蛙式支腿等。 1、蛙式支腿 主要构件有驱动支腿旋转的液压缸,防止支腿自行下沉的液压锁,支腿安装底架以及防止支腿自行落下的机械安全销(见图3-1)。 图3-1蛙型支腿 1.底架2.支腿座3.安全插销4.液压缸5.旋转支腿6.液压锁7.支座 四支蛙式支腿分别布置在下车中后部的四个角落。操作支腿控制杆,液压缸的活塞杆伸出,使支腿旋转落地,将车辆架起。液压缸活塞杆缩回,使支腿旋转向上,后轮胎落地,便可移动车辆。四支支腿可分别操作,以便将车辆支平。架起车辆后,插上安全销。支腿伸出后,液压锁将液压油封闭在支腿油缸中,防止支腿油路因泄漏而造成“软腿”,同时,一旦油管损坏,支腿仍能可靠支承。支腿收起后,插上安全销,进一步起到保险作用,否则,车辆行驶中某一支腿自行落下,就会触击地面,造成支腿损坏或行车事故。蛙式支腿结构简单、制造容易,但支承面小,仅适用于小吨位汽车起重机采用。 2、H型支腿 所谓H型支腿,是支腿伸出后与车身呈H形,广泛应用在中等吨位以上的车辆,其支承跨度大,具有很高的起重稳定性。 在下车车架中后部,分别固定着前后支腿箱(见图3-2)。每个支腿箱中又各有两支支腿伸缩梁,支腿伸缩梁在支腿箱中可以左右滑动。支腿伸缩梁由水平液压缸驱动,油缸体端用螺栓21和压盖6固定在支腿箱的支承架上,水平油缸活塞杆端安装耳轴5,并用压盖14、螺栓18

汽车吊桥面吊装计算书

目录 1 工程概况 (1) 2 荷载分析 (4) 3 模型建立 (6) 4计算结果 (7) 5 结论 (12)

1 工程概况 襄河大桥钢箱梁架设采用支架法施工:架设时从3#墩开始,先原位支架法架设B/A8/A7/A6/A5节段,然后利用拖拉轨道依次拖拉C/A’/A1/A2/A3节段至设计位置,拖拉完毕之后,在A4节段进行合龙。桥面架设时采用一台200t汽车吊在3#墩周围地面作为提梁设备,桥面设置一台人力简易运梁车作为运梁设备。钢梁焊接完毕之后方可上车承受荷载。每架设完成一个横断面钢箱梁,对桥中线、标高、节间平面对角线差及构件应力等进行测量,若有偏差,及时通过柱顶抄垫箱和千斤顶进行调整。具体施工步骤如下: 步骤一: (1)采用履带式打桩机施工岸上桩基,采用80t履带吊在浮船上进行河道内桩基施工; (2)采用25t汽车吊进行岸上支架安装,采用80t履带吊在浮船上进行河道内支架安装。 图1.1 步骤图(一) 步骤二: (1)清理场地,采用200t汽车吊在3#墩侧地面拼装B和A8节段钢箱梁; (2)吊装时,吊车支腿需铺设一定厚度的路基箱;梁块横向从中间向两边对称拼装。

图1.2 步骤图(二) 步骤三: (1)B和A8段线型调整完毕并焊接完成后,采用350t汽车吊将130t汽车吊吊装至桥面作业; (2)采用200t汽车吊在3#墩侧提梁,130t汽车吊在桥面拼装A7节段钢箱梁; (3)吊装时,吊车支腿需按指定位置站位,并在支腿下铺设一定厚度的路基箱。 图1.3 步骤图(三) 步骤四: (1)采用200t汽车吊在西大堤墩侧提梁,运梁小车在桥面运梁,130t汽车吊按照指定路线前移,进行A6~A5节段钢箱梁的吊装; (2)每个断面梁段线型调整完毕并焊接完成后方可进入吊车进行作业。

起重机设计计算书

桁架式双梁门式起重机设计计算书 设计: 审核:

第一章 型式及主要技术参数 一、型式及构造特点 ME型桁架式双梁门式起重机,主要适用于大型料场、铁路货站、港口码头等装卸、搬运;还可以配以多种吊具进行各种特殊作业。 正常使用的工作环境温度为-25℃~+40℃范围内。安装使用地点的海拔高度不得超过2000m,超过1000m时,应对电动机容量进行校核。 整机主要由门架、小车、大车运行机构及电气控制设备四大部分组成:门架采用桁架结构,具有自重轻、用料省、刚度大、迎风面积小等特点。本机小车有两个吊钩,分为主、副钩,小车副钩可在额定负荷范围内,协同主钩进行工作(但决不允许两钩同时提放两个重物),物体的重量不得超过主钩的额定起重量。 二、主要技术参数和结构简图 主要技术参数 工作级别:A5、操纵方式:地操、单边悬臂长:9.1m 起重量:主钩75t 副钩20t 跨度:27 m 起升高度:11/13m 主钩起升速度:3.7m/min 副钩起升速度:6m/min (1)

小车运行速度:27m/min 大车运行速度:34.1m/min 小车轮距:2800mm 小车车轮:4-φ500 小车轨距:3600mm 小车轨道:P43 大车轮距:10600mm 大车车轮:8-φ700 大车轨距:27000mm 大车轨道:QU80 起重机总重:117067kg 其中:小车运行机构:22080kg 大车运行机构:12780kg 电气设备(含电缆卷筒)等:4120kg 门架金属结构部件重量: 主梁:2x24751=49502kg 支腿(Ⅰ):2x2835.3=5670.3kg 支腿(Ⅱ):2x2245=4490kg 联系梁:2x992.4=1984.8kg 马鞍梁:2962.6kg 下横梁:2x4871=9742kg 电缆滑车架:1332kg 梯子、平台、栏杆等:1720kg 电缆拖车自重:1320㎏ (2)

钢结构吊装计算书

整备所钢结构吊装计算书 1、 起重机类型的选用 根据本工程单层厂房钢结构结构的跨度、高度、构件重量和吊装工程量、施工现场的条件等因素综合考虑 本工程采用起重机采用汽车式起重机。 2、 起重机型号的选用 本工程钢结构的连接形式为扭剪型高强螺栓连接,采用现场组装。主梁最大跨度约21米,组对后最大重量未超出2.5吨,选用QY25A 型(徐州)汽车起重机,查建筑施工手册得知:QY25A 型(徐州)汽车起重机在支腿全伸、侧向和后向作业,主臂长25米时,工作幅度可达10米,起重量可达6.4吨,起升高度可达14.34米。故该设备可满足吊装要求。具体分析如下: 最大构件(主梁)吊装验算: 主钢梁采用三点法吊装,吊点用卸扣锁住,并用切口钢管包扎;钢柱吊装采用单式吊点旋转回直法吊装。 吊装验算如下: 吊机的选用:吊机选用QY25A 型(徐州)汽车起重机 最大作业半径:R=10m 额定起重量 :G=6.4T 吊装载荷 Q 1 组装钢梁重:Q=2.2T 不均匀系数:K 1=1.1 动载系数:K 2=1.05 风载系数:K 3=1.3 计算载荷:Q 计 =Q K 1 K 2 =2.2×1.1×1.05=2.54T 吊钩重:q 1=0.3T 吊索具重:q 2=0.3T 吊装载荷:Q 1= Q 计+q 1 + q 2 =2.54+0.3+0.3=3.14T 结论:6.4T >3.14T 故安全 计算起重机的最小臂长: 数解法: l=l 1+l 2=sin cos h a g αα ++

=009.581 5.851sin 47.1cos 47.1 -++ =22.4m 其中α=3arctan 3arctan 0 式中:h-----起重臂下绞至吊装构件支座顶面的高度,m,h=h 1-E ; h 1-----支座高度,m (从停机面算起); a------起重钩需跨过已安装好的构件的水平距离,m ; g------起重臂轴线与已安装好构件间的水平距离,至少取1m ; H------起重高度,m ; d------吊钩中心至滑轮中心的最小距离,视起重机型号而定,一般为2.5~3.5m ; α-----起重臂的仰角 图解法:h=h 1+h 2-h 3=9.6+0.2-1=8.8m a=5.85m 查表得l=22.5m 该汽车起重机的主臂长为25m,满足要求。 3、钢丝绳的选用 钢丝绳允许拉力计算: [Fg]=a*Fg/K 式中: [Fg]——钢丝绳允许拉力(KN ) Fg ——钢丝绳破断拉力总和(KN ) a ——换算系数 K ——钢丝绳安全系数 试用一根直径21.5、公称抗拉强度1700n/mm 2的6*37钢丝绳作捆绑吊索 查表得: Fg=296KN a=0.82 K=10 [Fg]=a*Fg/K=0.82*296/10=24.28KN 钢梁吊装如下:

相关文档
最新文档