高中数学苏教版必修4课件:第二章 平面向量 2.4.2

合集下载

高中数学 第二章 平面向量 2.4 向量的数量积(2)课时训

高中数学 第二章 平面向量 2.4 向量的数量积(2)课时训

§2.4 向量的数量积(二)课时目标1.掌握数量积的坐标表示, 会进行平面向量数量积的坐标运算.2.能运用数量积的坐标表示求两个向量的夹角,会用数量积的坐标表示判断两个平面向量的垂直关系,会用数量的坐标表示求向量的模.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b =____________. 即两个向量的数量积等于它们________________________. 2.平面向量的模(1)向量模公式:设a =(x 1,y 1),则|a |=________. (2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=________________. 3.向量的夹角公式 设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=________________=________________________. 4.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔________________.一、填空题1.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |=________. 2.已知a =(3,3),b =(1,0),则(a -2b )·b =______.3.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=45,则b =________. 4.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=________. 5.若a =(2,3),b =(-4,7),则a 在b 方向上的投影为______. 6.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值为________. 7.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =________.8.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |=________. 9.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为________. 10.已知a =(-2,-1),b =(λ,1),若a 与b 的夹角α为钝角,则λ的取值范围为________.二、解答题11.已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .12.已知三个点A (2,1),B (3,2),D (-1,4), (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值.能力提升13.已知向量a =(1,1),b =(1,a ),其中a 为实数,O 为原点,当此两向量夹角在⎝ ⎛⎭⎪⎫0,π12变动时,a 的范围是________.14.若等边三角形ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题提供了完美的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.§2.4 向量的数量积(二)知识梳理1.x 1x 2+y 1y 2 对应坐标的乘积的和2.(1)x 21+y 21 (2)x 2-x 12+y 2-y 123.a·b |a||b | x 1x 2+y 1y 2x 21+y 21x 22+y 22 4.x 1x 2+y 1y 2=0作业设计 1.2解析 由(2a -b )·b =0,则2a ·b -|b |2=0,∴2(n 2-1)-(1+n 2)=0,n 2=3.∴|a |=1+n 2=2. 2.1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1. 3.(-4,8)解析 由题意可设b =λa =(λ,-2λ),λ<0,则|b |2=λ2+4λ2=5λ2=80,∴λ=-4, ∴b =-4a =(-4,8). 4.2 3解析 a =(2,0),|b |=1,∴|a |=2,a ·b =2×1×cos 60°=1.∴|a +2b |=a 2+4×a ·b +4b 2=2 3.5.655解析 设a 、b 的夹角为θ,则cos θ=2×-4+3×722+32-42+72=55, 故a 在b 方向上的投影为|a |cos θ=13×55=655.或直接根据a·b|b |计算a 在b 方向上的投影. 6.1665解析 ∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13,∴cos 〈a ,b 〉=165×13=1665.7.⎝ ⎛⎭⎪⎫-79,-73解析 设c =(x ,y ),由(c +a )∥b 有-3(x +1)-2(y +2)=0,① 由c ⊥(a +b )有3x -y =0,②联立①②有x =-79,y =-73,则c =(-79,-73).8.5解析 ∵|a +b |=52,∴|a +b |2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2, ∴|b |=5.9.-17解析 由a =(-3,2),b =(-1,0),知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0,∴3λ+1+4λ=0,∴λ=-17.10.⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) 解析 由题意cos α=a·b |a||b |=-2λ-15·λ2+1, ∵90°<α<180°,∴-1<cos α<0,∴-1<-2λ-15·λ2+1<0, ∴⎩⎨⎧-2λ-1<0,-2λ-1>-5λ2+5,即⎩⎪⎨⎪⎧ λ>-12,2λ+12<5λ2+5,即⎩⎪⎨⎪⎧λ>-12,λ≠2,∴λ的取值范围是⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).11.解 (1)设a =λb =(λ,2λ) (λ>0), 则有a·b =λ+4λ=10, ∴λ=2,∴a =(2,4).(2)∵b·c =1×2-2×1=0, a·b =10,∴a (b·c )=0a =0,(a·b )c =10×(2,-1)=(20,-10).12.(1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形, ∴AB →=DC →.设C 点坐标为(x ,y ),则AB →=(1,1), DC →=(x +1,y -4), ∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5. ∴C 点坐标为(0,5).由于AC →=(-2,4),BD →=(-4,2),所以AC →·BD →=8+8=16, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴解得矩形的两条对角线所成的锐角的余弦值为45.13.⎝⎛⎭⎪⎫33,1∪(1,3)解析 已知OA →=(1,1),即A (1,1)如图所示,当点B 位于B 1和B 2时,a 与b 夹角为π12,即∠AOB 1=∠AOB 2=π12,此时,∠B 1Ox =π4-π12=π6,∠B 2Ox =π4+π12=π3,故B 1⎝ ⎛⎭⎪⎫1,33,B 2(1,3),又a 与b 夹角不为零, 故a ≠1,由图易知a 的范围是⎝ ⎛⎭⎪⎫33,1∪(1,3). 14.-2解析 建立如图所示的直角坐标系,根据题设条件即可知A (0,3),B (-3,0),M (0,2), ∴MA →=(0,1), MB →=(-3,-2). ∴MA →·MB →=-2.。

高中数学苏教版必修4教案:第二章 平面向量 第9课时 2.4向量的数量积(2)

高中数学苏教版必修4教案:第二章 平面向量 第9课时 2.4向量的数量积(2)

第9课时 §2.4 向量的数量积(2)【教学目标】一、知识与技能(1)掌握平面向量数量积运算规律;(2)能利用数量积的5个重要性质及数量积运算规律解决有关问题;(3)掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法让学生充分经历,体验数量积的运算律以及解题的规律三、情感、态度与价值观通过师生互动,自主探究,交流与学习培养学生探求新知识以及合作交流【教学重点难点】平面向量数量积的定义及运算律的理解和平面向量数量积的应用【教学过程】一、复习:(1)两个非零向量夹角的概念;:(2)平面向量数量积(内积)的定义;(3)“投影”的概念;(4)向量的数量积的几何意义;(5)两个向量的数量积的性质。

二、新课讲解:1.交换律:a b b a ⋅=⋅证:设,a b 夹角为θ,则||||cos a b a b θ⋅=⋅⋅,||||cos b a b a θ⋅=⋅⋅∴a b b a ⋅=⋅.2.()()()a b a b a b λλλ⋅=⋅=⋅证:若0λ>,()||||cos a b a b λλθ⋅=,()||||cos a b a b λλθ⋅=, ()||||cos a b a b λλθ⋅=,若0λ<,()||||cos()||||(cos )||||cos a b a b a b a b λλπθλθλθ⋅=-=--=,()||||cos a b a b λλθ⋅=,()||||cos()||||(cos )||||cos a b a b a b a b λλπθλθλθ⋅=-=--=.3.()a b c a c b c +⋅=⋅+⋅.在平面内取一点O ,作OA a =, AB b =,OC c =,∵a b +(即)在c 方向上的投影等于,a b在c 方向上的投影和,即:12||cos ||cos ||cos a b a b θθθ+=+∴12||||cos ||||cos ||||cos c a b c a c b θθθ+=+,∴()c a b c a c b ⋅+=⋅+⋅ 即:()a b c a c b c +⋅=⋅+⋅. 三、例题分析:例1、已知、都是非零向量,且b 3+与b 57-垂直,b 4-与b 27-垂直,求与b 的夹角.例2、 求证:平行四边形两条对角线平方和等于四条边的平方和.θ2 a b B A B Cc例3、已知a ,b 是两个非零向量,且||==||||+,求与b a -的夹角例4、四边形A B C D 中, a =,b =,c =,d =,且a d d c cb b a ⋅=⋅=⋅=⋅,试问四边形ABCD 是什么图形?例5、如图,,,AD BE CF 是ABC ∆的三条高,求证:,,AD BE CF 相交于一点。

苏教版高中数学必修四课件平面向量在物理中应用.pptx

苏教版高中数学必修四课件平面向量在物理中应用.pptx

C A
B
例2。重为G的物体系在OA,OB两根等长 的轻绳上,轻绳的A端和B端挂在半圆形的 支架上,若固定A端的位置,将绳的B端沿 半圆支架从水平位置逐渐移至竖直的位置C 的过程中,OA绳和OB绳的拉力如何变化?
【思考】日常生活中,我们有时要用同样长
的两根绳子挂一个物体(如图).如果绳子的
最大拉力为F,物体受到的重力为G。你能否
用向量的知识分析绳子受到的拉力F1的大 小与两绳之间的夹角θ的关系?
1.当逐渐增大时,F1 的大小怎样变化,为什么? 2.为何值时,F1 最小,最小值是多少? 3.为何值时,F1 G?
小结:
用向量中的有关知识研究物理中的相关问题,步骤如下
1.问题的转化,即把物理问题转化为数学问题. 2.模型的建立,即建立以向量为主题的数学模型. 3.参数的获得,即求出数学模型的有关解------理论参数值. 4.问题的答案,即回到问题的初始状态,解释相关的物理现象.
作业:P125,第4题Leabharlann 分析:如图,已知vur
uur
v1
v2,
V
v1 10km / h, v2 2km / h,
r uur
v v2,求t.
解:由已知条件得 v v2 0
| vr | | v1 |2 | v2 |2 96(km / h),
所以 t d 0.5 60 3.1(min). | v | 96
空白演示
在此输入您的封面副标题
2.5.2向量在物理中的应用举例
江苏如东马塘中学轻水长天
例1。一条河的两岸平行,河宽d 500m,一艘
船从A出发航行到河的正对岸B处。航行的速度
ur
uur
v1 10km / h,水流的速度 v2 2km / h,

高中数学 第二章 平面向量 2.4 向量的数量积教案 苏教版必修4(2021年最新整理)

高中数学 第二章 平面向量 2.4 向量的数量积教案 苏教版必修4(2021年最新整理)

高中数学第二章平面向量2.4 向量的数量积教案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量2.4 向量的数量积教案苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量2.4 向量的数量积教案苏教版必修4的全部内容。

2.4 向量的数量积错误!教学分析课本从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的5个重要性质、运算律.向量的数量积把向量的长度和三角函数联系起来,这样为解决三角形的有关问题提供了方便,特别能有效地解决线段的垂直问题.因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功图1W=|F||s|cosθ.功W是一个数量,其中既涉及“长度”,也涉及“角”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义a·b=|a||b|cosθ。

这个定义不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简捷地表述几何中的许多结果.向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.平面向量的数量积,教材将其分为两部分,在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定的方法.本节课可采用“启发探索”式的教学方法,从教材内容看,由于前面已经学习了平面向量的线性运算的坐标表示,因此在教学中运用指导探究为教学的主线,通过启发引导学生运用科学的思维方法进行自主探索,将学生的独立思考、自主探究、交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体地位.三维目标1.通过经历探究过程,掌握平面向量的数量积及其几何意义;掌握平面向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,并掌握向量垂直的条件.2.通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.3.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法;掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.4.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的定义,平面向量数量积的坐标表示.教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用,平面向量坐标表示的应用.课时安排2课时错误!第1课时导入新课思路1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答地更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F 所做的功W可由下式计算:W=|F||s|cosθ.其中θ是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量).故从力所做的功出发,我们就顺其自然的引入向量数量积的概念.思路2.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除数不为零)运算,就自然地会想到,任意的两个向量是否可以进行乘法运算呢?如果能,其运算结果是什么呢?推进新课错误!1.平面向量数量积的概念,向量的夹角.2.数量积的重要性质及运算律.3.两向量垂直的条件.活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ(0≤θ≤π),其中θ是a与b的夹角.图2为两向量数量积的关系,并且可以知道向量夹角的范围是0°≤θ≤180°.图2教师在与学生的一起探究活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a·0=0;(3)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ〈错误!时cosθ>0,从而a·b〉0;当错误!〈θ≤π时,cosθ〈0,从而a·b<0.与学生共同探究并证明数量积的运算律.已知a,b,c和实数λ,则向量的数量积满足下列运算律:①a·b=b·a(交换律);②(λa)·b=λ(a·b)=a·(λb)(数乘结合律);③(a+b)·c=a·c+b·c(分配律).特别是:(1)当a≠0时,由a·b=0不能推出b一定是零向量.这是因为任一与a垂直的非零向量b,都有a·b=0.(2)已知实数a、b、c(b≠0),则ab=bc a=c,但对向量的数量积,该推理不正确,即a·b=b·c不能推出a=c.由图3很容易看出,虽然a·b=b·c,但a≠c。

高中数学必修4第二章:平面向量2.2平面向量的线性运算

高中数学必修4第二章:平面向量2.2平面向量的线性运算
知识回顾
向量的表示:AB或a
有向线段
向量
向量的大小 (长度、模)
向量的方向
单位向量 与零向量
相等向量与 平行向量 相反向量 (共线向量)
既有大小又有方向的量叫向量; 向量不能比较大小,但向量的模可以比较大小。
新课导入
大三通之前,由 于大陆和台湾没有直 航,因此要从台湾去 上海探亲,乘飞机要 先从台北到香港,再 从香港到上海,这两 次位移之和是什么?
解:(1)OA OC OB;
(2)BC FE AD;
E
D
FO
C
(3)OA FE 0.
A
B
(1)向量加法交换律: a b b a
D
a
C
b
b a+b
A
a
B
(2)向量加法结合律:
(a+b)+c a (b c)
D
c
C
D
c
C
(a + b) + c
a+b
a + (b + c) b
b+c b
B
B
A
a
-c.
通法提炼 两个向量的减法可以转化为向量的加法来进行.例如, 作a-b,可以先作-b,然后作a+-b即可,也可以直接 用向量减法的三角形法则,把两向量的起点重合,则差向 量就是连接两个向量的终点,指向被减向量的终点的向量.
如图,已知不共线的两个非零向量a,b,求作向量a- b,b-a,-a-b.
2(2008安徽)若 AB (2,4), AC (1, 3),
则BC ( B )
A.(1,1) C.(3,7)
B.(-1,-1) D.(-2,-4)

高一数学必修4课件:2-4-2平面向量数量积的坐标表示、模、夹角

高一数学必修4课件:2-4-2平面向量数量积的坐标表示、模、夹角

第二章 平面向量
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习 随堂应用练习 思路方法技巧 课后强化作业 名师辨误做答
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
课前自主预习
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
温故知新 1.若m,n满足:|m|=4,|n|=6,m与n的夹角为135° , 则m· n=________.
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
思路方法技巧
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
命题方向
数量积的坐标运算
平面向量数量积的坐标表示主要解决的问题. 向量的坐标表示和向量的坐标运算实现了向量运算的完 全代数化,并将数与形紧密结合起来. 主要解决以下三方面的问题: (1)求两点间的距离(求向量的模). (2)求两向量的夹角. (3)证明两向量垂直.
π 25,5,5 2, . 4
[答案]
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
新课引入
第二章
2.4 2.4.2
成才之路 ·数学 ·人教A版 · 必修4
向量的数量积的几何运算为我们展示了一幅美丽的画 卷,它解决了几何中与度量相关的角度,长度(距离)等问 题.通过前面的学习,我们知道向量可以用坐标表示,向量 的加法,减法,数乘运算也可以用坐标表示,那么任意两个 向量a=(x1,y1),b=(x2,y2),其数量积a· b又如何表示呢?你 能给出其推导过程吗?要解决好这几个问题,就让我们一起 进入平面向量数量积的坐标表示、模、夹角的学习吧!

高中数学必修4第二章第六节《平面向量数量积的坐标表示》


2b
2
2 2 x2 y2 , 3a b x1 x2 y1 y2 , 4a b x1 x2 y1 y2 0
其中假命题序号是:
(2)
4.若a 0,1, b 1,1且 a b a, 则实数的值是
A.-1 B.0 C.1 D.2


3、 cos
x1 x2 y1 y2 x1 y1
2 2
x2 y2
2
2
4、 a // b x1y2 x2 y1 0 5、 a b x1 x2 y1 y2 0
6、已知:A(x1,x2),B(x1,x2)则
AB ( x2 x1 ) 2 ( y2 y1 ) 2 ,
学习目标:
1、理解掌握平面向量数量积的坐标表示、 向量的 夹角、模的 公式. 2、掌握两个向量垂直的坐标表示 3、能初步运用向量数量积的坐标表示 解决处理有关长度、垂直及夹角 的几 个问题.
基础训练题
1.有四个式子: 10 a 0, 20 a 0, 3a b a c b c,
a // b x1y2 x2 y1 0
a b x1 x2 y1 y2 0
例3:已知向量a=(-2,-1),b=(λ,1)若a与b 的夹角为钝角,则λ取值范围是多少? 解:由题意可知: -1< cos
a b ab
<0
∴λ∈(—
1 ,2)∪(2,+∞) 2
例4:已知A(1, 2),B(2,3),C(-2,5)试判 定△ABC的形状,并给出证明。
cos
x1 x2 y1 y2 x1 y1
2 2
x2 y2
2
2
例2:设a=(2,1),b=(1,3),求a· b及a 与b的夹角

数学:2.4.2《平面向量数量积的坐标表示、模、夹角》PPT课件(新人教A版必修4)


4、两向量夹角公式的坐标运算
设a与b 的夹角为(0 180 ),

则 cos
a b ab
设a x1 , y1 ), b ( x2 , y2 ), 且a与b夹角为, ( (0 180 )则 cos
2 1 2 1 2 2
x1 x2 y1 y2 x y x y
(1) a a a 或 a
2
a a;
(1)向量的模 设a ( x, y ), 则 a x y , 或 a
2 2 2 2 2
x y ;
(2)两点间的距离公式 则 AB (x1 x2 ) y1 y2 ) (
=(x1,y1), b =(x2,y2),则
故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2、向量的模和两点间的距离公式
设两个非零向量
a
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
例3 (1)已知 a =(4,3),向量 b 是 垂直于 a 的单位向量,求 b .
(2)已知 a 10 , b (1,2),且a // b,求a的坐标.
3 (3)已知a (3,0), b (k ,5),且a与b的夹角为 , 4 求k的值.

高中数学第二章平面向量2.3.2平面向量的坐标运算(1)课件苏教版必修4

答案
知识点三 思考 1
平面向量的坐标运算
设i、j 是与x轴、y轴同向的两个单位向量,若设a =(x1 ,y1) ,b
=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,向 量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
答 a+b=(x1+x2)i+(y1+y2)j,
第2章 §2.3 向量的坐标表示
2.3.2 平面向量的坐标运算(一)
学习目标
1.了解平面向量的正交分解,掌握向量的坐标表示. 2.掌握两个向量和、差及数乘向量的坐标运算法则. 3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.
问题导学
题型探究
达标检测
问题导学
知识点一 平面向量的正交分解
则(-1,2)=λ1(1,2)+λ2(-2,3)=(λ1-2λ2,2λ1+3λ2),
λ =1, 1 7 -1=λ1-2λ2, ∴ 解得 4 2=2λ1+3λ2, λ= . 2 7
1 4 ∴a=7e1+7e2.
解析答案
1
2
3
4
5
→ 1→ 4.已知两点 M(3,2),N(-5,-5),MP=2MN,则点 P
返回
题型探究
类型一 求向量的坐标
例1 如图,在直角坐标系xOy中,OA
重点难点 个个击破
= 4 , AB = 3 , ∠AOx = 45°, ∠OAB → → =105°, OA =a, AB =b.四边形 OABC为平行四边形. (1)求向量a,b的坐标;
解析答案
→ (2)求向量BA的坐标;

解析 因为点 P 在 MN 的延长线上,|MP|=2|PN|,
→ → 又MN=(0,5)-(2,-1)=(-2,6),所以MP=(-4,12),

高中数学《平面向量基本定理》课件


17
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
由于 a,b 为基底,所以113-m=m=1-12nn,,
所以A→E=25a+15 b.
解得mn==5435,,
18
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
[条件探究] 若将例 2 中的“A→N=12N→C”改为“A→N=14 N→C”,其他条件不变,试用 a,b 表示A→E.
解 由已知得A→N=15A→C=15b,A→M=12A→B=12a, ∵N,E,B 三点共线, ∴设A→E=mA→N+(1-m)A→B=m5 b+(1-m)a, 又∵C,E,M 三点共线,
19
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
∴设A→E=nA→M+(1-n)A→C=n2a+(1-n)b, ∴m5 b+(1-m)a=n2a+(1-n)b,∵a,b 不共线,
解析 ∵3e1+3e2=3(e1+e2), ∴两个向量共线,不能作为基底.
6
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
(2)(教材改编 P94 向量夹角的定义)在锐角三角形 ABC 中,关于向量夹角的说法正确的是( )
A.A→B与B→C的夹角是锐角 B.A→C与A→B的夹角是锐角 C.A→C与B→C的夹角是钝角 D.A→C与C→B的夹角是锐角
由平面向量基底的概念知,只有不共线的两个向量才能 构成一组基底,故①③满足题意.
13
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档