海南省琼中县九年级上册期末数学试卷(有答案)

合集下载

2022年海南省琼中学县数学九年级第一学期期末统考试题含解析

2022年海南省琼中学县数学九年级第一学期期末统考试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n 个好友转发,每个好友转发之后,又邀请n 个互不相同的好友转发,依次类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n 的值为( )A .9B .10C .11D .122.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,且DE 将△ABC 分成面积相等的两部分,那么DE BC 的值为( ) A .2﹣1 B .2+1C .1D .22 3.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =4.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球( ) A .12个 B .16个 C .20个 D .25个5.如果函数2y x =的图象与双曲线(0)k y k x =≠相交,则当0x < 时,该交点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.如图,ABC 与DEF 是位似图形,相似比为2:3,已知3AB =,则DE 的长( )A .72B .92C .83D .1638.已知34x y =,则x y y +=( ) A .47 B .74 C .37 D .739.已知关于x 的方程x 2+ax ﹣6=0的一个根是2,则a 的值是( )A .﹣1B .0C .1D .210.若a 是方程210x x +-=的一个根.则代数式3222019a a ++的值是( )A .2018B .2019C .2020D .2021 11.如图,AB 是O 的直径,弦CD AB ⊥于点E ,如果20AB =,16CD =,那么线段OE 的长为( )A .6B .8C .10D .1212.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A .①②③④B .④③②①C .④③①②D .②③④①二、填空题(每题4分,共24分)13.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.14.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.当y=﹣1时,n=_____.15.一次测试,包括甲同学在内的6名同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_____分.16.用配方法解方程x2﹣2x﹣6=0,原方程可化为_____.17.如图,直角三角形的直角顶点在坐标原点,若点A在反比例函数4yx=的图像上,点B在反比例函数kyx=的图像上,且23tan BAO∠=,则k=_______.18111______4.三、解答题(共78分)19.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有物品单价将降低0.5元,但单价不得低于30元20.(8分)某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价x元,回答下列问题:(1)该商场每天售出衬衫件(用含x的代数式表示);(2)求x 的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?21.(8分)在平面直角坐标系xOy 中,抛物线1C :221y mxmx m =++-沿x 轴翻折得到抛物线2C . (1)求抛物线2C 的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.① 当1m =时,求抛物线1C 和2C 围成的封闭区域内(包括边界)整点的个数;② 如果抛物线C 1和C 2围成的封闭区域内(包括边界)恰有7个整点,求m 取值范围.22.(10分)已知二次函数y=(x -1)2+n 的部分点坐标如下表所示:(1)求该二次函数解析式;(2)完成上表,并在平面直角坐标系中画出函数图象23.(10分)我市某校准备成立四个活动小组:A .声乐,B .体育,C .舞蹈,D .书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了 名学生,扇形统计图中的m 值是 ;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.24.(10分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°, 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?25.(12分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.26.把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.参考答案一、选择题(每题4分,共48分)1、B【分析】设邀请了n个好友转发倡议书,第一轮传播了n个人,第二轮传播了n2个人,根据两轮传播共有111人参与列出方程求解即可.【详解】由题意,得n+n2+1=111,解得:n1=-11(舍去),n2=10,故选B.【点睛】本题考查了列一元二次方程解实际问题的运用,解答时先由条件表示出第一轮增加的人数和第二轮增加的人数根据两轮总人数为111人建立方程是关键.2、D【分析】由条件DE∥BC,可得△ADE∽△ABC,又由DE将△ABC分成面积相等的两部分,可得S△ADE:S△ABC=1:1,根据相似三角形面积之比等于相似比的平方,可得答案.【详解】如图所示:∵DE ∥BC ,∴△ADE ∽△ABC .设DE :BC =1:x ,则由相似三角形的性质可得:S △ADE :S △ABC =1:x 1.又∵DE 将△ABC 分成面积相等的两部分,∴x 1=1,∴x 2=222DE BC ==. 故选:D .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.3、C【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.4、B【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x 个,由题意可得:44x +=0.2, 解得:x=16,故选:B ..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系5、C【分析】直线2y x =的图象经过一、三象限,而函数y =2x 的图象与双曲线y k x =(k ≠0)相交,所以双曲线也经过一、三象限,则当x <0时,该交点位于第三象限.【详解】因为函数y =2x 的系数k =2>0,所以函数的图象过一、三象限;又由于函数y =2x 的图象与双曲线y k x=(k ≠0)相交,则双曲线也位于一、三象限; 故当x <0时,该交点位于第三象限.故选:C .【点睛】本题考查了反比例函数的图象和性质以及正比例函数的图象和性质,要掌握它们的性质才能灵活解题.6、D【分析】根据轴对称图形、中心对称图形的定义即可判断.【详解】A 、是轴对称图形,不符合题意;B 、是中心对称图形,不符合题意;C 、是轴对称图形,不符合题意;D 、是轴对称图形,也是中心对称图形,故符合题意.故选:D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.7、B【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【详解】∵△ABC 与△DEF 是位似图形,相似比为2:3,∴△ABC ∽△DEF ,∴23AB DE = ,即323DE =, 解得,DE=92 故选:B .【点睛】本题考查的是位似变换,掌握位似是相似的特殊形式,位似比等于相似比是解题的关键.8、B 【分析】由34x y =得到x=34y ,再代入计算即可. 【详解】∵34x y =, ∴x=34y , ∴x y y +=3744y y y +=. 故选B.【点睛】 考查了求代数式的值,解题关键是根据34x y =得到x=34y ,再代入计算即可. 9、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x =2代入方程式即可求解.【详解】解:将x =2代入x 2+ax ﹣6=2,得22+2a ﹣6=2.解得a =2.故选C .【点睛】本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.10、C【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:21a a +=∴()322222a 2019201920192020a a a a a a a ++=+++=++=故答案为:C.【点睛】本题考查的知识点是根据一元二次方程的解求代数式的值,解题的关键是将已给代数式进行变形,使之与所给条件有关系,即可得解.11、A【分析】连接OD ,由直径AB 与弦CD 垂直,根据垂径定理得到E 为CD 的中点,由CD 的长求出DE 的长,又由直径的长求出半径OD 的长,在直角三角形ODE 中,由DE 及OD 的长,利用勾股定理即可求出OE 的长.【详解】解:如图所示,连接OD .∵弦CD ⊥AB ,AB 为圆O 的直径,∴E 为CD 的中点,又∵CD=16,∴CE=DE=12CD=8, 又∵OD=12AB=10, ∵CD ⊥AB ,∴∠OED=90°,在Rt △ODE 中,DE=8,OD=10,根据勾股定理得:OE=22OD DE -=6,则OE 的长度为6,故选:A .【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.12、C【分析】太阳光线下的影子是平行投影,就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东,于是即可得到答案.【详解】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②, 故选C .【点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东”,是解题的关键.二、填空题(每题4分,共24分)13、1.【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A1=A1A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),然后计算自变量为1010对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x1=3,则A1(3,0),∵将C1点A1旋转180°得C1,交x轴于点A1;将C1绕点A1旋转180°得C3,交x轴于点A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案为1.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.14、-1.【分析】首先根据题意,可得:x2+2x=m,2x+3=n,m+n=y;然后根据y=﹣1,可得:x2+2x+2x+3=﹣1,据此求出x的值是多少,进而求出n的值是多少即可.【详解】根据题意,可得:x2+2x=m,2x+3=n,m+n=y,∵y=﹣1,∴x2+2x+2x+3=﹣1,∴x2+4x+4=0,∴(x+2)2=0,∴x+2=0,解得x=﹣2,∴n=2x+3=2×(﹣2)+3=﹣1.故答案为:﹣1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的解法是解题的关键.15、1.【分析】求出6名学生的总分后,再求出除甲同学之外的5人的总分,进而求出平均分即可.【详解】(70×6﹣45)÷(6﹣1)=1分,故答案为:1.【点睛】此题考查平均数的计算,掌握公式即可正确解答.16、(x ﹣1)2=1【分析】方程常数项移到右边,两边加上1变形后,即可得到结果.【详解】解:方程变形得:x 2﹣2x =6,配方得:x 2﹣2x+1=1,即(x ﹣1)2=1.故答案为:(x ﹣1)2=1.【点睛】本题考查了配方法求解方程,属于简单题,熟悉配方的方法是解题关键.17、169- 【分析】构造一线三垂直可得BCO ODA ∆∆∽,由相似三角形性质可得2BCO AOD B S S AO O ∆∆⎛⎫= ⎪⎝⎭,结合23tan BAO ∠=得出22439BCO AOD S S ∆∆⎛⎫== ⎪⎝⎭,进而得出89BOC S ∆=,即可得出答案. 【详解】解:过点B 作BC x ⊥轴于点C ,过点A 作AD x ⊥轴于点D ,90BOA ∠=︒,90BOC AOD ∴∠+∠=︒,90AOD OAD ∠+∠=︒,BOC OAD ∴∠=∠,又90BCO ADO ∠=∠=︒,BCO ODA ∴∆∆∽,∴2BCO AOD B S S AO O ∆∆⎛⎫= ⎪⎝⎭∴23BO tan BAO AO =∠=, ∴49BCO AOD S S ∆∆=, 点A 在反比例函数4y x=的图像上, ∴11222AD DO xy ⨯⨯==, 148299BCO AOD S BC CO S ∆∆∴⨯⨯===, ∴169k = 经过点B 的反比例函数图象在第二象限, 故反比例函数解析式为:169y x =-.即169k =-. 故答案为:169-. 【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,掌握反比例函数中k 的几何意义和构造一线三垂直模型得相似三角形,从而正确得出89BCO S ∆=是解题关键. 18、>【分析】用放缩法比较即可.3>=,∴1>3+1=4.故答案为:>.【点睛】a ≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.三、解答题(共78分)19、王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400, ∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得: x[40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.20、(1)602x -;(2)当15x =时,商场平均每天获利1050元;(3)能【分析】(1)根据题意写出答案即可.(2)根据题意列出方程,解出答案即可.(3)令利润代数式为1250,解出即可判断.【详解】(1)根据题意:每天可售出60件,如果每件衬衫每涨价1元,商场平均每天可少售出2件,则商场每天售出衬衫:602x -(2)(4020)(602)1050x x +--=解得115x =,25x =-(不符合题意,舍去).答:当15x =时,商场平均每天获利1050元.(3)根据题意可得:(4020)(602)1250x x +--=解得:x=5所以,商场平均每天获利能达到1250元【点睛】本题考查一元二次方程的应用,关键在于理解题意找出等量关系.21、(1)(-1,-1);(2)①整点有5个.②19m <≤14. 【分析】(1)可先求抛物线1C 的顶点坐标,然后找到该店关于x 轴对称的点的坐标即为抛物线2C 的顶点坐标. (2)① 先求出当1m =时,抛物线1C 和2C 的解析式并画在同一个直角坐标系中即可确定整点的个数;②结合整点的个数,确定抛物线与x 轴的一个交点的横坐标的取值范围,从而代入抛物线解析式中确定m 的取值范围.【详解】(1)∵2221(1)1y mx mx m m x =++-=--∴1C 的顶点坐标为(1,1)-∵抛物线1C :221y mx mx m =++-沿x 轴翻折得到抛物线2C .∴2C 的顶点坐标为(1-,1)(2)①当1m =时,21:2C y x x =+,22:2C y x x =--.根据图象可知,1C 和2C 围成的区域内(包括边界)整点有5个.②抛物线在1C 和2C 围成的区域内 (包括边界) 恰有7个整点,结合函数图象,可得抛物线与x 轴的一个交点的横坐标的取值范围为 1≤2x <.将(1,0)代入221y mx mx m =++-,得到 14m =, 将(2,0)代入221y mx mx m =++-,得到 19m =, 结合图象可得 19m <≤14. 【点睛】本题主要考查二次函数,掌握二次函数的图象和性质及整点的定义是解题的关键.22、(1)y=(x-1)2+1;(2)填表见解析,图象见解析.【分析】(1)将(2,2)代入y=(x-1)2+n 求得n 的值即可得解;(2)再由函数解析式计算出表格内各项,然后再画出函数图象即可.【详解】(1)∵二次函数y=(x-1)2+n ,当x=2时,y=2,∴2=(2-1)2+n ,解得n=1,∴该二次函数的解析式为y=(x-1)2+1.(2)填表得 x⋯⋯ -1 0 1 2 3 ⋯⋯ y ⋯⋯ 5 2 1 2 5 ⋯⋯画出函数图象如图:【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象与性质,二次函数图象上点的坐标特征,正确求出函数解析式是解题的关键.23、 (1) 50,32;(2)见解析;(3)23【解析】(1)根据D 组的人数及占比即可求出本次抽样调查共抽查的人数,故可求出m 的值;(2)用调查总人数减去各组人数即可求出B 组人数,再补全条形统计图;(3)根据题意列出树状图,再根据概率公式即可求解.【详解】解:(1)1020%50÷=,所以本次抽样调查共抽查了50名学生,16%32%50m ==,即32m =; 故答案为50,32;(2)B 组的人数为50-6-16-10=18(人),全条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中所选的两人恰好是一名男生和一名女生的结果数为8,所以所选的两人恰好是一名男生和一名女生的概率82 =123=.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的样本容量.24、(203+17)cm.【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF 的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠3.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴33(cm).答:此时灯罩顶端C到桌面的高度CE是(3+17)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF的长是解题的关键.25、sin A=513,cos A=1213,tan A=512.【分析】根据勾股定理求出AB,根据锐角三角函数的定义解答即可.【详解】由勾股定理得,222212513AB AC BC=+=+=,则5sin13BCAAB==,12cos13ACAAB==,5tan12BCAAC==.【点睛】本题考查解直角三角形,解题的关键是利用勾股定理求出AB的长.26、见解析,49.【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

2022-2023学年海南省琼中学黎族苗族自治县九年级数学第一学期期末学业水平测试模拟试题含解析

2022-2023学年海南省琼中学黎族苗族自治县九年级数学第一学期期末学业水平测试模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.若方程()23220190m x x ---=是关于x 的一元二次方程,则m 应满足的条件是( ) A . 3 m > B .3m < C .3m ≠ D .3m =2.如图,以点O 为位似中心,将△ABC 放大后得到△DEF ,已知△ABC 与△DEF 的面积比为1:9,则OC :CF 的值为( )A .1:2B .1:3C .1:8D .1:93.抛物线1C 向右平移4个单位长度后与抛物线2C 重合,若(-1,3)在抛物线1C 上,则下列点中,一定在抛物线2C 上的是( )A .(3,3)B .(3,-1)C .(-1,7)D .(-5,3) 4.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A.B. C.D.5.在同一坐标系中,二次函数y=x2+2与一次函数y=2x的图象大致是()A.A B.B C.C D.D6.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5)B.(3,﹣5)C.(5,3)D.(﹣3,﹣5)7.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且∠AED=∠B,再将下列四个选项中的一个作为条件,不一定能使得△ADE和△BDF相似的是( )A.EA EDBD BF=B.EA EDBF BD=C.AD AEBD BF=D.BD BABF BC=8.如图所示几何体的俯视图是()A.B.C.D.9.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A .△ABEB .△ACFC .△ABD D .△ADE10.如图,在5×6的方格纸中,画有格点△EFG ,下列选项中的格点,与E ,G 两点构成的三角形中和△EFG 相似的是( )A .点AB .点BC .点CD .点D11.关于x 的一元二次方程210x mx --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定12.如图,在Rt ABC ∆中,90BAC ∠=,AD BC ⊥于点D ,3AD =,3tan 4B =,则BC 的值为( )A .4B .254C .94D .7二、填空题(每题4分,共24分)13.抛物线y =x 2﹣4x +3与x 轴交于A 、B ,与y 轴交于C ,则△ABC 的面积=__.14.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.15.如图,在矩形ABCD 中,AB=4,BC=8,将矩形沿对角线BD 折叠,使点C 落在点E 处,BE 交AD 于点F ,则BF 的长为________.16.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,将抛物线y =x 2沿直线L :y =x 向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…M n 都在直线L :y =x 上;②抛物线依次经过点A 1,A 2,A 3…A n ,则顶点M 2020的坐标为_____.17.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________ .18.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.三、解答题(共78分)19.(8分)在平面直角坐标系xOy 中,对于点(),P a b 和实数(0)k k >,给出如下定义:当0ka b +>时,以点P 为圆心,ka b +为半径的圆,称为点P 的k 倍相关圆.例如,在如图1中,点()1,1P 的1倍相关圆为以点P 为圆心,2为半径的圆.(1)在点()()122,1,1,3P P -中,存在1倍相关圆的点是________,该点的1倍相关圆半径为________. (2)如图2,若M 是x 轴正半轴上的动点,点N 在第一象限内,且满足30MON ∠=︒,判断直线ON 与点M 的12倍相关圆的位置关系,并证明.(3)如图3,已知点()()0,3,1,A B m ,反比例函数6y x =的图象经过点B ,直线l 与直线AB 关于y 轴对称. ①若点C 在直线l 上,则点C 的3倍相关圆的半径为________.②点D 在直线AB 上,点D 的13倍相关圆的半径为R ,若点D 在运动过程中,以点D 为圆心,hR 为半径的圆与反比例函数6y x=的图象最多有两个公共点,直接写出h 的最大值.20.(8分)计算:16+20﹣|﹣3|+(﹣12)﹣1. 21.(8分)如图,在平面直角坐标系中,一次函数18y k x =+与x 轴和y 轴分别交于点A ,点B ,与反比例函数2k y x =在第一象限的图象交于点C ,点D ,且点C 的坐标为()1,6.(1)求一次函数和反比例函数解析式;(2)若OCD ∆的面积是8,求D 点坐标.22.(10分)如图,在△ABC 中,DE ∥BC ,23AD AB =,M 为BC 上一点,AM 交DE 于N. (1)若AE =4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值.23.(10分)在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.24.(10分)在如图所示的平面直角坐标系中,已知△ABC .(1)将△ABC 向左平移4个单位得到△A 1B 1C 1,画出△A 1B 1C 1的图形,并写出点A 1的坐标.(2)以原点O 为旋转中心,将△ABC 顺时针旋转90°得到△A 2B 2C 2,画出△A 2B 2C 2图形,并写出点A 2的坐标.25.(12分)已知关于x 的一元二次方程2(2)10x m x m +++-=, (1) 求证:无论m 为何值,方程总有两个不相等的实数根;(2) 当m 为何值时,该方程两个根的倒数之和等于1.26.在平面直角坐标系xOy 中(如图),已知抛物线28(0)3y ax a x c a ⎛⎫=+++≠ ⎪⎝⎭经过点()3,2A --,与y 轴交于点()0,2B -,,抛物线的顶点为点C ,对称轴与x 轴交于点D .(1)求抛物线的表达式及点C 的坐标;(2)点E 是x 轴正半轴上的一点,如果AED BCD ∠=∠,求点E 的坐标;(3)在(2)的条件下,点P 是位于y 轴左侧抛物线上的一点,如果PAE △是以AE 为直角边的直角三角形,求点P 的坐标.参考答案一、选择题(每题4分,共48分)1、C【分析】根据一元二次方程的定义得出30m -≠,求出即可.【详解】解:()23220190m x x ---=是关于x 的一元二次方程,30m ∴-≠, ∴3m ≠.故选:C .【点睛】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是20ax bx c ++=(a 、b 、c 都是常数,且0)a ≠. 2、A 【分析】利用位似的性质和相似三角形的性质得到22S ABC AC OC S DEF DF OF ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,然后利用比例性质求出即可. 【详解】解:∵△ABC 与△DEF 位似,∴22S ABC AC OC S DEF DF OF ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭=19, ∴13OC OC CF =+, ∴12OC CF =, 故选A .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.3、A【分析】利用点的平移进行解答即可.【详解】解:∵抛物线1C 向右平移4个单位长度后与抛物线2C 重合∴将(-1,3)向右平移4个单位长度的点在抛物线2C 上∴(3,3)在抛物线2C 上故选:A【点睛】本题考查了点的平移与函数平移规律,掌握点的规律是解题的关键.4、D【分析】根据抛物线的图像,判断出24b b ac a b c -++,,的符号,从而确定一次函数、反比例函数的图像的位置即可.【详解】解:由抛物线的图像可知:横坐标为1的点,即()1a b c ++,在第四象限,因此0a b c ++<; ∴双曲线a b c y x++=的图像分布在二、四象限; 由于抛物线开口向上,∴0a >, ∵对称轴为直线b x 02a =->,∴0b <; ∵抛物线与x 轴有两个交点,∴240b ac ->;∴直线24y bx b ac =+-经过一、二、四象限;故选:D .【点睛】本题主要考查二次函数,一次函数以及反比例函数的图象与解析式的系数关系,熟练掌握函数解析式的系数对图像的影响,是解题的关键.5、C【解析】已知一次函数、二次函数解析式,可根据图象的基本性质,直接判断.解答:解:因为一次函数y=2x 的图象应该经过原点,故可排除A 、B ;因为二次函数y=x 2+2的图象的顶点坐标应该为(0,2),故可排除D ;正确答案是C .故选C .6、D【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.【详解】解:点P (3,5)关于原点对称的点的坐标是(-3,-5),故选D .【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.7、C【解析】试题解析:C. 两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是A ∠不一定等于.B ∠故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.8、B【解析】注意几何体的特征,主视图与左视图的高相同,主视图与俯视图的长相等,左视图与俯视图的宽相同.再对选项进行分析即可得到答案.【详解】根据俯视图的特征,应选B .故选:B .【点睛】本题考查了几何体的三视图,正确理解主视图与左视图以及俯视图的特征是解题的关键.9、B【解析】试题分析:A .OA=OB=OE,所以点O 为△ABE 的外接圆圆心;B .OA=OC≠OF ,所以点不是△ACF 的外接圆圆心;C .OA=OB=OD,所以点O 为△ABD 的外接圆圆心;D .OA=OD=OE,所以点O 为△ADE 的外接圆圆心;故选B考点:三角形外心10、D【分析】根据网格图形可得所给△EFG 是两直角边分别为1,2的直角三角形,然后利用相似三角形的判定方法选择答案即可.【详解】解:观察图形可得△EFG 中,直角边的比为12FG EF =,观各选项,12EG DG ==,只有D 选项三角形符合,与所给图形的三角形相似. 故选:D .【点睛】 本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.11、A【分析】根据根的判别式即可求解判断.【详解】∵△=b 2-4ac=m 2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.12、B【分析】利用90BAC ∠=和AD BC ⊥可知CAD B ∠=∠,然后分别在Rt ABD △和Rt ACD 中利用3tan 4B =求出BD 和CD 的长度,最后利用BC=BD+CD 即可得出答案.【详解】∵AD BC ⊥∴90ADB ∠=︒∵90,90BAC BAD CAD ADB BAD B ∠=∠+∠=∠=∠+∠=∴B CAD ∠=∠在Rt ABD △中∵3AD =,3tan 4AD B BD == ∴4tan AD BD B ==在Rt ACD 中∵3AD =,3tan tan 4CD CAD B AD ∠=== ∴39tan 344CD AD CAD =∠== ∴925444BC BD CD =+=+= 故选B【点睛】本题主要考查解直角三角形,掌握锐角三角函数的意义是解题的关键.二、填空题(每题4分,共24分)13、1【分析】先根据题意求出AB 的长。

海南省省直辖县级行政单位琼中黎族苗族自治县2019-2020学年九年级上学期期末数学试题(解析版)

海南省省直辖县级行政单位琼中黎族苗族自治县2019-2020学年九年级上学期期末数学试题(解析版)

( B )是轴对称但不是中心对称;
( C )是轴对称和中心对称;
( D )是中心对称但不是轴对称
故选: C
2.小军旅行箱 密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是
()
1
A.
10
【答案】 A
1
B.
9
1
C.
6
1
D.
5
【解析】
∵密码的末位数字共有 10 种可能( 0 、 1 、 2 、 3、 4、 5 、 6 、 7、 8、 9 、 0 都有可能 ),
海南省省直辖县级行政单位琼中黎族苗族自治县 级上学期期末数学试题
2019-2020 学年九年
一、选择题
1. 如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是
()
A.
B.
C.
D.
【答案】 ቤተ መጻሕፍቲ ባይዱ 【解析】 【分析】 根据轴对称和中心对称图形的概念可判别 .
【详解】(A )既不是轴对称也不是中心对称 ;
故选 D.
.【点睛】此题考查了二次函数
x=k.
y=a(x-h) 2+k 的性质,对于二次函数 y=a(x-h)2+k,顶点坐标是 (h,k) ,对称轴是
4.在平面直角坐标系中,点 P(2 ,- 3) 关于原点对称的点的坐标是 ( )
A (2 , 3)
B. ( -2, 3)
C. ( - 2,- 3)
D. ( - 3, 2)
【答案】 B 【解析】 【分析】 根据 “平面直角坐标系中任意一点 P,x,y),关于原点的对称点是( -x,-y,”解答. 【详解】根据中心对称的性质,得点 P,2,-3)关于原点对称的点的坐标是( -2,3,,

2022-2023学年海南省琼中学黎族苗族自治县九年级数学第一学期期末质量检测模拟试题含解析

2022-2023学年海南省琼中学黎族苗族自治县九年级数学第一学期期末质量检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.在下列四种图形变换中,如图图案包含的变换是( )A .平移、旋转和轴对称B .轴对称和平移C .平移和旋转D .旋转和轴对称2.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 33.如图,P 是ABC ∆的AB 边上的一点,下列条件不可能是ACP ABC ∆∆∽的是( )A .ACPB ∠=∠B .··AP BC AC PC = C .APC ACB ∠=∠D .2·AC AP AB = 4.已知反比例函数k y x =的图象经过点(1,2),则k 的值为( ) A .0.5 B .1C .2D .4 5.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB=10,则AE 的长为( )A .10B .12C .16D .18 6.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( )A .213y y <<B .123y y <<C .213y y <<D .213y y <<7.已知0ab <,一次函数y ax b =-与反比例函数a y x=在同一直角坐标系中的图象可能( ) A . B .C .D .8.某细胞的直径约为0.0000008米,该直径用科学记数法表示为( )A .7810⨯米B .7810-⨯米C .6810-⨯米D .78010-⨯米9.如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点(含端点,但点M 不与点B 重合),点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .5C .7D .910.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .3二、填空题(每小题3分,共24分)11.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.12.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF 的对称中心与原点O 重合,点A 在x 轴上,点B 在反比例函数k y x =位于第一象限的图象上,则k 的值为 .13.在一个不透明的盒子里装有5个黑色棋子和若干白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到白色棋子的概率是23,则白色棋子的个数为_____. 14.如图,AD 是ABC ∆的中线,点E 是线段AD 上的一点,且13AE AD =,CE 交AB 于点F .若2AF cm =,则AB =_________cm .15.如图,在平面直角坐标系中,将ABO ∆绕点A 顺时针旋转到111A B C ∆的位置,点B ,O 分别落在点1B ,1C 处,点1B 在x 轴上,再将11AB C ∆绕点1B 顺时针旋转到112A B C ∆的位置,点2C 在x 轴上,再将112A B C ∆绕点2C 顺时针旋转到222A B C ∆的位置,点2A 在x 轴上,依次进行下去,……,若点3,02A ⎛⎫ ⎪⎝⎭,()0,2B ,则点B 2016的坐标为______.16.如图所示的弧三角形,又叫莱洛三角形, 是机械学家莱洛首先进行研究的.弧三角形是这样画的:先画一个正三角,然后分别以三个顶点为圆心,边长长为半径画弧得到的三角形.若中间正三角形的边长是10,则这个莱洛三角形的周长是____________.17.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.18.直线y =2被抛物线y =x 2﹣3x +2截得的线段长为_____.三、解答题(共66分)19.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点. (1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;(2)将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;(3)以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.20.(6分)已知,如图,AD 是直角三角形ABC 斜边上的中线,,AE AD AE 交CB 的延长线于点E .()1求证: BAE ACE ;()2若AF BD ⊥,垂足为点F ,且9BE CE ⋅=,求EF DE ⋅的值.21.(6分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?22.(8分)如图,AB 是⊙O 的直径,AC BC =,E 是OB 的中点,连接CE 并延长到点F ,使EF=CE .连接AF 交⊙O 于点D ,连接BD ,BF .(1)求证:直线BF 是⊙O 的切线;(2)若OB=2,求BD 的长.23.(8分)解一元二次方程(1)22510x x -+=(2)22(1)(23)x x +=-24.(8分)已知二次函数y 1=x 2﹣2x ﹣3,一次函数y 2=x ﹣1.(1)在同一坐标系中,画出这两个函数的图象;(2)根据图形,求满足y 1>y 2的x 的取值范围.25.(10分)已知:如图,在ABC 中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB .(1)求证:△ABD ∽△ACB ;(2)若AD=5,AB= 7,求AC 的长.26.(10分)如图,抛物线2y x bx =-++与x 轴交于()2,0A ,()4,0B -两点.(1)求该抛物线的解析式;(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由参考答案一、选择题(每小题3分,共30分)1、D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【详解】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D.【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.2、B【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A 点关于x =﹣1的对称点A '(0,y 1),∵a =﹣1<0,∴在x =﹣1的右边y 随x 的增大而减小,∵A '(0,y 1),B (1,y 2),C (2,y 3),0<1<2,∴y 1>y 2>y 3,故选:B .【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.3、B【分析】根据相似三角形的判定判断各选项即可进行解答.【详解】解: A 、∵∠ACP =∠B ,∠A=∠A ,∴△ACP ∽△ABC ,故本选项不符合题意;B 、∵AP PC AC BC=,缺少夹角相等,∴不可判定△ACP ∽△ABC ,故本选项符合题意; C 、∵∠APC =∠ACB ,∠A=∠A ,∴△ACP ∽△ABC ,故本选项不符合题意; D 、∵AC AP AB AC =,∠A=∠A ,∴△ACP ∽△ABC ,故本选项不符合题意. 故选:B .【点睛】本题考查相似三角形的判定.要找的对应边与对应角,公共角是很重要的一个量,要灵活加以利用.4、C【解析】将(1,1)代入解析式中即可.【详解】解:将点(1,1)代入解析式得,21k =, k =1.故选:C .【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.5、C【解析】先证明四边形ABEF 是菱形,得出AE ⊥BF ,OA =OE ,OB =OF =12BF =6,由勾股定理求出OA ,即可得出AE 的长【详解】如图,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE =∠AEB ,∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB =BE ,同理可得AB =AF ,∴AF =BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴四边形ABEF 是菱形,AE ⊥BF ,OA =OE ,OB =OF =12BF =6, ∴OA 2222106AB OB -=-,∴AE =2OA =16;故选C .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.6、A【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较.【详解】当x=0时,y 1= -1+3=2,当x=1时,y 2= -4+3= -1,∴213y y <<.故选:A.【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.7、A【分析】根据反比例函数图象确定b 的符号,结合已知条件求得a 的符号,由a,b 的符号确定一次函数图象所经过的象限. 【详解】解:若反比例函数a x y =经过第一、三象限,则0a > .所以0b < .则一次函数y ax b =﹣ 的图象应该经过第一、二、三象限; 若反比例函数a x y =经过第二、四象限,则a<1.所以b>1.则一次函数y ax b =﹣的图象应该经过第二、三、四象限. 故选项A 正确;故选A .【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.8、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯且()110a ≤≤,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:根据科学计数法得: 70.0000008=810-⨯.故选:B .【点睛】本题主要考查科学计数法,熟记科学计数法的一般形式是10n a -⨯且()110a ≤≤是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.9、B【分析】根据三角形的中位线定理得出EF =12DN ,从而可知DN 最大时,EF 最大,因为N 与B 重合时DN 最大,N 与A 重合时,DN 最小,从而求得EF 的最大值为1.3,最小值是2.3,可解答.【详解】解:连接DN ,∵ED =EM ,MF =FN ,∴EF =12DN , ∴DN 最大时,EF 最大,DN 最小时,EF 最小,∵N 与B 重合时DN 最大,此时DN =DB =13,∴EF 的最大值为1.3.∵∠A=90︒,AD=3,∴DN≥3,∴EF≥2.3,∴EF长度的可能为3;故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.10、B【解析】过点O作OC⊥AB,垂足为C,则有AC=12AB=12×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC=22AO AC-=5,即点O到AB的距离是5.二、填空题(每小题3分,共24分)11、(2,﹣3)【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.12、93【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF 是正六边形,∴∠AOB=10°.∵OA=OB ,∴△AOB 是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin ∠BOA=1×sin10°=33,OM=OB•COS10°=2. ∴B 的坐标是(2,33). ∵B 在反比例函数位于第一象限的图象上, ∴k=2×33=. 13、1.【分析】设白色棋子的个数为x 个,根据概率公式列出算式,求出x 的值即可得出答案.【详解】解:设白色棋子的个数为x 个,根据题意得: 5x x =23, 解得:x =1,答:白色棋子的个数为1个;故答案为:1.【点睛】此题主要考查概率的应用,解题的关键是根据题意列出分式方程进行求解.14、10【分析】过点A 作AG ∥BC 交CF 的延长线于G ,根据平行即可证出△AGE ∽△DCE ,△AGF ∽△BCF ,列出比例式,根据已知条件即可求出AB .【详解】解:过点A 作AG ∥BC 交CF 的延长线于G ,如下图所示∴△AGE ∽△DCE ,△AGF ∽△BCF ∴AG AE DC DE =,AF AG BF CB= ∵13AE AD = ∴12AG AE DC DE == ∴12AG DC = ∵AD 是ABC ∆的中线, ∴11112224AG DC BC BC ==⨯= ∴1144BC AFAG BFCB CB === ∴214BF = 解得:8BF =cm∴AB=AF +BF=1cm故答案为:1.【点睛】此题考查的是相似三角形的判定及性质,掌握构造相似三角形的方法是解决此题的关键.15、(6048,2)【分析】由题意可得,在直角三角形OAB 中,53OA =,4OB =,根据勾股定理可得133AB =,即可求得OAB ∆的周长为10, 由此可得2B 的横坐标为10,4B 的横坐标为20,···由此即可求得点2016B 的坐标.【详解】在直角三角形OAB 中,53OA =,4OB =, 由勾股定理可得:133AB =, OAB ∆的周长为:51341033OA OB AB ++=++=, ∴2B 的横坐标为:OA+AB 1+B 1C 1=10,4B 的横坐标为20,···∴20162016 (10,4) 2B⨯.故答案为(10080,4).【点睛】本题考查了点的坐标的变化规律,根据题意正确得出点的变化规律是解决问题的关键.16、10π【分析】根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:如图:∵△ABC是正三角形,∴∠BAC=60°,∴BC的长为:601010 1803ππ⨯=,∴莱洛三角形的周长=103103ππ⨯=.故答案为:10π.【点睛】本题考查的是正多边形和圆的知识,理解弧三角形的概念、掌握正多边形的中心角的求法是解题的关键.17、1 2【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.故答案为:12.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18、1【分析】求得直线与抛物线的交点坐标,从而求得截得的线段的长即可.【详解】解:令y=2得:x2﹣1x+2=2,解得:x=0或x=1,所以交点坐标为(0,2)和(1,2),所以截得的线段长为1﹣0=1,故答案为:1.【点睛】本题考查了二次函数的性质,解题的关键是求得直线与抛物线的交点,难度不大.三、解答题(共66分)19、(1)画图见解析;(2)画图见解析;(3)20【解析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=所以四边形AA1 B1 A2的面积为:(2=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.20、(1)证明见解析;(2)9.【分析】(1)首先根据直角三角形斜边中线的性质,得出12AD BD CD BC ===,进而得出DAC C ∠=∠,然后由垂直的性质得出EAB DAC C ∠=∠=∠,最后由E E ∠=∠,即可得出BAE ACE ;(2)首先由相似三角形的性质得出2AE BE CE =⋅,然后由cos E ∠得出2AE EF ED =⋅,进而即可得出EF DE ⋅的值.【详解】()1AD 是直角三角形ABC 斜边上的中线12AD BD CD BC ∴===. DAC C ∴∠=∠AE AD ⊥90EAD ∴∠=︒90EAB BAD ∴∠+∠=,而90DAC BAD ∠+∠=︒EAB DAC ∴∠=∠EAB C ∴∠=∠又E E ∠=∠;BAE ACE ∴()2由(1)知;BAE ACE BE AE AE CE∴=即2AE BE CE =⋅. EF AE cos E AE ED∴∠==2AE EF ED ∴=⋅BE CE EF ED ∴⋅=⋅.9BE CE ⋅=9EF DE ∴⋅=【点睛】此题主要考查直角三角形斜边中线性质以及相似三角形的判定与性质,熟练掌握,即可解题.21、(1)DC =;(2)23EF DF =;(3)当DM =DM <<P 只有一个. 【解析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得BC =BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案. (3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM 长; ②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒.在Rt ADC ∆中,tan 30DC AC =⋅︒=(2)解:易得,BC =BD =由DE AC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =.由DE AC ,得~BFE BGA ∆∆,∴EF BE BD AG AB BC == ∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q 的半径QP r =则12QH r =,1232r r +=, 解得433r =. ∴43343CG =⨯=,2AG =. 易知DFM AGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q 的半径QC QE r ==,则33-QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFMAGM ∆∆,可得1435DM = ③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM = 综上所述,当1637DM =143435DM <<时,满足条件的点P 只有一个. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.22、(1)证明见解析;(2)45. 【分析】(1)连接OC ,由已知可得∠BOC=90°,根据SAS 证明△OCE ≌△BFE ,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF 是⊙O 的切线;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF 的长,然后由S △ABF =11··22AB BF AF BD =,即可求出BD=55. 【详解】解:(1)连接OC ,∵AB 是⊙O 的直径,AC BC =,∴∠BOC=90°,∵E 是OB 的中点,∴OE=BE ,在△OCE 和△BFE 中,OE BE OEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△BFE (SAS ),∴∠OBF=∠COE=90°,∴直线BF 是⊙O 的切线;(2)∵OB=OC=2,由(1)得:△OCE ≌△BFE ,∴BF=OC=2,∴AF=22224225AB BF +=+=,∴S △ABF =11··22AB BF AF BD =, 即4×2=25BD , ∴BD=455.【点睛】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.23、(1)1517x +=,2517x -= ;(2)14x =,223x = 【分析】(1)根据公式法即可求解;(2)根据因式分解法即可求解.【详解】(1)22510x x -+=a=2,b=-5,c=1∴b 2-4ac=25-8=17>0故∴1x =2x = (2)22(1)(23)x x +=-22(1)(23)0x x +--=[][](1)(23)(1)(3)02x x x x +-+--=+()3402()x x -+=-∴3x-2=0或-x+4=0 故14x =,223x =. 【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知公式法及因式分解法的运用.24、(1)见解析;(2)x <32或x >32.【分析】(1)利用描点法画出两函数图象;(2)设二次函数y 1=x 2﹣2x ﹣3的图象与一次函数y 2=x ﹣1的图象相交于A 、B 两点,如图,通过解方程x 2﹣2x ﹣3=x ﹣1得A 点和B 点的横坐标,然后结合函数图象,写出抛物线在直线上方所对应的自变量的范围即可. 【详解】解:(1)列表如下:这两个函数的图象,如图,(2)设二次函数y 1=x 2﹣2x ﹣3的图象与一次函数y 2=x ﹣1的图象相交于A 、B 两点,如图, 令y 1=y 2,得x 2﹣2x ﹣3=x ﹣1, 整理得x 2﹣3x ﹣2=0,解得x 1=3172,x 2=3172+,∴A 点和B 317-317+∴当x 317-x 317+,∴y 1>y 2,即满足不等式y 1>y 2的x 的取值范围为x <3172-或x >3172.【点睛】本题主要考察二次函数的性质及二次函数的图形,解题关键是熟练掌握计算法则. 25、 (1)见详解;(2)495【详解】(1)证明:∵∠A=∠A,∠ABD =∠ACB, ∴△ABD ∽△ACB.(2)解: ∵△ABD ∽△ACB ,∴AB ADAC AB =, ∴757AC =, ∴495AC =26、(1)228y x x =--+;(2)存在,当QAC 的周长最小时,Q 点的坐标为()1,6-.【分析】(1)直接利用待定系数求出二次函数解析式即可;(2)首先求出直线BC 的解析式,再利用轴对称求最短路线的方法得出答案. 【详解】(1)抛物线2y x bx c =++与x 轴交于()()2,0,4,0A B -两点4201640b c b c -++=⎧∴⎨--+=⎩解得:28b c =-⎧⎨=⎩ ∴该抛物线的解析式为228y x x =--+(2)该抛物线的对称轴上存在点Q ,使得QAC 的周长最小. 如解图所示,作点C 关于抛物线对称轴的对称点H ,连接HA , 交对称轴于点Q ,连接CO AC 、,点C 关于抛物线对称轴的对称点H ,且HA ,交对称轴于点QQH QC ∴=,QAC ∴的周长为AC CQ AQ AC QH AQ AC AH ++=++=+,Q 为抛物线对称轴上一点,QAC ∴的周长AC CQ AQ AC AH ++≥+, ∴当点Q 处在解图位置时,QAC 的周长最小.在228y x x =--+中,当0x =时,8y =,()0,8C ∴,()()2,0,4,0A B -,∴抛物线的对称轴为直线1x =-,点H 是点C 关于抛物线对称轴直线1x =-的对称点,且()0.8C . 设过点()()2,0,2,8A H -两点的直线AH 的解析式为:()2y k x =-,()2,8H -在AH 直线上,48k ∴-=,解得:2k =-,AH ∴直线的解析式为:()2224y x x =--=-+,抛物线对称轴为直线1x =-,且AH 直线与抛物线对称轴交于点Q ,∴在24y x =-+中,当1x =-时,()2146y =-⨯-+=,()1,6Q ∴-,∴在该抛物线的对称轴上存在点Q ,使得QAC 的周长最小,当QAC 的周长最小时,Q 点的坐标为()1,6-【点睛】此题主要考查了二次函数综合应用以及待定系数法求一次函数、二次函数解析式等知识,能正确理解题意是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年海南省琼中县九年级(上)期末数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是()A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球3.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm4.方程x2﹣2x=0的解是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=25.将抛物线y=3x2向上平移2个单位,得到抛物线的解析式是()A.y=3x2﹣2B.y=3x2C.y=3(x+2)2D.y=3x2+26.两圆半径分别为6cm和5cm,圆心距为1cm,则这两个圆()A.外切B.内切C.相交D.相离7.2015年琼中县的槟榔产值为4200万元,2019-2020上升到6500万元.这两年琼中槟榔的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.4200(1+x)2=6500B.6500(1+x)2=4200C.6500(1﹣x)2=4200D.4200(1﹣x)2=65008.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣49.已知⊙O的半径是3,OP=3,那么点P和⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定10.如图,点A、B、C都在⊙O上,若∠ACB=48°,则∠AOB的度数为()A.96°B.48°C.42°D.24°11.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B.C.D.12.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.113.方程x2+2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定14.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.二、填空题(每小题4分,共16分)15.(4分)若函数y=ax2﹣x+a﹣2的图象经过(1,3),则a=.16.(4分)如图,已知扇形AOB的半径为10,∠AOB=60°,则弧AB的长为(结果保留π)17.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.18.(4分)如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=;(2)当OA=2时,AP=.三、解答题(共62分)19.(10分)解方程(1)4(x﹣5)2=16(2)3x2+2x﹣3=020.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣4),(1)作出△ABC关于原点O对称的△A1B1C1;(2)写出点A1、B1、C1的坐标.21.(10分)袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.22.(10分)已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.23.(10分)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数.24.(12分)如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y 轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数解析式;(2)求直线BC的函数解析式.2019-2020学年海南省琼中县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是()A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球【分析】先求出摸到白球和红球的概率,即可得出结论.【解答】解:∵不透明的袋子装有9个白球和一个红球,P(红)=,∴P(白)=,∴“摸出的球是白球”是随机事件,可能较大,“摸出的球是红球”是随机事件,故A、B、C 不符合题意,故选:D.【点评】此题主要考查了可能性的大小,随机事件,掌握相关概念是解本题的关键.3.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm【分析】连接OA,根据垂径定理求出AD,根据勾股定理计算即可.【解答】解:连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选:C.【点评】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.方程x2﹣2x=0的解是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=2【分析】方程右边为0,左边分解因式即可.【解答】解:原方程化为x(x﹣2)=0,x1=0,x2=2;故选D.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.5.将抛物线y=3x2向上平移2个单位,得到抛物线的解析式是()A.y=3x2﹣2B.y=3x2C.y=3(x+2)2D.y=3x2+2【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向上平移2个单位那么新抛物线的顶点为(0,2).可设新抛物线的解析式为y=3(x﹣h)2+k,代入得y=3x2+2.故选:D.【点评】解决本题的关键是得到新抛物线的顶点坐标.6.两圆半径分别为6cm和5cm,圆心距为1cm,则这两个圆()A.外切B.内切C.相交D.相离【分析】根据圆心距与半径的关系即可判断;【解答】解:∵圆心距d=1,R=6,r=5,∴d=R﹣r,∴两圆内切,故选:B.【点评】本题考查圆与圆的位置关系,解题的关键是记住:圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R ﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).7.2015年琼中县的槟榔产值为4200万元,2019-2020上升到6500万元.这两年琼中槟榔的产值平均每年增长的百分率是多少?设平均每年增长的百分率为x,根据题意列方程为()A.4200(1+x)2=6500B.6500(1+x)2=4200C.6500(1﹣x)2=4200D.4200(1﹣x)2=6500【分析】设平均每年增长的百分率为x,根据2015年及2019-2020琼中县的槟榔产值,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均每年增长的百分率为x,根据题意得:4200(1+x)2=6500.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.抛物线y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣4【分析】利用配方法或顶点坐标公式即可解决问题;【解答】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),∵a=1>0,∴开口向上,有最低点,有最小值为﹣4.故选:D.【点评】本题考查二次函数的最值,解题的关键是熟练掌握配方法或公式法确定顶点坐标,属于中考常考题型.9.已知⊙O的半径是3,OP=3,那么点P和⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【分析】根据点和圆的位置关系得出即可.【解答】解:∵⊙O的半径是3,OP=3,∴3=3,即点P和⊙O的位置关系是点P在⊙O上,故选:B.【点评】本题考查了点和圆的位置关系得应用,注意:已知⊙O的半径是r,点P到圆心O的距离是d,当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.10.如图,点A、B、C都在⊙O上,若∠ACB=48°,则∠AOB的度数为()A.96°B.48°C.42°D.24°【分析】由∠ACB=48°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠AOB的度数.【解答】解:∵点A、B、C都在⊙O上,且点C在弦AB所对的优弧上,∠ACB=48°,∴∠AOB=2∠ACB=2×48°=96°.故选:A.【点评】此题考查了圆周角定理.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键,注意数形结合思想的应用.11.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是()A.B.C.D.【分析】画树状图得出所有等可能的情况数,找出落地后出现两个正面一个反面朝上的情况数,即可求出所求的概率.【解答】解:画树状图得:所有等可能的情况有8种,其中两个正面一个反面的情况有3种,则P=.故选:B.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.如图,∠NAM=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN边于D、E两点,则当⊙O与AM相切时,AD等于()A.4B.3C.2D.1【分析】设直线AM与⊙O相切于点K,连接OK.利用直角三角形30度角的性质即可解决问题;【解答】解:设直线AM与⊙O相切于点K,连接OK.∵AM是⊙O的切线,∴OK⊥AK,∴∠AKO=90°∵∠A=30°,∴AO=2OK=4,∵OD=2,∴AD=OA﹣OD=2,故选:C.【点评】本题考查切线的性质、直角三角形的30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.13.方程x2+2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】根据方程的系数结合根的判别式可得出△=0,进而可得出方程x2+2x+1=0有两个相等的实数根.【解答】解:a=1,b=2,c=1.∵△=b2﹣4ac=22﹣4×1×1=0,∴方程x2+2x+1=0有两个相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.【分析】根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(每小题4分,共16分)15.(4分)若函数y=ax2﹣x+a﹣2的图象经过(1,3),则a=3.【分析】利用待定系数法即可解决问题.【解答】解:∵函数y=ax2﹣x+a﹣2的图象经过(1,3),∴3=a﹣1+a﹣2,∴a=3,故答案为:3.【点评】本题考查二次函数的图象上的点的特征,解题的关键是熟练掌握待定系数法,属于中考基础题.16.(4分)如图,已知扇形AOB的半径为10,∠AOB=60°,则弧AB的长为(结果保留π)【分析】利用弧长公式l=,计算即可;【解答】解:==,故答案为.【点评】本题考查弧长公式的应用,解题的关键是记住弧长公式.17.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=8.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(4分)如图,已知PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.(1)∠APB=60°;(2)当OA=2时,AP=2.【分析】(1)根据四边形的内角和为360°,根据切线的性质可知:∠OAP=∠OBP=90°,求出∠AOB的度数,可将∠APB的度数求出;(2)作辅助线,连接OP,在Rt△OAP中,利用三角函数,可将AP的长求出.【解答】解:(1)∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°﹣2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°﹣120°﹣90°﹣90°=60°,故答案为:60°.(2)如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP===2,故答案为:2.【点评】本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.三、解答题(共62分)19.(10分)解方程(1)4(x﹣5)2=16(2)3x2+2x﹣3=0【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程根的判别式,再利用公式法解出方程.【解答】解:(1)4(x﹣5)2=16(x﹣5)2=4x﹣5=±2,x=±2+5,x1=7,x2=3;(2)3x2+2x﹣3=0△=22﹣4×3×(﹣3)=40,x=,x1=,x2=.【点评】本题考查的是一元二次方程的解法,掌握直接开平方法、公式法解一元二次方程的一般步骤是解题的关键.20.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,﹣1)、B(1,﹣3)、C(4,﹣4),(1)作出△ABC关于原点O对称的△A1B1C1;(2)写出点A1、B1、C1的坐标.【分析】(1)根据中心对称的定义作出三顶点关于原点的对称点,再顺次连接可得;(2)由所作图形可得点的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图知点A1的坐标为(﹣2,1)、B1的坐标为(﹣1,3)、C1的坐标为(﹣4,4).【点评】此题考查了作图﹣旋转变换,熟练掌握旋转的定义和性质是解本题的关键.21.(10分)袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.【分析】(1)利用画树状图展示所有9种等可能的结果数,(2)找出两次都是白球的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:(2)由树状图知,共有9种等可能的结果数,其中两次都摸到白球的结果数为4,所以两次都摸到白球的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.22.(10分)已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.【分析】要证明方程有两个不相等的实数根,即证明△>0即可.△=k2﹣4×1×(﹣1)=k2+4,因为k2≥0,可以得到△>0.【解答】证明:∵△=k2﹣4×1×(﹣1)=k2+4,而k2≥0,∴△>0.所以方程有两个不相等的实数根.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.(10分)如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数.【分析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【解答】解:∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°﹣25°=65°,∴∠P=180°﹣∠PAB﹣∠PBA=180°﹣65°﹣65°=50°.【点评】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.24.(12分)如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y 轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数解析式;(2)求直线BC的函数解析式.【分析】(1)利用待定系数法即可解决问题;(2)求出B、C两点坐标,利用待定系数法即可解决问题;【解答】解:(1)由题意,∴,∴抛物线的解析式为y=x2﹣2x﹣3.(2)对于抛物线y=x2﹣2x﹣3,令y=0,得到x=﹣1或3,∴B(3,0),C(0,﹣3),设直线BC的解析式为y=mx+n,则有,解得,∴直线BC的解析式为y=x﹣3.【点评】本题考查抛物线与x轴的交点问题,二次函数的性质、一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

相关文档
最新文档