储层流体包裹体在油气成藏期次和过程中的应用
流体包裹体在油气成藏研究中的应用

流体包裹体在油气成藏研究中的应用油气藏是地质学中重要的一种构造,也是地质勘探的重要目标。
油气藏发育的特征以及鉴定油气的构造环境,是判断油气勘探成败的关键。
而流体包裹体可以为油气成藏研究着想提供有力的技术支撑和科学数据支持。
流体包裹体是油气藏研究中重要的一个组成部分,它是油气藏中的油气源、流体运移的指示物质和油气生成、混合、分离的决定因素。
流体包裹体的研究是油气成藏研究的重要组成部分,也是地质勘探中不可或缺的一环。
流体包裹体主要可以分为三大类:气体包裹体、液体包裹体和油气包裹体。
其中,气体包裹体可以解释油气藏形成的构造环境,液体包裹体可以研究油气藏里形成构造演化,油气包裹体则可以理解油气成藏机制和油气勘探的运行路径。
首先,气体包裹体可以帮助研究人员更准确地鉴定油气藏的形成环境,以便进行更有效的勘探工作。
据研究表明,气包可以提供许多有用信息,例如油气藏类型,油气藏中存在的油气源,以及油气藏中油气运移过程等等。
因此,利用气包研究可以有效改善油气勘探的效率。
其次,液体包裹体可以帮助研究人员研究油气藏的构造演化过程,从而更有效地开发油气藏。
液包研究可以提供许多有用信息,例如油气藏的形成机制、构造演化期质量、油气源演化和扩散特征、油气藏中油气的混合和分离机理及其影响等。
因此,利用液包研究可以有效提高油气藏开发的效率。
最后,油气包裹体可以帮助研究人员理解油气成藏机理和油气勘探的运行路径,从而更有效地开发油气藏。
油气包裹体通过研究可以提供许多有用信息,例如油气成藏机理、油气勘探运行路径、油气藏扩散机理、油气藏对温度和压力的响应特征等。
因此,利用油气包裹体研究可以有效改善油气勘探和开发的效果及结果。
综上所述,流体包裹体可以为油气成藏研究提供有力的技术支持和科学数据支持,从而更有效地开发油气藏,并为油气勘探和开发提供有效的帮助。
因此,对流体包裹体更深入地研究,将对油气勘探开发事业产生重要影响和改善。
由于流体包裹体研究的重要性,以及越来越多的科学研究结果,流体包裹体的应用也越来越广泛。
油气成藏研究中流体包裹体的作用

油气成藏研究中流体包裹体的作用作者:胡锦杰来源:《科学导报·学术》2020年第13期摘 ;要:通过对包裹体的研究能够有效的判断石油勘测地区成岩或成藏作用的时间,进而更好的了解油气的运输规律,从而推测出石油勘查地区的岩层构造,为以后的石油开采奠定良好的基础。
由于包裹体本身具有非常复杂的特性和多变的形态,所以在利用包裹体进行研究的时候必须要确定包裹体的体系均衡,而且必须要保证流体包裹体在形成包裹体之后是密封且等容的,如果说包裹体存在一定的缝隙或者说容量存在差异性的话在后期的研究过程中会因为温度和压力产生的变化而造成包裹体的变形,甚至是爆炸,会对研究人员造成人身威胁,也会对研究结果产生非常大的影响。
因此就包裹体在石油地质研究中的应用笔者进行了深入的讨论,根据包裹体现有的应用对包裹体未来的发展趋势进行推测,希望能够对包裹体在石油地质研究中的安全应用起到一定的推动作用。
关键词:包裹体;石油地质研究;流体包裹体流体包裹体是流体运移过程中产生于矿物中的,流体被圈存于矿物之中,没有内外物质的交换,很好的保留了流体原始的物理性质,因而石油地质学者将其应用于石油勘探研究领域,并逐步广泛用于油气成藏期次的研究。
1 流体包裹体法原理运用流体包裹体研究油气成藏期次,通常是借助流体包裹体的均一温度,确定油气运移充注时储层的古地温,根据古地温梯度进一步确定包裹体的形成深度,再根据研究区的沉積埋藏史和热演化史来确定包裹体的形成时间,进而确定自生矿物和油的充注时间。
这种方法直接利用了油气成藏中古油气流体的相关证据,结果更准确,更直接,故被广泛采用。
2 包裹体技术在油气成藏中的应用和发展目前来说,包裹体在油气勘探研究中应用比较广泛。
从效果上来讲,虽然说利用包裹体能够有效的推断出油气的成岩、成藏时期,但是由于包裹体本身的独特性,所以在推断结果上也存在一定的不确定风险。
在包裹体应用的过程中,包裹体往往会因为地表温度、矿物结晶温度等外界因素的干扰而产生自身特性的改变,而在这种包裹体本身就出现变化的条件下所测出的数据自然也就存在明显的误差。
应用流体包裹体研究油气成藏以塔中奥陶系储集层为例

应用流体包裹体研究油气成藏以塔中奥陶系储集层为例1. 本文概述随着全球能源需求的不断增长,对油气资源的勘探与开发显得尤为重要。
在我国,塔里木盆地作为重要的油气生产基地,其奥陶系储集层的研究对于理解油气成藏机制、提高油气勘探成功率具有重要意义。
本文旨在通过应用流体包裹体技术,对塔中奥陶系储集层油气成藏过程进行深入研究,以期为该区域的油气勘探提供科学依据。
流体包裹体作为地质流体活动的直接记录者,能够提供油气藏形成和演化的重要信息。
本文首先对流体包裹体的基本概念、形成机制及其在油气成藏研究中的应用进行概述。
接着,详细介绍了塔中奥陶系储集层的地质背景、流体包裹体的岩相学特征及其在油气成藏过程中的作用。
通过分析流体包裹体的显微测温数据,探讨了油气成藏的温度、压力条件及其演化历史。
结合区域地质资料,建立了塔中奥陶系储集层油气成藏的动力学模型,并对油气勘探前景进行了评价。
本文的研究成果不仅有助于深化对塔中奥陶系储集层油气成藏机制的认识,而且对于指导我国类似盆地的油气勘探具有重要的实践意义。
2. 塔中奥陶系储集层地质概况塔中地区位于中国塔里木盆地中央隆起带的东部,是一个典型的油气富集区。
该地区的奥陶系储集层是塔里木盆地内重要的油气储层之一,其发育和分布对于油气成藏具有重要的控制作用。
奥陶系储集层主要由碳酸盐岩组成,包括石灰岩、白云岩和泥质灰岩等。
这些碳酸盐岩在沉积过程中经历了多期构造运动和成岩作用,形成了复杂的储集空间系统。
储集空间主要包括溶蚀孔洞、裂缝和晶间孔等,其中溶蚀孔洞是最主要的储集空间类型。
这些储集空间的形成与分布受到了多种因素的控制,包括沉积环境、成岩作用、构造运动以及流体活动等。
在地质历史上,塔中地区经历了多期的构造运动和热液活动,这些活动对于奥陶系储集层的形成和演化产生了重要影响。
构造运动导致了储集层的褶皱和断裂,形成了有利于油气运移和聚集的构造格局。
热液活动则提供了丰富的流体来源和能量,促进了储集空间的溶蚀和扩大,同时也为油气的生成和运移提供了有利条件。
流体包裹体在油气成藏研究中的应用现状

摘
要 : 本文在 总结 国 内外 流体 包裹体 研 究的基 础上 ,介 绍 了流体 包裹体研 究中的三 个 关键 问题 : ( )捕 获时期 与宿 1
主 矿 物 的 生 长 时 期 的 关 系 ; ( )捕 获 时 ,流 体 相 是 否 均 一 ; ( )伸 长 对 均 一 温 度 的 影 响 。 并 且 进 一 步介 绍 了流 体 包裹 2 5
T,T l T l 2 d
图1 流体包 裹体在过热埋藏 中的假设相 图 ( b n e 1 .0 0 T i t a . 20 ) o
2 流体包裹体在油气 成藏研 究中的应用 2 1评价热成熟史 . 镜质 体反射率作 为传统 的有机质 成熟度评价方法 ,被, 泛用于烃源岩 评价 ,但 是 由于不 同地质 条件和样本 的限制 , 镜 质体反射率可能不 能使用 。T b n o i 等 ( 0 0 2 0 )在前人热液
起温度 的升高 ,促使流 体包裹体 的伸 长,进而造成 均 …温
度升高 。 Tbn o i 等 ( 0 0 合 理 假 设 了 流 体 包 裹 体 在 过 热 埋 20 ) 藏 中 ,其 压 力 、 温 度 的变 化 , 说 明 了流 体 包 裹 体 在 过 热 伸
收稿 日期:2 1 — 8 2 0 0 0 — 8修 回 E期 :2 1 - 9 8 l 0 O 0 —1
流体包裹体作 为地质流体研 究的一种重要对 象,记录 了矿物 或裂缝 闭合 时,流体的古温度 、古压力 、古盐度及 成分等重 要原始信 息, 已在石油地质研 究领域得 到了广泛
的应 用 。 本 文 就 流 体 包 裹 体 研 究 的 关键 问题 及 其 在 油 气 成 藏 中 的进 展 作 了简 要 个应 用 : ( )评价 热成 熟史 ; ( )判别 油 气运移 通道 ; ( )成藏期 次划分 。 1 2 5 关键词 : 包裹体 ;油 气;成 藏
流体包裹体在油气成藏研究中的应用

流体包裹体在油气成藏研究中的应用油气藏是地球的一种自然资源,它以原油和天然气的形式存在。
因此,探测油气藏的形态和空间分布,特别是在那些难以进行实地检查的地方,是采油工程的重要组成部分。
油气藏的研究通常借助于地球物理勘探中的技术,包括分布式参数探测、地震地球物理勘探、反射波成像等。
然而,这些技术都有其局限性,例如无法准确表征油气藏的多维度空间结构,特别是不同尺度的气体和液体的层状和结构物。
流体包裹体(FIP)是一种新型技术,用于探测研究油气藏的特点和结构特征。
该技术基于通过非破坏性测量求解非线性模型,以了解流体包裹体如何表征油气藏的空间结构。
该技术具有一系列优点,可以获得更为准确的油气藏特征,并且可以根据每个流体包裹体的特性,推断出其中的流体类别,从而实现油气藏无损检测。
此外,这种技术还可以有效表征油气藏的层状和结构特征,有助于更好地理解油气藏的空间结构,指导油气勘探和钻井工程。
从技术角度来看,FIP可以通过诸如矩阵和低秩矩阵分解等数学方法来求解,并可以做到准确地表征油气藏的特征,如体积横向扩散系数、体积垂向扩散系数、视频系数、水驱横向扩散系数等。
此外,FIP还可以使用视觉化分析工具,如三维建模、地球识别系统等来探测油气藏,从而更准确地表征油气藏的特征和结构。
在过去的几十年中,FIP技术在油气藏表征领域取得了巨大进步。
目前,它已被广泛应用于国内外,用于表征油气藏的各种特征。
例如,在拉萨盆地西部油气田,研究人员使用FIP技术,分析了油气藏的空间结构特征,发现了其中巨大的含油层系,有助于发展高效的油气勘探和钻井工程。
此外,在火炬盆地,研究人员使用FIP技术,分析了油气藏的特性,推断出油气藏的构造深度,指导了勘探和发展。
从上述例子中可以看出,FIP技术可以弥补其他技术的不足,准确表征油气藏的特征和结构,为油气勘探和钻井提供有用的参考。
综上所述,FIP技术是当前油气藏研究和勘探工程中的一项重要技术。
它通过提取油气藏的特征和结构特征,提供了准确可靠的参考,有助于更好地理解资源的分布结构,引领油气藏的勘探和开发。
流体包裹体在油气地质中的应用

流体包裹体在油气地质中的应用流体包裹体的发展已历经150余年。
近年来,流体包裹体在油气地质勘探中起到了不可获取的作用,受到广大油气地质工作者的重视。
文章在前人对流体包裹体研究的基础上,简述了流体包裹体的类型和研究手段,重点阐述流体包裹体在油气成藏、运移和储集上的应用。
标签:流体包裹体;油气地质;研究方法;应用自11世纪Abu Reyhan提出包裹体一词并对其进行定性描述后[1],许多专家、学者便开始对包裹体进行研究。
1858年,Sorby提出通过对流体包裹体进行测温从而获得成矿温度这一理论。
直到1933年,Newhuns用均一法测定矿物中包裹体的均一温度,使流体包裹体的研究得到越来越多的重视。
至本世纪前十年(2001-2010),流体包裹体的技术和方法在国内得到全面的发展,并在矿床学、构造地质、油气地质等诸多领域广泛应用。
文章主要对近些年来流体包裹体在油气地质中的新思路和新方法进行阐述。
1 概念与分类流体包裹体是成岩成矿流体(含气液的流体或硅酸盐熔融体)在矿物结晶生长过程中,被包裹在矿物晶格缺陷或穴窝中,至今尚在主矿物中封存并与主矿物有着明显的相边界的那一部分物质[2]。
流体包裹体可分为七种,包括纯液体包裹体(单项)、纯气体包裹体(单项)、液体包裹体(气液两相,液相占包裹体体积50%以上)、气体包裹体(气液两相,气体占包裹体50%以上)、含子矿物包裹体(气液固三相)、含液体CO2包裹体(气相CO2、液相CO2、盐水包裹体)和油气包裹体(气相、液相和碳氢化合物)。
油气包裹体往往是有机质在埋藏演化、油气运移和储集过程中被包裹在烃源岩或储层内部的流体组分,除盐水溶液、液相、气相或其他非有机之外,全部或部分含有有机质,且形成后没有外来矿物进入或者自身矿物的溢出,能够为油气形成时的物化性质、运移和充注的时间、成藏期次等提供有力证据,是反应油气生-运-聚的直接标志。
油气包裹体主要可分为两大类:有机包裹体(烃包裹体)和盐水包裹体。
浅谈利用流体包裹体确定油气藏的形成时期

255流体包裹体是和矿物相伴生的,成矿流体包裹在矿物晶格缺陷中形成流体包裹体。
其中记录了油气水充注储层时的性质、组份以及物化条件等一些重要的信息,通过其能有效地研究烃类流体活动。
本文通过对传统地质学方法以及流体包裹体法确定油气藏形成时期进行系统的论述与比较,突出利用储层中流体包裹体来分析确定油气成藏时期这一方法的优越性。
1 流体包裹体分类油气盆地中的流体包裹体按不同分类方式可划分为不同的类型,按组成性质划分结果如表1。
此外,还有其他一些划分方法,如可按流体包裹体的捕获条件划分为均一体系和非均一体系捕获的包裹体;按照不同形成阶段捕获的流体包裹体可划分为不同期次的流体包裹体。
2 传统地质学分析法确定油气藏形成时期的传统地质学分析法主要包括圈闭形成时间法、烃源岩主生烃期法以及油气藏饱和压力法等。
(1)圈闭形成时间法。
油气在圈闭中聚集后才成藏,因此,油气藏形成的时间不可能早于圈闭的形成时间。
圈闭形成时间法是通过研究圈闭的发育历史,进而来间接估算油气成藏时间的一种研究方法。
这种方法只能得到油气成藏的最早时间,但不能确定具体的年代。
(2)烃源岩主生烃期法。
烃源岩生排烃之后油气才聚集成藏,烃源岩主生烃期法是通过研究主生烃期来估算油气成藏的时间。
烃源岩主要的生烃期的确定需要准确了解烃源岩以及盆地的一些信息,但这些地质资料往往无法全部获得。
另外,在叠合含油气盆地中,现今油藏的有效成藏时期与烃源岩的主生油期不是完全一致的。
以上因素致使通过烃源岩排烃期确定油气成藏时期变得困难。
(3)油气藏饱和压力法。
油气聚集成藏时天然气在原油中呈饱和态溶解,在沉积和构造等相对稳定条件下油气藏的饱和压力基本保持不变且与地层压力相当。
由此,可根据油气藏的饱和压力推断油气藏形成时的埋深,从而换算出对应的地质时代,确定油气藏形成时间。
对于叠合含油气盆地,油气藏在形成后经历构造抬升或有多期次的油气注人,这些使得油气藏最初形成时的饱和压力和相态发生改变。
利用流体包裹体确定油气成藏年代

利用流体包裹体确定油气成藏年代1.1国内外研究现状近年来由于包裹体测试技术的提高,有机包裹体已成为含油气盆地研究的重要手段之一。
流体包裹体作为地球化学的一种手段,已广泛用于矿床学等领域中,并取得了显著成效。
而包裹体在沉积学及石油地质中的应用,只有十几年的历史。
研究表明,流体包裹体在测定古地温、探讨油气演化及生油岩的评价等方面有着广泛的用途。
1.2原理流体包裹体是在矿物生长过程中被包裹在矿物晶格的缺陷或窝穴中的成矿流体。
流体包裹体在油气储层中广泛分布,按其相态可分为液体包裹体,气体包裹体和气液包裹体;按其成分可以分为盐水包裹体和油气包裹体。
油气包裹体是油气在储集层中运移和聚集过程中,被储集层的成岩矿物所包裹而形成的,储集层中的油气包裹体存在反映了在地质历史时期储集层油气充注事件。
伴随生烃盆地的演化,形成的有机包裹体的类型、特征等不断地发生规律性的变化。
根据有机包裹体的演化特点可以确定有机质的热演化程度和油气的形成阶段。
在这里要指出的一点是,烃类包裹体的荧光色不能作为区分期次的主要依据,因为许多情况下荧光色与包裹体形成过程的分异作用有关。
在实验室将气液包裹体置于冷热台上加热至气相消失,再恢复成均一液相时的温度称为流体包裹体的均一温度,以成岩矿物次序为基础,通过流体包裹体均一化温度和冰融点测试,结合储集层的埋藏受热史,可确定流体包裹体形成时储集层受热的温度,以及相应的埋深和地质时代,从而判断油气充注的时间。
1.3具体实例说明以塔里木盆地英南2井气藏为例,用流体包裹体进行油气成藏期次的研究。
镜下观察流体包裹体,并对与烃类共生的盐水包裹体进行均一化温度和冰融点测试,进行油气藏成藏期的分析。
流体包裹体分析表明英南2井气藏多为气态烃包裹体,大部分存在于石英次生加大边中,共生的盐水包裹体的均一化温度集中且接近现今井温,对比埋藏史得出:天然气是在近10Ma时一次性充注成藏。
英南2井是一个油气藏,在侏罗系、志留系和奥陶系共发现了59层累计厚度达451.5 m的油气显示,在侏罗系井段3624.80—3667.56 m不仅获得了高产工业气流,而且获得了低产凝析油,但未钻遇任何烃源岩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 流体包裹体特征
2.3 流体包裹体特征
上古生界砂岩自生矿物、石英加大 边及充填于石英碎屑粒间方解石中 的流体包裹体形成温度分四个阶段 (图3) :60~90℃, 90~120℃, 120~160℃, 160~200℃。
2.3 流体包裹体特征
由冷冻法测定包裹体的冰点温度(表2) ,根据Bodnar (1993)总结的盐 度--冰点关系表可得到气液两相包裹体流体体系的盐度值。
2.2 确定成岩序列
在整个成岩作用过程中,由于各阶段流体的 温度、压力和成分不同,胶结物与自生矿物的 类型和沉淀顺序不同,被其捕获的烃类包裹体 的特征明显不同。因此,胶结物与自生矿物形 成序次的确定是用流体包裹体研究油气成藏期 次的基础。显微镜下观察表明,研究区细砂岩 储层中胶结物和自生矿物的形成序次为:微细 晶方解石→石英、长石次生加大→晚期孔隙充 填方解石→自生石英 。
3 存在的问题
1 均一温度与捕获温度的关系 用均一温度计算成藏期次时,是以包裹体被捕
获时, 流体为单一的均质相态为前提假设, 然而 事实上捕获的包裹体中存在着相当数量非均相 捕获,许多测自非均相捕获流体包裹体的均一 温度值明显偏高, 大大影响了这一方法在油气 成藏期分析中的应用
3 存在的问题
研究区位于鄂尔多斯盆地 的西北部(图1) ,北起伊盟 隆起,南至定边,西起西缘冲 断带,东临S51井,总面积约 6 ×104 km2。
2.1 采样
为了研究盒8段流体包裹体特征及与油气 形成演化关系,样品取自10口钻井,平面上采样 点尽可能覆盖研究区的范围,控制深度为 3460~3810m。砂岩选择具有较明显石英次 生加大边,自生碳酸盐及沿构造裂隙分布的有 机包裹体。
(2 ) 根据有机包裹体的类型(气态烃、液态烃包裹体)及其相对和 绝对丰度, 并与储层地球化学分析技术相结合, 确定油气充注期次。
(3 ) 根据流体包裹体均一温度, 结合精细埋藏史恢复和热史分析, 确定不同期次油气注入的绝对时间。
2 流体包裹体在成藏期次和过程中的应用
《鄂尔多斯盆地西北部盒8段流体包裹体特征与油气成藏研究》—— 王春连, 侯中健, 刘丽红
按成分划分:盐水包裹体和油气包裹体 按照成因分类:有原生、次生、假次生三种 。
纯液
气液
烃+水
原油-沥青
1.3 流体包裹体特点
(1)在沉积成岩成矿作用的任一阶段,只要 沉积物发生结晶或重结晶、胶结(次生加大)或 自生矿物的形成作用,即可形成流体包裹体;
(2)流体包裹体不包括介质中的碎屑物质 (晶体、晶屑或岩屑等);
(3)流体包裹体的大小受限于矿物晶体的大 小,一般不超过0.01mm,大于1mm者罕见。 世界最大者7.2cm;
1.3 流体包裹体特点
(4)主矿物与流体包裹体的形成时间相近; (5)流体包裹体可单独或成群出现,现今仍
封存于矿物中; (6)流体包裹体为一封闭体系,在未发生强
烈构造运动和变质作用情况下,不发生物质交 换作用,也不发生体积变化;
1.3 流体包裹体特点
(7)无论是在被包裹前或被包裹后,流体包 裹体与主矿物间几乎不发生物质的溶解、交换 或其它化学反应;
(8)现今所见流体包裹体的外壁就是主矿物 与包裹体的相界限。由于界限的存在,包裹体 与主矿物之间互为独立。
2 流体包裹体在成藏期次和过程中的应用
在油气成藏期次及充注史研究中, 流体包裹体方法的应用主要表 现在以下三个方面(郝芳等;1996)
2.4 确定成藏期次
根据储层成岩序次及油气包裹体的发育程度、 类型、特征研究表明,盒8段油气的注入至少可 分四期,其中第二、三期为主要成藏期。
2.4 确定成藏期次
第一期,油气注入发生在早期微细晶方解石胶结期间, 至石英次生加大之前。。该期主要发育少量气液两相 盐水包裹体,。油气包裹体发育程度较低,包裹体内均 为液烃,呈灰褐色或黑褐色。均一温度低,小于90℃。 总体上,这一期次反映早期低成熟的重-稠油类型,运移 规模较小。
第二期油气注入发生在石英次生加大期间至晚期方解 石沉淀胶结之前,其主要证据为石英加大边的内-中-外 带及中-晚期方解石胶结物中均发育中期的油气包裹体。 该期包裹体以气液烃包裹体为主,其次为液烃包裹体和 气烃包裹体,均一温度为90~120℃左右,发育程度 较高,反映深部成熟油气的大规模运移、储集。
2.4 确定成藏期次
2 包裹体延伸效应的影响 包裹体被捕获后, 在地层继续埋深过程中,新的
温度、压力环境极有可能导致包裹体发生延伸 效应, 使测得的均一温度偏高。
经历延伸效应后均一温 度分布变化模式
3 存在的问题
3 流体温度与地层温度的关系
3 存在的问题
如果没有对流随流热效应, 地层温度仅取决于地温梯 度, 流体包裹体被捕获时的温度为80 ℃ 。根据包裹体 均一温度(8 0℃ ) 、上图 所示的埋藏史和背景地温梯 度(3 0 ℃ /k m ) 计算的流体包裹体捕获时间为10 Ma , 与实际形成时间一致。但如果流体活动引起热场叠加, 地层流体温度明显偏离背景值, 又如果包裹体形成时 ห้องสมุดไป่ตู้温度为95 ℃ ( 高于背景值15 ℃ ) , 又通过压力校准 确定了包裹体的捕获温度仍为95 ℃ , 那么根据这一温 度值、背景地温梯度和埋藏史计算的包裹体形成时间 将是5 M a , 明显小于包裹体的实际捕获时间。
储层流体包裹体在油气成藏期次和过 程中的应用
汇报提纲
1 流体包裹体理论基础 2 流体包裹体在成藏期次和过程中的应用 3 存在的问题
1.1 流体包裹体定义
流体包裹体是在矿物生长过程中被包裹在 矿物晶格的缺陷或窝穴中的成矿流体。
主矿物 包裹体
相界线
1.1 流体包裹体定义
概念要点: (1)时间:沉积成岩成矿过程中 (2)空间:矿物晶格缺陷或空穴中 (3)物质来源:原始流体 (4)界定:被包裹物质 (5)关系:明显的相界线
(1) 根据不同期次包裹体中烃类的组成及生物标志化合物分布, 研 究油气充注期次及不同期次油气的来源和成熟度。成岩矿物中的 有机包裹体反映了矿物形成期油汽的组成。包裹体的油气处于封 闭状态, 不受分子扩散、密度差异等因素引起的组分均一化作用 的影响,是被封闭的古油气“ 样品”或“ 化石” , 因此, 不同期次 流体包裹体中油气的组成及其变化“ 记录了油气充注史。
第三期油气注入发生在晚期方解石及自生石英、石英 胶结物沉淀期间。此期油气包裹体发育程度高,主要为 气液烃包裹体,其次为气烃包裹体,均一温度相对较高, 位于120~160℃之间。表明此期是成熟-高成熟油气 的一个大规模运移期。
第四期油气注入发生于石英加大边,该期包裹体数量极 少,明显晚于前三期次生加大。均一温度很高,有的可 达近200℃。这种特征的出现可能与后期构造运动有 关。
1.1 流体包裹体定义
1.1 流体包裹体定义
进行包裹体研究的三个基本假设 (1)均一性:包裹体形成时,被捕获的包裹
体内物质为均匀相; (2)封闭性:包裹体形成后,不再有物质的
交换作用; (3)等容性:包裹体形成后,其体积不发生
变化
1.2 流体包裹体分类
按相态划分:液体包裹体、气体包裹体和气液 包裹体
2.4 确定成藏期次
研究区盒8段包裹体的均一温度明显分 为四个主峰区间: 70~ 80℃, 100~ 110℃, 130~ 150℃,160~170℃。其中 100~110℃, 130~150这两个温度区间 内的包裹体无论从丰度,还是从含烃百分 率来说,都是最主要的。将这四个温度区 间投影到储层埋藏史、古地温史上,可以 确定鄂尔多斯盆地西北部盒8段的油气 成藏时间为四个时期:第一期发生在距今 219~209Ma (晚三叠世中期) ;第二期发 生在191~183Ma (早侏罗世中期) ;第三 期发生在145~130Ma (早白垩世早中 期) ; 第四期发生在122~115Ma (早白垩 世晚期) 。
2.3 流体包裹体特征
通过盐度与温度关系图示可看出,盐 度也可分出四个区段, 3~ 4. 5wt% , 4. 5~ 6. 5wt% , 6. 5~8wt% , 8~ 10wt%与其相对应四个温度区段为 60~90℃, 90~120℃, 120~160℃, 160~200℃。随着均一温度增高盐 度也相应增大。二叠系石英砂岩自生 矿物流体包裹体盐度比较稳定,变化 不大。反映从成岩早期至成岩晚期, 随着埋藏深度加大,压力增加,温度、 盐度也逐渐增高。