真核生物的遗传分析
第五章真核生物基因组结构

外显子:具有编码意义
结
转录单位
内含子:无编码意义( 5′GT、
构
基 因
非编码区
3′AG;GT -AG法则) TATA框 前导区 启动子 CAAT框 尾部区 增强子 GC框:调节转录活动。 调控 区 mRNA裂解信号 终止子 回文结构
00:28
21
Interrupted gene
00:28
43
核小体的结构组成
每个核小体含有约200bp的DNA,核心
组蛋白H2A、H2B、H3和H4各2份拷贝, 1份拷贝的H1组蛋白位于核小体外侧。
微球菌核酸酶(micrococcal nuclease) 处理染色体可得到单个核小体。
00:28 44
八聚体 染色质小体 (~166bp) 核小体 (~200bp) DNA 连接区 (常为 32~34bp) 图 10-10 核小体的组成 DNA H1
28
内含子(Intron)
选择性剪接:同一基因的转录产物
由于不同的剪接方式形成不同mRNA。
00:28
29
PS DNA
外显子 S
PL外显子 L来自外显子 2外显子 3
50b
2800bp
161bp
4500bp
205bp 327bp
初始转录本: 在唾腺中转录 成熟 mRNA: 1663nt 初始转录本: 在肝中转录 成熟 mRNA: 1773nt 图 18-57 小鼠淀粉酶(amy) 基因利用不同启动子产生两个不同的 mRNA
00:28
染色体( 1400nm,2个染色单体, 每个染 色体单体含10个螺旋圈)
51
染色质和染色体的概念
染色质(chromatin):是指细胞周期间期细胞核内由 因其易被碱性染料染色而得名。
酵母遗传

图7-9 酵母中的嗜杀现象
第五节
接合型基因及其基因转换
图7-4 酵母端粒结构和相邻序列示意图
三、 复制起点 酵母染色体上控制DNA复制起始的短的DNA序列就是 酵 母 的 复 制 起 点 , 通 常 称 为 自 主 复 制 序 列 (autonomously replicatory sequences, ARS)。 将ARS克隆到质粒中,能使质粒DNA在酵母中自主复制。 自从1979年首次发现酿酒酵母的ARS以来,已经对ARS的结构 和功能进行了深入研究。 在酿酒酵母基因组中ARS总数约400,但使用频率不同,变 动在10%~100%。
图 几种生物着丝粒结构
图7-3 酵母着丝粒结构的模型
在酿酒酵母中,所有的着丝粒序列都含有大约130bp长的序 列,每条染色体的着丝粒序列(centromeric seguence,CEN)都分 为三个区,由5’→3’依次为CDEⅠ、CDEⅡ和CDEⅢ。
CDEⅠ和CDEⅢ是两个共有序列,位于两侧,中间是由78~ 86个核苷酸组成的CDEⅡ,CDEⅡ的核苷酸序列中>90%是 A+T序列,所以容易弯曲(图)。
140
4 1 1 0 0 1 0 0 1 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0
4 2 0 0 0 4 0 0 0 0 2 1 0 0 0
ⅩⅤ
XⅥ
1,091
948
微生物 10-4、5、6第十章 微生物的遗传变异和育种

工程菌的稳定性问题
由工程菌产生的珍稀药物如:胰岛素、干扰素、 人生长激素、乙肝表面抗原、人促红细胞生成 素、重组链激酶等都已先后供应市场,不仅保 证了这些药物的来源,而且使成本大大降低。 但工程菌在发酵生产和保存过程中表现出不稳 定性,具体表现为:质粒的丢失;重组质粒发 生DNA片断脱落;表达产物不稳定。 工程菌的稳定与否,与重组质粒本身的分子组 成、宿主细胞生理和遗传性以及环境条件等因 素有关。
性状稳定的菌种是微生物学工作最重要的基本要求,否 则生产或科研都无法正常进行。 影响微生物菌种稳定性的因素:a)变异;b)污染; c )死亡。
一、菌种的衰退与复壮
衰退:菌种出现或表现出负变性状
菌种衰退的原因: ①大量群体中的自发突变
自发突变
纯菌种
不纯菌种
传代增殖
衰退菌种
原始个体
突变个体 菌种衰退的原因: ②分离现象。 菌种衰退的原因: ③培养条件与传代。
准性杂交育种
第五节 分子育种(基因工程育种)
一、基因工程 定义:在基因水平上,改造遗传物质,从而使 物种发生变异,创建出具有某种稳定新性状的 生物新品系。
特点:可设计性、稳定性、远缘性、风险性
二、基因工程的基本操作 获得目的基因
选择基因载体
体外重组 外源基因导入 筛选和鉴定
应用
通过基因工程改变后的菌株被称为“工程菌”, 工程菌已逐渐应用于药物的微生物发酵生产中, 主要有以下几个方面:①增加生物合成基因量而 增加抗生素产量;②导入强启动子或抗性基因而 增加抗生素产量;③把两种不同的生物合成基因 在体外重组后再导入受体而产生杂交抗生素;④ 激活沉默基因,以其产生新的生物活性物质或提 高抗生素产量;⑤把异源基因克隆到宿主中表达, 以期彻底改变生产工艺。
第八章真核基因表达调控ppt课件

在小鼠中,95%的抗体轻链是κ型,而人类抗体 轻链中,κ型和λ型各占50%左右。
人类基因组中免疫球蛋白基因主要片段的数
免疫球蛋白重链基因片段重排与组织特异性表达
酵母交配型转换
8.1.4 DNA甲基化与基因调控
A. DNA的甲基化 DNA甲基化能引起染色质结构、DNA构象、
启动区DNA分子上的甲基化密度与基因转录受 抑制的程度密切相关。对于弱启动子来说,稀少的 甲基化就能使其完全失去转录活性。当这一类启动 子被增强时(带有增强子),即使不去甲基化也可 以恢复其转录活性。若进一步提高甲基化密度,即 使增强后的启动子仍无转录活性。
P295, Fig. 8-15
C. DNA甲基化与X染色体失活
A、螺旋-转折-螺旋(helix-turn-helix, H-T-H) 结构。这一类蛋白质分子中有至少两个α螺旋,中 间由短侧链氨基酸残基形成“转折”,近羧基端的 α螺旋中氨基酸残基的替换会影响该蛋白质在DNA 双螺旋大沟中的结合。
同源域蛋白通过其第三个螺旋与双链DNA的大沟 相结合,其N端的多余臂部分则与DNA的小沟相
选择性剪接
➢ 原始转录产物可通过不同的剪接方式,得到不同 的mRNA,并翻译成不同蛋白质; ➢有些基因选择了不同的启动子,或者选择了不同的 多聚(A)位点而使原始转录物具有不同的二级结构, 产生不同的mRNA分子,但翻译成相同蛋白质。 ➢同一基因的转录产物由于不同的剪接方式形成不同 mRNA的过程称为选择性剪接。
本章主要内容提要
1.真核生物的基因结构与转录活性; 2.真核基因转录机器的主要组成; 3.蛋白质磷酸化对基因转录的调控; 4.蛋白质乙酰化对基因表达的影响; 5.激素与热激蛋白对基因表达的影响; 6.其他水平上的表达调控。
真核生物水平基因转移

Horizontal gene transfer in eukaryotic evolution真核生物进化中的水平基因转移Abstract | Horizontal gene transfer (HGT; also known as lateral gene transfer) hashad an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer fromboth prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.概括|水平基因转移(HGT;也被称为侧向基因转移)在真核基因组进化中起了一个非常重要的作用,但是它的重要性往往因为我们对高度流行的疾病和原核生物基因转移更关注而被遮掩了。
2 遗传图绘制

ABO 血型基因座上具有编码不同半乳糖转移酶复等位基因
其特异性决定了血型的差别
2.2.1 基因标记
基因是非常有用的标记,但并不是理想的。原因: 1. 可用作标记的基因十分有限,许多性状都涉及 多基因。 2. 高等生物基因组中存在大量的基因间隔区,遗 传图中留下大片的无标记区段。 3. 只有部分基因其等位基因成员可以通过常规实 验予以区分,因而产生的遗传图是不完整的。
子标记。
2. 简单序列长度多态性(SSLP)
1) 可变排列的简单重复序列, 即重复次数不一, 在染色体的同一座位重复序列拷贝数不同; 2) SSLP的类型: 小卫星序列(minisatellite), 有时又称可变串联 重复(VNTR),重复单位较长。重复序列为16100个核苷酸,主要分布在染色体端粒及着丝粒 微卫星序列(micrisatellite), 或称简单串联重 复(STR),重复单位较短。重复序列只有2-6个 核苷酸,分布在整个基因组。
•SNP只涉及单个碱基的变异,这种变异可以由单个碱基的转 换(包括C与T互换,G与A互换),或颠换(包括C与A、G与 T、C与G、A与T互换)引起。
•点突变,位于密码子的摇摆位置,表现为沉默突变而被大 量保留下来。大多数不能被限制酶识别,必须采取测序或寡 聚核苷酸杂交检测 •在人类基因组中可达到300万个,平均每1000个碱基对就 有一个
2.2.2 DNA标记
基因之外的作图工具统称为DNA标记。与基 因标记一样,DNA标记必须有至少两个等位 基因才是有用的。有三种类型的DNA序列特 征可以满足这一要求:
1. 限制性片段长度多态性(restriction fragment
length polymorphisms, RFLP)
2. 简单序列长度多态性(simple sequence length
遗传学细胞质遗传

㈡、草履虫放毒型的遗传:
1. 结构: 草履虫(Paramecium aurelia)是一种常见
的原生动物,种类很多。 大核(1个),是多倍体,主要负责营养; 小核(1~2个),是二倍体、主要负责遗传。
41
④.半自主性的细胞器: 线粒体内100多种蛋白质中,约有10种是线粒体本身
合成的,包括细胞色素氧化酶亚基、4种ATP酶亚基和1种 细胞色素b亚基。
∴线粒体的蛋白是由线粒体本身和核基因共同编码的, 是一种半自主性的细胞器。
42
第五节 共生体和质粒决定的染色体 外遗传
一、共生体的遗传:
㈠、共生体(symbionts): 不是细胞生存所必需的组成部分,仅以某种共生的
(二)持久的母性影响
例: 椎实螺外壳 的旋转方向受母亲基 因型控制,终生不变。 它受一对等位基因控 制,右旋(D)对左旋(d) 为显性。
椎实螺正反交,F1旋转方向都与各自母本相似,即右 旋或左旋,F2却都为右旋,F3才出现右旋和左旋的分 离。
P ♀DD × dd♂
右旋 左旋
♀dd × DD♂
左旋 右旋
36
线粒体数目及mt DNA大小:
生物种类 酵母
几种生物的 mt DNA
每细胞中 线粒体数
mt DNA 大小 (kb)
22
84
鼠(L 细胞)
500
16.2
人(Hela 细胞) 800
16.6
mt DNA 与 核 DNA 比值
0.18
0.002 0.01
37
㈡、线粒体基因组的构成:
1981年Kanderson最早测出人的mt DNA全序列为16569 bp。 人、鼠、牛的mtDAN全序列中测出:
生物信息学-基因组分析(PDF)

in the genomic coordinates. At least one transcript must be expressed outside of the nucleus and one
如果基因组是生命的天书,那么基因就是写成这本书的词汇。生物学家们一直假 设,微生物的故事较短,而人类的故事则是一部巨作,人类拥有8万到10万个基因。但是 UC Berkly的果蝇基因组计划的主任G. Rubin指出,果蝇的基因比我们所认为的最简单的 线虫少了5,000个。他警告说:“生物体的复杂性并不是简单地与基因数量相关联的。”
¾ 基因组的大小和基因的数量在生命进化上可能不具有特别重大的意义;
¾ 人类的基因较其他生物体更“有效” 。
¾ 人类的复杂性更主要的体现在蛋白质的复杂网络中,即蛋白质就是构成 生命的基本构件。Celera公司首席科学家Venter认为:“大部分的生物学行 为发生在蛋白质水平,而不是基因水平。”
目前已完成测序4,000多个基因组
The winner was announced at last week's Homo Sapiens genetics meeting at Cold Spring Harbor Laboratory, New York. The gene champ, Lee Rowen, who directs a sequencing project at the Institute for Systems Biology in Seattle, Washington - beat 460 other hopefuls to take home part of the cash pot.