2019年最新中考数学模拟练习试卷及答案2899388
最新2019年中考数学模拟试题含答案

2019年中考模拟试卷数学卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1、在百度网页中搜索“霍金”,一共显示有19500000个搜索结果,用科学记数法表示19500000个,正确的是( ▲ ) A .61.9510⨯ B .71.9510⨯ C . 719.510⨯ D .80.19510⨯2、一列四个水平放置的几何体中,三视图如图所示的是( ▲ )3、下列计算正确的是( ▲ )4、在平面直角坐标系中,半径为1的圆的圆心P (a ,0)沿x 轴移动.已知⊙P 与y 轴相离,则a 的取值范围是( ▲ )A .a >1B .-1<a <1C .a >1或a <-1D .a <-15、(网络)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AEAB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( ▲ ) A .1∶3 B .1∶2 C . 1∶ 3 D .1∶46、已知关于x 的方程2x +4=-m -x 的解为负数,则m 的取值范围是( ▲ )A .m <43 B .m >43C .m <-4D .m >-47、如图,正六边形ABCDEF 中,AB =5,点P 在ED 上,EP :PD =2:3连结AP ,则AP 的长为( ▲ )A .BC . 8 D8、关于分式232x x x a--+,有下列说法,错误的有( ▲ )个:(1)当x 取2时,这个分式有意义,则a ≠1;(2)当x=3时,分式的值一定为零;(3)若这个分式的值为零,则a ≠-3;(4)当x 取任何值时,这个分式一定有意义,则二次函数y=x 2+x+a 与x 轴没有交点。
A. 0 B. 1 C. 2 D. 39、抛物线y =ax 2+bx+c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数a b cy x ++=在同一坐标系内的图像大致为( ▲ )10、关于二次函数233y x kx k =-+-,以下结论:① 抛物线交x 轴有两个不同的交点;②不论k 取何值,抛物线总是经过一个定点;③设抛物线交x 轴于A 、B 两点,若AB=1,则k=9;;④ 抛物线的顶点在2y 3(1)x =--图像上.其中正确的序号是( ▲ ) A .①②③④ B .②④ C .②③ D .①②④二、耐心填一填(本题有6个小题,每小题4分,共24分)11、在实数范围内分解因式:4a 2﹣8=__▲__ .12、一个不透明的袋中装有除颜色外均相同的9个白球、5个红球和若干个黄球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黄球的频率稳定于0.3,由此可估计袋中约有黄球__▲__个.13、把一个半径为8cm 的圆形硬纸片等分成4个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则这个圆锥的侧面积为__▲___;圆锥的高为__▲__.14、对于实数b a 、定义一种新运算“⊗”为:2aa b a b ⊗=-,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 ▲ .15、如图,已知△ABC ,AB =AC =4,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则BD 的长是 ▲ ,△BDA 的面积与△BDC 的面积比是 ▲ .(结果保留根号)16、如图,在边长为3正方形ABCD 中,动点E 、F 分别以相同的速度从D 、C 两点同时出发,向C 和B 运动(任何一个点到达即停止),在运动过程中,则线段CP 的最小值为 ▲ .三、认真答一答:(本题7个小题,共66分)17、(本小题满分6分)计算:第16题01( 3.14)(sin 30)4cos 45π︒-︒-++-18、(本题满分8分)如图,已知弧AB .求作:(1)确定弧AB 所在圆的圆心O ;(2)过点A 且与⊙O 相切的直线.(要求用直尺和圆规作图,保留作图痕迹,不要求写作法)19、(本小题满分8分)如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =7,∠B =∠C =60°,P 为BC 边上一点(不与B ,C 重合),过点P 作∠APE =∠B ,PE 交CD 于E .(1)求证:△APB ∽△PEC ; (2)若CE =3,求BP 的长.20、(本小题满分10分)我校对全部1200名学生就交通安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___ 人,条形统计图中“了解”部分所对应的人数是 人; (2) 扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育。
2019中考数学模拟试题含答案(精选5套)

2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E 处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2019中考模拟卷数学(含答案)

2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。
2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。
其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。
2019年中考模拟测试卷数学试题卷及答案

2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。
2019年中考数学模拟试卷(附答案)

2019年中考数学模拟试卷(附答案)一、选择题(本大题10题,每小题3分,共30分).在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 四个数0,3-,2,32中,无理数的是( ) A .0 B .3- C .2 D .32 2. 2019年濠江区保障性住房建设预计资金投入约5300000元,将5300000用科学记数法表示为( )A .51053⨯B .5103.5⨯C .71053.0⨯D .6103.5⨯ 3. 如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )A .B .C .D .4. 数据3,4,6,7,3的众数和中位数分别是( )A .3 ,4B .3 ,7C .4 ,3D .4 ,6 5. 下列计算正确的是( )A .326x x x =÷B .2)1(1+-=--x xC .222)(b a b a -=-D .226)3(x x = 6.使1+x 有意义的x 的取值范围是( )A .1->xB .x ≥1-C .1-<xD .x ≤1- 7. 如图,已知∠AOB =70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( )A.20°B.35°C.45°D.70°8. 将2x y =向上平移2个单位后所得的抛物线的解析式为( )A .22+=x yB .22-=x yC .2)2(+=x yD .2)2(-=x y 9. 如图,边长相等的正方形和正六边形的一边重合,则∠1的度数是( )A .10°B .20°C .30°D .40°10.如图①,点P 从等边△ABC 的顶点A 出发,沿A →B →C 以1cm/s 的速度匀速运动到点C ,图②是点P 运动时,△PAC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .3B .1C .23D .32 二、填空题(本大题6题,每小题4分,共24分).请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:222-a = .12.不等式组⎪⎩⎪⎨⎧+>--<-2115304x x x 的解集为 .13.已知关于x 的方程02=-+n x x 有两个相等的实数根,那么n 的值为 . 14.如图,在△ABC 中,DE ∥BC ,AE :EC=2:3,则ABC ADE S S ∆∆:的值为 . 15.如图,在边长为1的正方形网格中,AB 是半圆的直径,则阴影部分的面积为 (结果保留π)16.规定12-=i ,且i 满足运算律.如:i i i i i 2)1(21121)1(222=-++=+⨯⨯+=+,那么8)1(i -的值为三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:10220199|2|-+-+-18.先化简,再求值:21)231(2+-÷+-a a a ,其中13-=a19.如图,在△ABC中,∠A=30°,∠B=50°.(1)作∠ACB的平分线交AB边于点D,(要求:尺规作图,保留作图痕迹,不写作法);(2)求证:DC=DB.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某校为奖励在学校活动中表现优秀的同学,计划购买甲、乙两种奖品.已知购买甲种奖品30件和乙种奖品25件需花费1950元,购买甲种奖品15件和乙种奖品35件需花费1650元.(1)求甲、乙两种奖品的单价.(2)若学校计划花费1000元购买甲、乙两种奖品,且要求甲、乙两种奖品的数量比为2:3,问最多可以购买多少件甲种奖品?21.如图,矩形EFGH的四个顶点分别在平行四边形ABCD的各条边上,AB=EF.(1)求证:△AFE≌△CHG;(2)若点H为DC的中点,∠A=90°,试判断AF和BF的数量关系,并说明理由.22.某中学为关注儿童成长的健康,实施“关注留守儿童计划”,对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图: (1)全校班级个数 个,并将该条形统计图补充完整;(2)在扇形统计图中,表示“3名”的扇形圆心角为 度;(3)为了了解留守儿童的饮食情况,某校决定从只有2名留守儿童的这些班级中,任选两名进行调查,请用列表法或画树形图的方法,求出所选两名留守儿童来自同一个班级的概率.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,在矩形OABC 中,OC=2,OA=3,以OA 所在的直线为x 轴,以OC 所在的直线为y 轴建立平面直角坐标系.反比例函数xmy 的图象与CB 交于点D (2,2),与BA 交于点E ,连接AC ,DE ,OE.(1)求反比例函数的解析式; (2)求 sin ∠EOA 的值; (3)求证:DE ∥CA .24.如图,在正方形ABCD中,AD=4,E是AB上一点,AC与DE相交于点F.以DE为直径的⊙O与AC相交于点G,连接EG,DC与BG的延长线相交于点H.(1)求证:∠AEG=∠AFD;(2)若∠EGB=∠BAC,判断BH与⊙O的位置关系,并说明理由;(3)在(2)的条件下,求AE的长.25.如图1,已知Rt△ABC,∠AB C=90°,AB=3,BC=6,将Rt△ABC绕点B顺时针旋转90°,连接CD,与AE的延长线交于点F,连接BF,与ED相交于点G.(1)填空:∠BCD= °;(2)求BG的长度;(3)如图2,点M从点E出发,沿EA方向以每秒2个单位长度的速度向终点A运动,点N 从点E出发,沿ED方向以每秒5个单位长度的速度向终点D运动,M,N两点同时出发,当点M停止时,点N也随之停止.设运动时间为x秒,问:是否存在x的值,使得△BMN 为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.数学参考答案与评分标准一、选择题二、填空题11.)1)(1(2-+a a ;12.7-<x ;13. ;14. ;15. ;16.16三、解答题(一)17.解:原式= ………………4分 = ………………6分18.解:原式11)1)(1(2212)1)(1(2322+=-++⋅+-=+-+÷⎪⎭⎫ ⎝⎛+-++=a a a a a a a a a a a a ……………………3分 ………………4分当13-=a 时,原式331131=+-=………………6分 19.解:(1)如图所示,CD 即为所求。
2019年数学中考模拟试卷(含答案)
13.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣7
解析:7
【解析】
【分析】
根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.
7.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数 ( , )的图象上,横坐标分别为1,4,对角线 轴.若菱形ABCD的面积为 ,则k的值为()
A. B. C.4D.5
8.如图,AB,AC分别是⊙O的直径和弦, 于点D,连接BD,BC,且 , ,则BD的长为( )
A. B.4C. D.4.8
8.C
解析:C
【解析】
【分析】
先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到 ,然后利用勾股定理计算BD的长.
【详解】
∵AB为直径,
∴ ,
∴ ,
∵ ,
∴ ,
在 中, .
故选C.
【点睛】
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
【详解】
A、是中心对称图形,不是轴对称图形,故该选项不符合题意,
B、是中心对称图形,也是轴对称图形,故该选项符合题意,
C、不是中心对称图形,是轴对称图形,故该选项不符合题意,
D、是中心对称图形,不是轴对称图形,故该选项不符合题意.
河南省2019年中考数学模拟试题(含解析)
2019年河南省中考数学模试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1. - 3的绝对值是()A.— 3B. 3C. . —D.—3 32. 中国的陆地面积和领水面积共约9970000km2, 9970000这个数用科学记数法可表示为()A. 9.97 X 105B. 99.7 X 105C. 9.97 X 106D. 0.997 X 1074. 一次函数y= - 3x+b和y=kx+1的图象如图所示,其交点为P (3, 4),则不等式kx+1 >-3x+b的解集在数轴上表示正确的是()A. *B. * C ' D5. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.03. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A. 9B.左视图C. 7D. 6主视图根据以上图表信息,参赛选手应选()血成绩环* X10 ---------9 —…“…”8 ”4“ ■-7 --------A.甲B.乙C.丙D. 丁A. 1 : 3B. 1: 5C. 1: 6D. 1: 119.如图,在平面直角坐标系中,抛物线y=. x2经过平移得到抛物线y=ax2+bx,其对称轴与6.如图,四边形ABCD内接于O 0,F是二上一点,且~7=-,连接CF并延长交AD的延长线于点E,连接AC,若/ ABC=105 ,/ BAC=25,则/ E的度数为(7.如图,菱形0ABC的一边0A在x轴上,将菱形0ABC绕原点0顺时针旋转75°至0A B'DC于点F,60°连接AE并延长交C'的位置,若0B=「,/ C=120°,则点B'的坐标为(则S A DEF:S A AOB的值为(两段抛物线所围成的阴影部分的面积为;,则a 、b 的值分别为(C 2、巳、E 4、G 3…在x轴上,已知正方形 A i B i C i D二、填空题(本小题共 5小题,每小题3分,共15分)11. ________________________________________ 计算:一二 + ( n - 2) 0+ (- 1) 2017= . 12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 _______ .10.在平面直角坐标系中,正方形A BCD 、 Di E 1E 2B 2、AB 2C 2D 、DBE4B …按如图所示的方式放置,其中点 B 在y 轴上,点G 、E 、E 、的边长是(13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=14. ____________________________________________ 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在-爲上,CD! OA垂足为点D, 当厶OCD的面积最大时,图中阴影部分的面积为 .O D .415. 如图,在矩形ABCD中, AB=5 BC=3点E为射线BC上一动点,将△ ABE沿AE折叠,得到△ AB' E.若B'恰好落在射线CD上,贝U BE的长为__________ .三、解答题(本题共8小题,共75分.)::一1 r, 216. 先化简,再求值:十一=,其中m是方程x+2x- 3=0的根.3 ID1 2 3-6m rn-2 717. 在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A, B两组户数频数直方图的高度比为 1 : 5.月信息消费额分组统计表1这次接受调查的有 _________ 户;2在扇形统计图中,“ E”所对应的圆心角的度数是 ________(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于 200元的户数是多少?(户数)18. 如图,AB 是半圆O 的直径,点P 是半圆上不与点 A B 重合的一个动点,延长BP 到点C, 使PC=PB D 是AC 的中点,连接 PD PO (1) 求证:△ CDP^A POB (2) 填空:① 若AB=4,则四边形AOPD 勺最大面积为 _________ ;② 连接OD 当/ PBA 的度数为 ______ 时,四边形BPDC 是菱形.C19. 如图,在大楼 AB 的正前方有一斜坡 CD CD=4米,坡角/ DCE=30,小红在斜坡下的点 C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A C E 在同一直线上.(1) 求斜坡CD 的高度DE(2) 求大楼AB 的高度(结果保留根号)20.同庆中学为丰富学生的校园生活, 准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元, 购买2个月信JS 湾奏颤分组頻数直方图各粗户数扇球统计圈2015 105・・・10足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. 根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1 ,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1 所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为___________ ;③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为_________ .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c > 0 (a > 0)的解集.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 ,位置关玄阜 系是 (2)拓展探究:请出判断判断予以证明; (3) 类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,23. 如图,二次函数 y=ax 2+bx+c 的图象与x 轴的交点为 A D (A 在D 的右侧),与y 轴的交 点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 . (1 )求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为 m 设四边形 OCMA 勺面积为s .请写出 s 与m 之间的函数关系式,并求出当 m 为何值时,四边形 OCMA 勺面积最大;(3) 设点B 是x 轴上的点,P 是抛物线上的点,是否存在点 P,使得以A , B 、C, P 四点为如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, (1)中结论是否仍然成立?GBB(1)中结论是否仍然成立?其它条件不变, 请直接写出你的判断.顶点的四边形为平行四边形?若存在,直接写出点 P 的坐标;若不存在,请说明理由.参考答案与试题解析 一、选择题(本大题共 13的绝对值是( )A.— 3B. 3C. . —D.—3 3【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解. 第一步列出绝对值的表达式; 第二步根据绝对值定义去掉这个绝对值的符号. 【解答】解:| - 3|=3 . 故-3的绝对值是3. 故选:B. 2.中国的陆地面积和领水面积共约 9970000km 2, 9970000这个数用科学记数法可表示为 ( )55 —67A. 9.97 X 10 B . 99.7 X 10 C. 9.97 X 10 D. 0.997 X 10 【考点】科学计数法.【分析】 科学记数法的表示形式为 a x 10n 的形式,其中1W |a| v 10, n 为整数.确定 n 的 值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 【解答】 解:9970000=9.97 X 106, 故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X 10n 的形式,其中1w |a| v 10, n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为10小题,每小题3分,共30 分) 主视图A. 9B. 8*左视图C. 7D. 61的正方体的个数是【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有 2层,由俯视图可得第一层正方体的个数, 由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有 6个正方体,第二层有 2个正方体,那么共有 6+2=8 个正方体组成, 故选B.4. 一次函数y= — 3x+b 和y=kx+1的图象如图所示,其交点为 P (3, 4),则不等式kx+1 > —• ••当 x 》3 时,kx+1》—3x+b , •不等式kx+1 >— 3x+b 的解集为x > 3,在数轴上表示为: *故选B.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示, 丁的成绩如图所示.甲乙 丙 平均数 7.9 7.9 8.0 方差3.290.491.8元一次不等式;C4:在数轴上表示不等式的解集.【分析】 观察图象,直线 y=kx+1落在直线 y= - 3x+b 上方的部分对应的 x 的取值范围即为所 求.【解答】 解:•一次函数 y= - 3x+b 和y=kx+1的图象交点为 P (3, 4),3x+b 的解集在数轴上表示正确的是(FD 一次函数与 【考C .根据以上图表信息,参赛选手应选( )【考点】W7方差;W1:算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可. 【解答】解:由图可知丁射击 10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为: —X( 8+8+9+7+8+8+9+7+8+8) =8, 丁的成绩的方差为: 了一X [ (8 - 8)+ ( 8 - 8)2+ (8 - 9) 2+ ( 8 - 7) 2+ (8 -8)+ (8 - 8)2 2 2 2 2+ (8 - 9) + (8 - 7) + (8 - 8) + (8 - 8) ]=0.4 , •••丁的成绩的方差最小, •••丁的成绩最稳定, •••参赛选手应选丁, 故选:D.F 是•上一点,且| ; =「,连接CF 并延长交AD 的延长根据三角形外角的性质即可得出结论.【解答】 解:••四边形 ABCD 内接于O 0,Z ABC=105,6.如图,四边形 ABCD 内接于O 0,线于点E ,连接AC,若/ ABC=105,/ BAC=25,则/ E 的度数为(M6圆内接四边形的性质;M4: 圆心角、弧、弦的关系.【分析】 先根据圆内接四边形的性质求出/ ADC 的度数,再由圆周角定理得出/ DCE 的度数,【考60°•••/ ADC=180 -Z ABC=180 - 105 ° =75 °.•••衣=| ,/ BAC=25 , • Z DCEZ BAC=25 ,• Z E=Z ADC-Z DCE=75 - 25° =50 °. 故选B.7.如图,菱形OABC 的一边OA 在 x 轴上,将菱形OABC 绕原点0顺时针旋转75°至OA B ' C'的位置,若 OB= _,Z C=120°,则点B'的坐标为( )/A ”oX1%帕\L J A r7 R fA.( 3,二)B .( 3,一) C.(「,「)D.(「,7)【考点】R7:坐标与图形变化-旋转; L8:菱形的性质.【分析】 首先根据菱形的性质,即可求得Z AOB 的度数,又由将菱形 OABC 绕原点O 顺时针 旋转75°至OA B ' C'的位置,可求得Z B' OA 的度数,然后在 Rt △ B' OF 中,利用三角 函数即可求得 OF 与B ' F 的长,则可得点 B '的坐标.【解答】 解:过点B 作BE X OA 于E ,过点B'作B' F 丄OA 于 F , • Z BE0=Z B ' FO=9C ° , •••四边形OABC 是菱形, • OA// BC, Z AOB= Z AOC • Z AOC-Z C=180°,•••Z C=120° ,• Z AOC=60 , • Z AOB=30 ,• •菱形OABC 绕原点O 顺时针旋转75°至OA B' C'的位置, • Z BOB =75°, OB =OB=2 :, • Z B' OF=45 ,在Rt△ B' OF中,•••点B'的坐标为:(唧匚,-i :).&如图,在?ABCD 中, AC 与BD 相交于点 O, E 为OD 的中点,连接 AE 并延长交 DC 于点F , 则 S A DEF : S A AOB 的值为()A. 1 : 3 B . 1: 5 C . 1: 6 D . 1: 11 【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质可知 BO=DO 又因为E 为OD 的中点,所以DE BE=1: 3,根S A iQR 9 据相似三角形的性质可求出 S A DE :S A BAE .然后根据=p ,即可得到结论.仏 ABE 3【解答】解:I O 为平行四边形ABCD 对角线的交点, • DO=BO又••• E 为OD 的中点, • DE= DB4• DE: EB=1: 3, 又••• AB// DC• △ DFE^A BAEOF=OB? cos45 •-B ' F= 7,=2 r =",故选D.・'二=(1)2=1'△BAE 39• I S A DE = S A BAE ,■..S AADB = 2 S A ABE 3,确定出抛物线y=ax 2+bx 的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点可得解.• °. S A AO =S :△ BAE,V S ^EAE…S A DEF : S A AO ==1 : 6,y S ABAE9.如图,在平面直角坐标系中,抛物线 两段抛物线所围成的阴影部分的面积为y= . x 2经过平移得到抛物线 y=ax 2+bx ,其对称轴与 [,则a 、b 的值分别为(H6:二次函数图象与几何变换.【分析】 坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即故选C.【考c •一,3 3 2 4•••平移后抛物线的顶点坐标为(- 爭,-电右),对称轴为直线x=-爭, 当x=-丄一时,y=2 4•平移后阴影部分的面积等于如图三角形的面积,'x( ■)X(-)=2 4 4234解得b= - -y故选:C.ABCD、D1E1E2B、A2B2 C2D、D>E3E4B B…按如图所示的方的边长为I,/ B i C i O=60°, BQ// B2C2// B3C3…,则正方形A2017R0仃C2o仃D2o仃的边长是()【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长, 可得出答案.【解答】解:•••正方形A i B i CD的边长为1,/ B i CO=60°, BC // B2C2 / RC3,• D E1=B2E2, D>E3=B S E4, / DCE1=/ GB2E2=/仑£3巳=30°,式放置,其中点B在y轴上,点C、E、E>、C2、巳、巳、C3…在x轴上,已知正方形A i B i G D 10.在平面直角坐标系中,正方形El E: Q Ej E4 G x进而得出变化规律即31【考点】D2:规律型:点的坐标.则 B 2C>== = () 1cos30fl 33 同理可得:RG==(—二)2,33故正方形 ABGD 的边长是:()「13则正方形A 2017B 2017C 2017 D 2017的边长为: 故选:C.二、填空题(本小题共 5小题,每小题3分,共15分) 11. 计算:-二 +( n - 2) 0+ (- 1) 2017= - 2 . 【考点】2C:实数的运算;6E :零指数幕.【分析】直接利用零指数幕的性质以及立方根的定义分别化简进而求出答案. 【解答】 原式=-2+1 - 1 =-2. 故答案为:-2.12.已知关于x 的一元二次方程 ax 2-( a+2) x+2=0有两个不相等的正整数根时,整数 a 的值是 a=1.【考点】AA 根的判别式.【分析】由一元二次方程的定义可得出 a z 0,再利用根的判别式△ =b 2- 4ac ,套入数据即可 得出△ = (a - 2) 2> 0,可得出a z 2且a z 0,设方程的两个根分别为刘、X 2,利用根与系数9的关系可得出X 1?X 2=,再根据X 1、X 2均为正整数,a 为整数,即可得出结论.a【解答】 解:•••方程ax 2-( a+2) X +2=0是关于X 的一元二次方程, a z 0.•/△ = (a+2) 2- 4a X 2= (a - 2) 2> 0,•••当a=2时,方程有两个相等的实数根, 当a z 2且a z 0时,方程有两个不相等的实数根. •• •方程有两个不相等的正整数根, 设方程的两个根分别为 X I 、X 2,--DE i =CDsin30一, 20169/. X1?X2=,a•/X I、X2均为正整数,•••「为正整数,a■/ a为整数,a^ 2且a^ 0,a=1,故答案为:a=1.13. 如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=【考点】G6:反比例函数图象上点的坐标特征.【分析】作AC± X轴于点C,作BD丄X轴于点D,易证△ OB/A AOC则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作ACLX轴于点C,作BD丄X轴于点D.则/ BD02 ACO=90 ,则/ BOD丄OBD=90 ,•/ OA! OB•••/ BOD丄AOC=90 ,•••/ B0D2 AOC•••△ OBD^A AOC二口工 2 /»八2一•••..,.= —) =( tanA )=,又••• S A AO(=_77 X 2=1 ,• S _1・・S A OB=,■-9故答案为:-•・k=-二14. 如图,扇形OAB中,/ AOB=60,扇形半径为4,点C在富上,CtU OA垂足为点D, 当厶OCD勺面积最大时,图中阴影部分的面积为2 n —4 .BO D A【考点】MO扇形面积的计算;H7:二次函数的最值;KQ勾股定理.【分析】由OC=4点C在亦上,CDL OA求得DC彳0严4)!)鼻&&~0卫,运用& OC誌OD ? !..厂,求得OD=2 —时厶OCD的面积最大,运用阴影部分的面积=扇形AOC的面积-△ OCD的面积求解.【解答】解:••• OC=4点C在「上,CDL OA•DC“「」「=厂厂•S A OC=;O D? i / .■ pr'Q 1 1 1•••,「= ’O D?( 16—O D)=——O D+4OD=—’(O D- 8) 2+16•••当O D=8,艮卩OD=2】时厶OCD的面积最大,•- DC=foF_)2= =2 _,•••/ COA=45 ,2•••阴影部分的面积 = 扇形AOC 勺面积-△ OCD 的面积=!打八"- X 2 7X 2 7=2 n - 4, 360 2 % % 故答案为:2 n - 4.【分析】如图1,根据折叠的性质得到 AB' =AB=5, B' E=BE 根据勾股定理得到 B E= ( 3 -BE 2+12,于是得到吨,如图2,根据折叠的性质得到AB =沖求得AB =BF =5根据勾股定理得 到CF=4根据相似三角形的性质列方程得到CE=12即可得到结论.【解答】 解:如图1,v 将厶ABE 沿 AE 折叠,得到△ AB' E ,• AB' =AB=5 B' E=BE •- CE=3- BE,: AD=3 •- DB' =4,二 B ' C=1,v B ' h=cE+B' C 2,• BE "= ( 3 - BE 2+12, • BE =,如图2,:将厶ABE 沿 AE 折叠,得到△ AB' E , • AB' =AB=5 :CD// AB,:丄仁/ 3,:/ 仁/2,• / 2=7 3,:AE 垂直平分 BB', • AB=BF=5 • CF=4, :CF // AB,• △ CEF^A ABE15.如图,在矩形 ABCD 中, AB=5 BC=3 点E 为射线BC 上一动点,将△ ABE 沿AE 折叠, 得到△ AB' E .若B'恰好落在射线CD 上,则BE 的长为—或15 .【考点】PB:翻折变换(折叠问题) ;LB: 矩形的性质.即 d =:,5 CE+3.CE=12,. BE=15,综上所述:BE 的长为:一或15, 故答案为:一或15 .38小题,共75分.)* J .I . 一 ,其中m 是方程X 2+2X -3=0的根. 3 m -6m叶<【考点】6D:分式的化简求值;A8:解一元二次方程-因式分解法.m —35【分析】首先根据运算顺序和分式的化简方法, 化简十-,然后应用因3 in" -6n前一2数分解法解一元二次方程, 求出m 的值是多少;最后把求出的m 的值代入化简后的算式,求叶3/5、出算式 -* :,的值是多少即可.3 m -6m叶2m-3E【解答】解: _* ■ I :.-3 m -on.(TD +3) (E -3)(X +3) (X - 1) =0, 解得 X i =- 3, X 2=1,■/m 是方程X 2+2X - 3=0的根,••• m= - 3, m=l ,三、解答题(本题共 16•先化简,再求值:=IP -3________________ 3m(n5—2) m -2= 12•/x +2x - 3=0,•/ m+趺0,•• m^- 3,• m=1,所以原式=「一厂=3X1 X (1+3)=11217•在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分•某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图•已知A, B两组户数频数直方图的高度比为 1 : 5. 月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1) 这次接受调查的有50户;(2) 在扇形统计图中,“E”所对应的圆心角的度数是28.8 °;(3 )请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【考点】VB 扇形统计图;V5:用样本估计总体; V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)根据A B 两组户数直方图的高度比为 1 : 5,即两组的频数的比是 1 : 5,据此 即可求得A 组的频数;利用 A 和B 两组的频数的和除以两组所占的百分比即可求得总数; (2)用“ E ”组百分比乘以360°可得;(3 )禾9用总数乘以百分比即可求得 C 组的频数,从而补全统计图; (4) 利用总数2000乘以C 、D E 的百分比即可. 【解答】 解:(1) A 组的频数是:10=2;5•••这次接受调查的有(2+10)十(1 - 8%- 28%- 40%) =50 (户), 故答案为:50 ;故答案为:28.8(3) C 组的频数是:50X 40%=2Q 如图,(4) 2000X( 28%+8%+40%=1520 (户),月信星涔妻頼分组頻數曹左圉各組户数屈形统计图201010 --■ ■ ■ ■■ ■广 ■ ■ ■ ■ ■ ■ ■ ■¥ >9 ■ ■(2) “E ”所对应的圆心角的度数是360°X 8%=28.8°,月信星涔妻頼分组頻數曹左圉各組户数福形统计图5E18. 如图,AB是半圆O的直径,点P是半圆上不与点A B重合的一个动点,延长BP到点C, 使PC=PB D是AC的中点,连接PD PO(1)求证:△ CDP^A POB(2)填空:①若AB=4,则四边形AOPD勺最大面积为 4;②连接OD当/ PBA的度数为60°时,四边形BPDC是菱形.C【考点】L9:菱形的判定;KD全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP// AB, DP=AB由SAS可证厶CDP^A POB(2)①当四边形AOPD勺A0边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形, 再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:T PC=PB D是AC的中点,••• DP/ AB,••• DP=.AB,Z CPD2 PBOLa•/ BO=_AB,• DP=BO在厶CDP-与^ POB中,r DP=B0ZCPD^ZPBOPC=PB•••△CDP^A POB( SAS ;(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,=2X 2 =4;②如图:•••DP// AB, DP=BO•••四边形BPDO是平行四边形,••四边形BPDO是菱形,•PB=BQ•/ PQ=BQ•PB=BQ=PQ•△ PBQ是等边三角形,•/ PBA的度数为60°.故答案为:4; 60°.C19. 如图,在大楼AB的正前方有一斜坡CD CD=4米,坡角/ DCE=30,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A C E在同一直线上.(1)求斜坡CD的高度DE(2)求大楼AB的高度(结果保留根号)【考点】TA:解直角三角形的应用-仰角俯角问题;T9:解直角三角形的应用-坡度坡角问题.【分析】(1)在直角三角形 DCE 中,禾U 用锐角三角函数定义求出 DE 的长即可;(2)过D 作DF 垂直于AB,交AB 于点F,可得出三角形 BDF 为等腰直角三角形, 设BF=DF=x 表示出BC, BD, DC 由题意得到三角形 BCD 为直角三角形,禾U 用勾股定理列出关于 x 的方 程,求出方程的解得到 x 的值,即可确定出 AB 的长.【解答】 解:(1)在 Rt △ DCE 中, DC=4米,/ DCE=30,/ DEC=90 , ••• DE= DC=2 米;2(2)过D 作DF 丄AB 交AB 于点F , •••/ BFD=90,/ BDF=45 ,•••/ BFD=45,即△ BFD 为等腰直角三角形, 设 BF=DF=x 米,•••四边形DEAF 为矩形, • AF=DE=2米,即卩 AB=(x+2)米, 在 Rt △ ABC 中,/ ABC=30 ,BD= =BF=「X 米, DC=4米, •••/ DCE=30,/ ACB=60 , •••/ DCB=90 ,在Rt △ BCD 中,根据勾股定理得: 2x 2=」T +16, 解得:x=4+4 .:, 则 AB= ( 6+4 .=)米.球(每个足球的价格相同, 每个篮球的价格相同),若购买3个足球和2个篮球共需310元,…B C =;os30' =詈=二=「;「、米,20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮购买2个足球和5个篮球共需500元. (1) 购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共 96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?【考点】C9: 一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据费用可得等量关系为: 购买3个足球和2个篮球共需310元;购买2个足 球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价; (2)不等关系为:购买足球和篮球的总费用不超过 5720元,列式求得解集后得到相应整数解,从而求解.•••购买一个足球需要 50元,购买一个篮球需要80元.(2 )方法一:解:设购买a 个篮球,则购买(96 - a )个足球. 80a+50 (96- a )< 5720, 亦30.•/ a 为正整数,• a 最多可以购买30个篮球.•••这所学校最多可以购买 30个篮球. 方法二:解:设购买n 个足球,则购买(96 - n )个篮球. 50n+80 (96- n )< 5720, n 》65厶 •/ n 为整数,•- n 最少是66 96 - 66=30 个.【解答】(1)解:设购买一个足球需要 ■・」根据题意得- 解得沪50y=80,x 元,购买一个篮球需要y 元,•••这所学校最多可以购买30个篮球.21 •根据下列要求,解答相关问题:(1 )请补全以下求不等式- 2x2- 4x > 0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2- 4x;抛物线的对称轴x=- 1,开口向下,顶点(-1, 2)与x轴的交点是(0, 0), (- 2, 0),用三点法画出二次函数y= - 2x2- 4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程-2x2- 4x=0的解为 _ 1=0, x2=- 2③借助图象,写出解集:由图象可得不等式-2x2- 4x > 0的解集为 -2 < x w 0 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2- 2x+1v 4的解集①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3) 参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于的不等式ax2+bx+c > 0 (a > 0)的解集寸■・■ ■皆■ ■管5 ■■ 込一卜冷f I 4 ■§V 1 li 1:厶二為…;・・;L h I I II【分析】(1)直接解方程进而利用函数图象得出不等式- 2x2-4x>0的解集;(2)首先画出y=x2-2x+1的函数图象,再利用当y=4时,方程x2- 2x+仁4的解,得出不等式x2- 2x+1 V 4的解集;(3)利用ax +bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程-2x2- 4x=0的解为:x i=0, X2=- 2; ③不等式-2x2- 4x > 0的解集为:-2<§■耳■4)«h tl fl丿* • J te- n J ■ w "¥f【考点】HC二次函数与不等式(组) ;H2:二次函数的图象;H3:二次函数的性质.x w 0;(2)①构造函数,画出图象,如图2,:构造函数y=x2- 2x+1,抛物线的对称轴x=1, 且开口向上,顶点坐标(1, 0),关于对称轴x=1对称的一对点(0, 1), (2, 1), 用三点法画出图象如图2所示:②数形结合,求得界点:2当y=4 时,方程x - 2x+1=4 的解为:x i=- 1, X2=3;③借助图象,写出解集:由图2知,不等式x2- 2x+1 V 4的解集是:-1 v x v 3;(3)解:①当b2- 4ac> 0时,关于x的不等式ax2+bx+c > 0 (a> 0)的解集是x> 或x V =22a 2a当b2- 4ac=0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是:X M-当b2- 4ac v 0时,关于x的不等式ax2+bx+c> 0 (a> 0)的解集是全体实数.22. (1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BG AB上的点,且CE=BF连接DE过点E 作EG! DE 使EG=DE 连接FG FC,请判断:FG 与CE 的数量关系是 FG=CE,位置关系是 FG// CE . (2) 拓展探究:如图2,若点E 、F 分别是CB BA 延长线上的点,其它条件不变, 请出判断判断予以证明; (3)类比延伸:如图3,若点E 、F 分别是BC AB 延长线上的点,其它条件不变,【考点】LO 四边形综合题.利用等量代换即可求出 FG=CE FG// CE(2) 构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形 GHBF 是矩形后,利用等 量代换即可求出 FG=CE FG// CE(3) 证明△ CBF ^A DCE 即可证明四边形 CEGF 是平行四边形,即可得出结论. 【解答】 解:(1) FG=CE FG// CE;理由如下: 过点G 作GHLCB 的延长线于点 H,如图1所示: 则 GH// BF,Z GHE=90 , •/ EG 丄 DE•••/ GEH 丄 DEC=90 , •••/ GEH 丄 HGE=90 , •••/ DEC=z HGE^ZGHE=ZDCE在^ HGE" CED 中, ZHGE^ZDEC EG 二 DE :• △ HGE^A CED( AAS ,••• GH=CE HE=CD(1)中结论是否仍然成立?(1)中结论是否仍然成立?【分析】(1)构造辅助线后证明△ HGE^A CED 利用对应边相等求证四边形GHBF 是矩形后,请直接写出你的判断.医1•/ CE=BF•GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH•FG// CE•••四边形ABCD是正方形,•CD=BC•HE=BC•HE+EB=BC+EB•BH=EC•FG=EC故答案为:FG=CE FG// CE;(2) FG=CE FG// CE仍然成立;理由如下:过点G作GHLCB的延长线于点H ,如图2所示:•/ EG丄DE•/ GEH丄DEC=90 ,•••/ GEH丄HGE=90 ,•/ DEC=z HGE'ZGHE=ZDCE 在厶日6£与4 CED中,ZHGE=ZDEC ,EG-DE•△HGE^A CED( AAS ,•GH=CE HE=CD•/ CE=BF • GH=BF•/ GH// BF,•四边形GHBF是矩形,•GF=BH FG// CH• FG// CE•••四边形ABCD是正方形,••• CD=BC••• HE=BC•HE+EB=BC+EB•BH=EC•FG=EC(3) FG=CE FG// CE仍然成立.理由如下: •••四边形ABCD是正方形,•BC=CD / FBC=/ ECD=90 ,在厶CBF与厶DCE中,1 ZFBC-ZECDBC=DC•△CBF^A DCE( SAS ,•/ BCF=/ CDE CF=DE•/ EG=DE • CF=EG•••DE 丄EG•/ DEC/ CEG=90•/ CDE/ DEC=90•/ CDE/ CEG•/ BCF=/ CEG•CF/ EQ•四边形CEGF平行四边形,_ 223. 如图,二次函数y=ax+bx+c的图象与x轴的交点为A D (A在D的右侧),与y轴的交点为C,且A (4, 0), C ( 0,- 3),对称轴是直线x=1 .(1 )求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m设四边形OCMA勺面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA勺面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A, B、C, P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1 )利用抛物线的对称性可得到点D的总表,然后将A、C D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2 )设M( m, —x 2 x —3), |y M= 卅+― m+3 由S=S^ACM+S A OA M可得到S 与m 的函数关8 4 8 4系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB// PC则点P的纵坐标为-3,将y=—3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3, 把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)v A (4, 0),对称轴是直线x=l ,二 D (—2, 0).又••• C (0,—3)1二-3 二“ 16a+4b+c-04a-2b+c~0解得., b=——,c= - 3,8 4•••二次函数解析式为:丫= X- — x - 3.8 4••• s 冷 x OC X 吨 X OA X |yM =* X 3 x 吨 x 4X (-討计+3 =-討伽+6=一 弓2+9,当m=2时,s 最大是9.(3)当AB 为平行四边形的边时,则 AB// PC,• PC// x 轴.•••点P 的纵坐标为-3.3 2 3将y= - 3代入得:-匚x - ,x - 3= - 3,解得:x=0或x=2 . ••点 P 的坐标为(2,- 3). 当AB 为对角线时. ••• ABCP 为平行四边形, • AB 与CP 互相平分, •••点P 的纵坐标为3.把 y=3 代入得:一 x 2-—x - 3=3,整理得:x 2- 2x - 16=0,解得:x=1+屯厂.j 或 x=1 o 4综上所述,存在点 P (2,- 3)或P (1+ —, 3)或P (1 - —3)使得以A , B C, P四点为顶点|y M=-易 m 4m+3(m — 2)-S=S\ ACI\+S\的四边形为平行四边形.。
2019中考数学模拟试题含答案(精选5套)
2019年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x +1. ……②(第17题图)(第18题图)°痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N.(第23题图)(1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2018年初三适应性检测参考答案与评分意见一、选择题(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5B 、2.4C 、2.5D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2019九年级中考数学模拟试卷含参考答案(12)
2019九年级中考数学模拟试卷含参考答案(12)一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3 B.C.﹣D.﹣32.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2?a3=2a54.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10106.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,钟面上的时间是8:30,再经过t分钟,时针、分针第一次重合,则t为()A.B.C.D.8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.709.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a>0 B.b>0 C.c<0 D.abc>010.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB =5,则AE的长为()A.4 B.6 C.8 D.1012.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4等于()A.4 B.5 C.6 D.14二.填空题(共4小题,满分12分,每小题3分)13.因式分解:a3﹣ab2=.14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.15.用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.16.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124°,则∠A=.三.解答题(共7小题,满分52分)17.(6分)计算:﹣24﹣+|1﹣4sin60°|+(2015π)0.18.(6分)解不等式组:,并写出该不等式组的整数解.19.(7分)佳佳调査了七年级400名学生到校的方式,根据调查结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示“步行”的扇形圆心角的度数;(3)估计在3000名学生中乘公交的学生人数.20.(8分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)21.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.22.(8分)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),BC=6,求∠ABN的度数;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.23.(9分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2?a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:44亿=4.4×109.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°.【解答】解:设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x﹣0.5x=755.5x=75x=,答:至少再经过分钟时针和分针第一次重合.故选:B.【点评】此题考查一元一次方程的应用,钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.8.【分析】根据中位数、众数的定义即可解决问题.【解答】解:这些运动员成绩的中位数、众数分别是 4.70,4.75.故选:C.【点评】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9.【分析】由抛物线的开口方向向上可以得到a>0,由与y轴的交点为在y轴的负半轴上可以推出c<0,而对称轴为x=>0可以推出b<0,由此可以确定abc的符号.【解答】解:∵抛物线的开口方向向上,∴a>0,∵与y轴的交点为在y轴的负半轴上,∵对称轴为x=>0,∴a、b异号,即b<0,∴abc>0.故选:B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.【分析】如图,易证△CDE≌△ABC,得AB2+DE2=DE2+CD2=CE2,同理FG2+LK2=HL2,S1+S2+S3+S4=1+3=4.【解答】解:∵在△CDE和△ABC中,,∴△CDE≌△ABC(AAS),∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选:A.【点评】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).14.【分析】列举出所有情况,看出现2个男婴、1个女婴的情况数占总情况数的多少即可.【解答】解:可能出现的情况如下表婴儿1 婴儿2 婴儿3男男男男男女男女男男女女女男男女男女女女男女女女一共有8种情况,出现2个男婴、1个女婴的情况有3种,故答案为.【点评】用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:设第n个图形的棋子数为Sn.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;…第n个图形,S n=1+4+7+…+(3n﹣2)=.故答案为:;【点评】主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.16.【分析】根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.【解答】解:∵∠BOC=124°,∴∠OBC+∠OCB=180°﹣124°=56°,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112°,∴∠A=180°﹣112°=68°,故答案为:68°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.三.解答题(共7小题,满分52分)17.【分析】根据实数的运算法则以及特殊角的锐角三角函数值即可求出答案.【解答】解:原式=﹣16﹣2+|1﹣2|+1=﹣16﹣2+2﹣1+1=﹣16.【点评】本题考查实数的运算,解题的关键是熟练运用实数的运算法则,本题属于基础题型.18.【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分即可得到不等式组的解集及整数解.【解答】解:,解①得:5x+6>2x﹣6,5x﹣2x>﹣6﹣6,3x>﹣12,x>﹣4,解②得:3(1﹣5x)≥2(3x+1)﹣6,3﹣15x≥6x+2﹣6,﹣15x﹣6x≥2﹣6﹣3,﹣21x≥﹣7,x≤,∴不等式组的解集为:﹣4<x≤,∴该不等式组的整数解为﹣3,﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法和确定其整数解,属常规题,其步骤一般为:去分母,去括号,移项合并同类项,将x的系数化为1.19.【分析】(1)乘公交的学生数=400﹣步行人数﹣骑自行车人数﹣乘私车人数;(2)先计算步行所占调查人数的比,再计算步行扇形圆心角的度数;(3)先计算乘公交的学生占调查学生的百分比,再估计3000人中乘公交的人数.【解答】解:(1)乘公交的人数为:400﹣80﹣20﹣60=240(人)补全的条形图如右图所示(2)“步行”的扇形圆心角的度数为:360°×=72°(3)因为调查的七年级400名学生中,乘公交的学生有240人,所以乘公交的学生占调查学生的百分比为:×100%=60%.所以3000名学生中乘公交的约为:3000×60%=1800(人)答:3000名学生中乘公交的学生有1800人.【点评】本题考查了条形图和扇形图及用样本估计总体.题目难度不大,看懂条形图和扇形图是解决本题的关键.20.【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出答案.【解答】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=100千米,∴CD=BC?sin30°=100×=50(千米),AC==50(千米),AC+BC=(100+50)千米,答:开通隧道前,汽车从A地到B地要走(100+50)千米;(2)∵cos30°=,BC=100(千米),∴BD=BC?cos30°=100×=50(千米),CD=BC=50(千米),∵tan45°=,∴AD==50(千米),∴AB=AD+BD=(50+50)千米,答:开通隧道后,汽车从A地到B地可以少走(50+50)千米.【点评】本题考查了解直角三角形的应用,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.22.【分析】(1)得出AN、AB,利用直角三角形的性质解答即可;(2)连接MC,NC.只要证明∠MCD=90°即可;【解答】解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∴AM=MC=2,∵AN是⊙M的直径,∴∠ACN=∠BCN=90°,∴△ACN∽△BNC,∵BC=6,∴AC=2,∴AB=2AN=8,∴∠ABN=30°,(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.【点评】本题考查圆的切线的判定、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.如图,a∥b,∠2是∠1的3倍,则∠ 2等于()A°45° B. 90° C. 135° D.150°2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.63.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为()A.4 种B. 6 种C. 10 种D. 12 种4.已知12xy=⎧⎨=⎩是方程组120.ax yx by+=-⎧⎨-=⎩,的解,则a+b=()A.2 B.-2 C.4 D.-45.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图,,那么哥哥球衣上的实际号码是()A.25号 B.52号 C.55号 D.22号6.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( •)7.已知分式11+-xx的值是零,那么x的值是()A .-1B .0C .1D . 1±8.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( ) A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′ B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′ D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′9.如图,正方形ABCD 的边长是3 cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB →BC → CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形中箭头的方向( ) A .朝左B .朝上C .朝右D .朝下10. 已知10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩都是方程y ax b =+的解,则a 和b 的值是( ) A .11a b =-⎧⎨=-⎩B .11a b =⎧⎨=⎩C . 11a b =-⎧⎨=⎩D .11a b =⎧⎨=-⎩11. 将如图所示图形旋转 180。
后,得到的图形是( )A .B .C .D .12. 如图所示,1ABC S ∆=,若BDE DEC ACE S s S ∆∆∆==,则ADE S ∆等于( ) A .16B .17C .18D .1913.下列事件中,属于必然事件的是( ) A .明天一定是晴天 B .异号两数相乘,积为负数 C .买一张彩票中特等奖 D .负数的绝对值是它本身14.在①(2)(2)a b b a -+;②(34)(43)a b b a -+--;③2(2)(22)x y x y +-;④()()a b b a --的计算中,能利用平方差公式计算的有( ) A .1 个B .2 个C .3 个D . 4 个15.如图,由∠2=∠3,可以得出的结论是( )A .FG ∥BCB .FG ∥CEC .AD ∥CE D .AD ∥BC16. 方程231x y -=的解可以是( ) A .11x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C . 11x y =-⎧⎨=⎩D . 11x y =-⎧⎨=-⎩17.已知:如图,∠A0B 的两边 0A 、0B 均为平面反光镜,∠A0B=40.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( ) A .60°B .80°C .100 °D .120°18.如图,已知 AB ∥CD ,∠A = 70°,则∠1 的度数为( ) A . 70°B . 100°C .110°D . 130°19.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于( ) A .三角形内部B .三角形的边上C .三角形外部D .无法确定20.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( ) A .0个B .l 个C . 2个D .3个21.已知等腰三角形的一个底角为80,则这个等腰三角形的顶角为( ) A .20B .40C .50D .8022.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .823.图中不是多面体的是()A.B.C.D.24.下列图形中,不是正方体的表面展开图的是()A. B.C. D.25.当我国发现H1N1流感第一个确诊病例时,卫生部要求全国各地做好流感预防工作. 一个立方体玩具的每个面上都有一个汉字,其表面展开图如图所示,那么在该立方体中和“毒”字相对的字是()A.卫B.防C.讲D.生26.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示的是该位置上立方体的个数,则这个几何体的主视图是()A.B.C.D.27.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x元,则所列方程正确的是()x-=⨯A.50005000 3.06%x+⨯=⨯+B.500020%5000(1 3.06%)x+⨯⨯=⨯+C.5000 3.06%20%5000(1 3.06%)x+⨯⨯=⨯D.5000 3.06%20%5000 3.06%28.有甲、乙两种小麦,测得每种小麦各10株的高度后,计算出样本方差分别为211S=甲,2 3.4S=乙,由此可以估计()A.甲比乙长势整齐B.乙比甲长势整齐C.甲、乙整齐程度相同D.甲、乙两种整齐程度不能比29.三角形的三条高所在的直线相交于一点,这个交点()A.三角形内B.三角形外C.三角形边上D.要根据三角形的形状才能定30.若P和Q都是关于x 的五次多项式,则 P+Q是()A.关于x 的五次多项式B.关于x 的十次多项式C.关于x 的四次多项式D.关于 x 的不超过五次的多项式或单项式31.北京奥组委从4月15日起分三个阶段向境内公众销售门票,开幕式门票分为五个档次,票价分别为人民币5000元、3000元、1500元、800元和200元.某网点第一周内开幕式门票的销售情况见统计图,那么第一周售出的门票票价..的众数是()A.1500元B.11张C.5张D.200元32.如图,在△ABC与△DEF中,给出以下六个条件中(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F,以其中三个作为已知条件,不能..判断△ABC与△DEF全等的是()A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)33.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.334.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”.该园占地面积约为800000m2,若按比例尺1:2000缩小后,其面积大约相当于()A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积35.下列判断,正确的个数有()①如果两个数相等,那么这两个数的绝对值一定相等;②如果两个数不相等,那么这两个数的绝对值一定不相等;③如果两个数的绝对值相等,那么这两个数一定相等;④如果两个数的绝对值不相等,那么这两个数一定不相等.A.1 个B. 2 个C.3 个D.4 个36.23232(3)(1)(1)---⨯---的值为()A.-30 B.0 C.-1 D.24 37.如果一个数的平方与这个数的差等于零,那么这个数只能是()A.0 B.-1 C. 1 D.0 或 138.用计算器求233.54-,按键顺序正确的是()A.B.C.D.以上都不正确39.某人第一次向南走 40 km,第二次向北走30 km,第三次向北走 40 km.那么最后相当于这人()A.向南走 110 km B.向北走 50 kmC.向南走 30 km D.向北走30 km40.五个有理数的积是负数,这五个数中负因数个数是()A.1 个 B.3 个 C.5 个D.以上选项都有可能41.下列运算中,正确的是()A235=B.2233=C5-1=2D263=42.下列说法中,错误的是()A.任何一个数都有一个立方根,且是唯一的B.负数的算术平方根不存在,正数的算术平方根一定是正数C.0没有算术平方根D.正数的四次方根一定有两个,且互为相反数43.汽车上山速度为 a(km/h),下山的速度为b(km/h),上山和下山行驶的路程相同,则汽车的平均速度为()A .11a b+B .1a b+ C .2aba b+ D .2a b +44.下列说法:①代数式21a +的值永远是正的;②代数式2a b+中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个B .2 个C .3 个D .4 个45.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有( )条鱼 A .400条 B .500条 C .800条 D .1000条46.如图是某校九年级(1)班的全体同学最喜欢的球类运动的统计图,则下列说法中,正确 的是( ) A .从图中可以直接看出喜欢各种球类的具体人数 B .从图中可以直接看出全班的总人数C .从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D .从图中可以直接看出全班同学现在最喜欢各种球类的人数的比例47.若一个长方形的周长为 40cm ,一边长为l cm ,则这个长方形的面积是( ) A .(40)l l - cm 2B .1(40)2l l - cm 2C .(402)l l - cm 2D . (20)l l - cm 248.下列条件中不能判定两个直角三角形全等的是 ( ) A .两条直角边对应相等 B .直角边和斜边对应相等 C .两个锐角对应相等 D .斜边和锐角对应相等49.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次训练成绩分别用实线和虚线连结,如图所示,下面结论错误的是( )A .乙的第二次成绩与 第五次成绩相同B 第三次测试甲的成绩与乙的成绩相同C .第四次测试甲的成绩比乙的成绩多2分D .五次测试甲的成绩都比乙的成绩高50.由图,可知销售量最大的一年是()A. 2005年B. 2006年C.2007年D.无法确定51.下列图形能比较大小的是()A.直线与线段B.直线与射线C.两条线段D.射线与线段52.下列四个图中,能表示线段x=a+c-b的是()A. B.C. D.53.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A、B、C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行54.下列说法错误的是()A.(-3)2的平方根是±3B.绝对值等于它的相反数的数一定是负数C.单项式232zy x是同类项5x y z与32D.近似数3.14×103有三个有效数字55.如图所示,∠A=32°,∠B=45°,∠C=38°,则∠DFE的度数为()A.120°B. ll5°C.110°D.105°56.下面每组图形中的两个图形不是通过相似变换得到的是( )57.下列事件中,属于必然事件的是( ) A .如果 a>b ,那么a+c>b+c B .如果 a>b ,那么 ac>bc C . 如果 a>b ,那么 a 2>b 2D . 如果 a>b ,那么a b >58. 用代数式表示“a 、b 两数和的平方的 2倍”,正确的表示是( ) A .222a b +B .22()a b +C .222a b +D .222()a b +59.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是( ) A .0B .124C .78D .1860.下列命题正确的是( ) A .三点确定一个圆B .一个圆只有一个内接三角形C .直角三角形的外心是斜边的中点D .等腰三角形的外心是在三角形的内部61.若一组数据80,82,79,81,69,74,78,x ,其众数是82,则( ) A .x =79B .x =80C .x =81D .x =8262.如图,同心圆中,大圆的弦 AB 交小圆子点 C .D ,已知 AB = 4,CD= 2,圆心O 到AB 的距离OE=1,则大、小两圆的半径之比为( )A .3:2B 32C 52D 5363.弦 AB 把⊙O 分成两条弧的度数的比是4:5,M 是 AB 的中点,则∠AOM 的度数为( ) A .160°B .l00°C .80°D .50°64.如图,点A 、B 、C 、D 是同一个圆上四点,则图中相等的圆周角共有 ( ) A .2 对B .4 对C .6 对D .8 对65.下列每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是()A.B.C.D.66.如图,⊙O 的直径 CD过弦 EF的中点G,∠EOD=40°,则∠DCF 等于()A.80°B.50°C.40°D.20°67.已知弦AB把圆周角分成1 : 3的两部分,则弦AB所对的圆周角的度数为()A.452B.1352C. 900或270D. 450或135068.某学习小组在讨论“变化的鱼”,知道大鱼与小鱼是位似图形,如图所示,则小鱼上的点(a,b)对应大鱼上的点()A.( -2a , -2b)B.(-a, -2b)C.(-2b, -2a)D.(-2a, -b)69.下列图形不相似的是()A.所有的圆B.所有的正方形C.所有的等边三角形 D.所有的菱形70.二次函数y=(x-1)2+8的最小值是()A.-8 B.8 C.-1 D.171.如果α、β都是锐角,下面式子中正确的是()A.sin(α+β)=sinα+sinβB.cos(α+β)=21时,则α+β=600C.若α≥β时,则cosα≥cosβD.若cosα>sinβ,则α+β>90072.下列判断正确的是()A.若0m<,则57m m<B.若x为有理数,则2257x x<-C.若x为有理数,则250x+>D.若57m m-<,则0m<73.已知三边长为3、4、6的ΔABC的内切圆半径为r,则ΔABC的面积为()A.5r B. 6r C. 0.5r D. 6.5r74.若a、b分别表示圆中的弦和直径的长,则()A.a>b B.a<b C. a=b D.a≤b75.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A.15B.25C.625D.192576.圆的切线()A.垂直于半径 B.平行于半径C.垂直于经过切点的半径 D.以上都不对77.已知⊙O 的半径为 r,圆心0到直线l的距离为 d. 若直线l与⊙O 有交点,则下列结论正确的是()A.d=r B.d≤r C. d≥r D. d <r78.如图,为了确定一条小河的宽度BC,可在点C左侧的岸边选择一点A,使得AC⊥BC,若测得AC=a,∠CAB=θ,则BC=()A.asinθB.acosθC.atanθD.θtana79.如果一个三角形内心与外心重合,那么这个三角形是()A.任意三角形 B.直角三角形 C.任意等腰三角形 D.等边三角形80.如图,点 0是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOCc=()A.130°B.100°C. 65°D. 50°81.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于()A .32B .22C .233D .282.如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( ) A .2B .1C .1.5D .0.583.关于视线的范围,下列叙述正确的是( )A .在轿车内比轿车外看到的范围大B .在船头比在船尾看到的范围大C . 走上坡路比走平路的视线范围大D .走上坡路比走平路的视线范围小84.如图是小颖同学一天上学、放学时看到的一棵树的影子的俯视图,将它们按时间先后顺序进行排列,排列正确的是( )A .②③①④B .④①③②C .①④③②D .③②④①85.如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )A .圆B .圆柱C .梯形D .矩形86.图中几何体的主视图是( )A .B .C .D .87.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( ) A .21 B .31 C .41 D .51 88.已知样本数据个数为30,且被分成4组,各组数据个数之比为2∶4∶3∶1,则第二小组和第三小组的频率分别为( ) A .0.4和0.3B .0.4和9C .12和0.3D .12和9A .0x y +> 0x y -< C .0xy < D .0xy> 90.下列不等式变形正确的是( )A 由412x ->得41x >B .由24x -<得2x <-C .由02y>得2y > D .由53x >得35x >91. 满足不等式组210107m m +≥⎧⎨->⎩的整数m 的值有( )A .1 个B .2 个C .3 个D .4 个92.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( ) A .至多6人B .至少6人C .至多5人D .至少5人93.下列各式中,是一元一次不式的为( ) A .5x x≥B . 2212x x >-C .21x y +<D .2x 13x +≤94.若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是( ) A .球B .圆柱C .圆锥D .棱锥95.如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD=BE=CF ,△DEF 的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形 C .直角三角形D .不等边三角形96.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行的距离是( ) A .6 mB . 8 mC . 10 mD . 12 m97. 下列化简中错误的是( ) A 55599==B 0.0l 0.49⨯0.0l 0.49=0.10.70.07=⨯=C 22114D 11177=⨯= 98.下列运算中正确的是( )A .5L =-B .2(5=-C .5=D 599. 如果代数式2934k k -+的值为 2,那么k 的值是( )A .32-B .3 C .32±D .3-100.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( ) A .150人 B .300人C .600人D .900人101.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<102.如图,梯形ABCD 中,AD ∥BC,AD=AB,BC=BD,∠A=100°,则∠C=( ) A .80°B .70°C .75°D .60°103. 一个二次函数的图像经过A (0,0),B (-1,-11),C (1,9)三点,则这个二次函数的解析式是( ) A .y =-10x 2+xB .y =-10x 2+19xC .y =10x 2+xD .y =-x 2+10x104.小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为 x ,一年 到期后, 银行将本金和利息自动按一年定期转存,设两年到期后,本利和为 y 元,则y 与x 之间的函数关系式为( ) A .25y x x =+B .2500y x =+C .2500y x x =+D .2500(1)y x =+105.一个二次函数的图象与抛物线2241y x x =--有相同的顶点,并且在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随X 的增大而减小,则这个二次函教的关系式为 ( ) A .224y x x =-+-B .223(0)y ax ax a =-->C .2245y x x =---D .223(0)y ax ax a a =-+-< 106.若抛物线2-6y x x c =+的顶点在x 轴上,则 c 的值为( ) A .9B .3C .-9D .0107.二次函数2y ax bx c =++的图象如图所示,根据图象所给的信息,确定 a 、b 、c 的取值情况下列正确的是( )A . a<0,b<0,c>0B .a<0, b>0,c>0C .a<0,b>0,c<0D .a>0 ,b<0 ,c>0108.已知反比例函数的图象经过点 (3,2),则当2x =y 的值是( ) A .2B 2C .-6D 223109.1a -a 的取值范围是( ) A .1a <B .1a >C .1a ≤D .1a ≥110.下列定理中,有逆定理的是( ) A .全等三角形的对应角相等 B .三角形的中位线平行于第三边 C .四边形的外角和等于360°D .等腰三角形的两个底角相等111.下列特征中,等腰梯形具有而直角梯形没有的是 ( ) A .一组对边平行B .两腰不相等C .两角相等D .对角线相等112.在□ABCD 中,AB+BC=11cm ,∠B=30°,S ABCD =15cm 2,则AB 与BC 的值可能是( )A .5cm 和6cmB .4cm 和7cmC .3cm 和8cmD .2cm 和9cm113.下列说法正确的是( )A .汽车沿一条公路从A 地驶往B 地,所需的时间 t 与平均速度v 成正比例 B .圆的面积S 与圆的半径R 成反比例C .当矩形的周长为定值时,矩形的长与宽成反比例D .当电器两端的电压V 为 220 V 时,电器的功率 P (W )与电阻 R (Ω)成反比例(功 电压的平方功率=电阻)114.下列各式从左到右的变形中,是因式分解的为( ) A .()a x y ax ay -=-B .2221+(1)(1)x y x x y -=-++C .221()a b a a b a+=+D .1(1)(1)ab a b a b -+-=+-115.已知反比例函数2y x=,下列结论中,不正确...的是( )A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第三象限内D .若1x >,则2y < 116.17的近似值( )A .大于16小于18B .大于4小于5C .大于3小于4D .大于5小于6 117.下列各类项目中,所使用的“球”不属于球体的是( ) A .足球B .乒乓球C .羽毛球D .篮球118.BC 是 Rt △ABC 的一直角边,以 EC 为直径的圆交斜边于 D .若 BC=4 cm ,∠ACB =60°,则 AD 为 ( ) A .4cnnB .6 cmC .2 cmD .8 cm119.如图所示,在高为 300 m 的山顶上,测得一建筑物顶端与底部俯角分别为 30°和 60°,则该建筑物高为( ) A .200mB .lOOmC .1003 mD .3003120. 某厂一月份的总产量为 500 吨,三月份的总产量达到 720 吨,若设平均每月的增长率是 x ,则可以列方程( )A .2500(1)720x +=B .500(12)720x +=C .2500(1)720x +=D .2720(1+)500x =【参考答案】***试卷处理标记,请不要删除评卷人 得分一、选择题1.C 2.C 3.B 4.B 5.A 6.C 7.C11.D 12.A 13.B 14.B 15.B 16.D 17.B 18.C 19.C 20.D 21.A 22.C 23.D 24.C 25.B 26.A 27.C 28.B 29.D 30.D 31.A 32.D 33.C 34.C 35.B 36.D 37.D 38.B 39.D 40.D 41.D45.D 46.D 47.D 48.C 49.D 50.C 51.C 52.D 53.D 54.B 55.B 56.D 57.A 58.B 59.D 60.C 61.D 62.C 63.C 64.B 65.B 66.D 67.D 68.A 69.D 70.B 71.B 72.C 73.D 74.D 75.C79.D 80.A 81.C 82.B 83.D 84.B 85.D 86.C 87.B 88.A 89.D 90.D 91.C 92.B 93.D 94.C 95.A 96.C 97.D 98.D 99.C 100.B 101.B 102.B 103.D 104.D 105.D 106.A 107.B 108.C 109.D113.D 114.D 115.B 116.B 117.C 118.B 119.A 120.A。