介孔二氧化硅纳米粒的功能化修饰及其在药物研究中的应用

合集下载

介孔硅纳米材料作为药物运输载体应用的研究进展

介孔硅纳米材料作为药物运输载体应用的研究进展

介孔硅纳米材料作为药物运输载体应用的研究进展金勤玉;徐维平;徐婷娟;潘钊;吴亚东;盛竹君【摘要】介孔硅纳米材料作为药物运输载体主要是将药物载入介孔中,用不同的“纳米阀门”阻塞孔道,使药物到达靶部位前零释放,然后通过不同的内部刺激(pH、温度、酶等)或外部刺激(光、磁场、超声等),“纳米阀门”移除、断裂或分解,控制药物释放,达到控释和缓释的作用.该文主要从介孔硅纳米材料的生物安全性、介孔硅的不同类型智能响应系统的研究进展,介孔硅纳米材料作为药用载体的不足及应用前景等方面进行综述.【期刊名称】《广州化工》【年(卷),期】2015(043)003【总页数】3页(P13-15)【关键词】介孔硅;纳米材料;生物安全性;刺激-响应【作者】金勤玉;徐维平;徐婷娟;潘钊;吴亚东;盛竹君【作者单位】安徽中医药大学,安徽合肥230031;安徽省立医院,安徽合肥230011;安徽省立医院,安徽合肥230011;中国科学技术大学,安徽合肥230026;安徽中医药大学,安徽合肥230031;安徽中医药大学,安徽合肥230031【正文语种】中文【中图分类】R979.1近几年,无机介孔二氧化硅 (mesoporous silican,MSN)纳米材料作为“刺激-响应”智能控制释放药物的研究取得了巨大的进步,MSN 具有稳定性好、细胞毒性低、孔隙大,粒径可控、表面容易修饰[1]等优点,将MSN 表面修饰,使其功能化后,通过pH[2],酶[3],光[4],氧化还原[5],磁场[6],超声[7]等作用来控制药物定时、定点、定量的释放,从而提高治疗部位的药物浓度,减少对正常细胞、组织或器官产生的不良反应。

1.1 MSN 的生物安全性介孔二氧化硅纳米粒子是20 世纪90 年代首次提出的[8],使用表面活性剂作为结构导向剂,合成的表面具有均一介孔的纳米材料,主要应用方向是催化、生物传感、疾病诊断和载药等。

作为药物运输载体,首先应考虑材料的生物相容性、细胞毒性和材料在体内吸收、分布、代谢、排泄等。

刺激响应型介孔二氧化硅基纳米药物递送系统的构建与性能研究

刺激响应型介孔二氧化硅基纳米药物递送系统的构建与性能研究

刺激响应型介孔二氧化硅基纳米药物递送系统的构建与性能研究摘要:随着纳米技术的发展,纳米药物递送系统作为一种新型的药物递送途径受到了广泛关注。

介孔二氧化硅(mesoporous silica,简称MS)作为一种稳定性良好、无毒副作用的纳米材料,被广泛应用于纳米药物递送系统的构建。

本文采用一种刺激响应型的介孔二氧化硅(responsive mesoporous silica,简称RMS)为载体构建纳米药物递送系统,并采用荧光探针和细胞实验等手段对其进行性能评价。

实验结果表明,所构建的RMS基纳米药物递送系统具有很好的药物包载能力和刺激响应性,并且在低毒副作用方面表现出了很好的应用前景。

关键词:介孔二氧化硅;纳米药物递送系统;刺激响应;药物包载能力;应用前景Abstract:With the development of nanotechnology, nanomedicine delivery system has attracted widespread attention asa new way of drug delivery. Mesoporous silica (MS) asa stable and non-toxic nanomaterial, has been widely used in the construction of nanomedicine delivery system. In this paper, a responsive mesoporous silica(RMS) as a carrier is used to construct a nanomedicine delivery system, and the performance is evaluated by fluorescent probe and cell experiments. The results showed that the RMS-based nanomedicine delivery system had good drug loading capacity and stimulus responsiveness, and exhibited good application prospects in low toxicity.Keywords: Mesoporous silica; nanomedicine delivery system; stimulus response; drug loading capacity; application prospect第一章绪论1.1 研究意义纳米药物递送系统作为一种新型的药物递送途径,具有在靶点处释放药物的优势,能够提高药物的治疗效果,降低药物的副作用,是目前药物研究领域的热点之一。

介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究

介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究

介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究摘要:一、引言1.介孔二氧化硅纳米材料的基本概念2.介孔二氧化硅纳米材料的研究背景和重要性二、介孔二氧化硅纳米材料的制备方法1.液相沉淀法2.溶胶-凝胶法3.模板法4.表面活性剂诱导法三、介孔二氧化硅纳米材料在药物递送中的应用1.作为药物载体2.改善药物生物利用度3.实现药物缓释和靶向给药4.提高药物稳定性和降低药物毒性四、介孔二氧化硅纳米材料在药物递送方面的优势1.比表面积大、孔隙率高2.稳定的骨架结构3.易于表面修饰4.无生理毒性五、研究进展与展望1.制备方法的创新2.药物递送系统的优化3.临床应用的拓展正文:随着科技的不断发展,新型纳米材料在各个领域的研究日益深入。

其中,介孔二氧化硅纳米材料因其独特的物理和化学性质,在药物递送方面具有广泛的应用前景。

本文将探讨介孔二氧化硅纳米材料的制备方法以及在药物递送领域的应用,旨在为相关研究提供有益的参考。

一、引言1.介孔二氧化硅纳米材料的基本概念介孔二氧化硅纳米材料(Mesoporous Silica Nanoparticles,简称MSN)是一种具有有序介孔结构的无机纳米材料。

其特点在于孔径尺寸在2-50nm范围内,具有较大的比表面积、高的孔隙率以及稳定的骨架结构。

由于这些特性,介孔二氧化硅纳米材料在药物递送领域具有显著的优势。

2.介孔二氧化硅纳米材料的研究背景和重要性近年来,随着药物递送技术的发展,介孔二氧化硅纳米材料作为一种新型药物载体,逐渐成为研究的热点。

与传统药物载体相比,介孔二氧化硅纳米材料具有更好的生物相容性和低毒性,可实现药物的高效递送和靶向给药。

因此,研究介孔二氧化硅纳米材料在药物递送方面的应用具有重要意义。

二、介孔二氧化硅纳米材料的制备方法1.液相沉淀法液相沉淀法是一种常见的介孔二氧化硅纳米材料的制备方法。

该方法通过将硅酸盐前驱体与有机模板一起溶解在有机溶剂中,然后通过调节溶液pH 值,使硅酸盐沉淀并形成介孔结构。

介孔二氧化硅在生物医药方面的应用

介孔二氧化硅在生物医药方面的应用

介孔二氧化硅在生物医药方面的应用
首先,介孔二氧化硅纳米载体用于医药方面,具有优良的特性。

其具有较大的孔容和比表面积,有利于药物的高效装载;载体的刚性结构及介孔孔道,有利于提高药物的物理稳定性;表面易功能化修饰,可用于控释及靶向药物传递系统,有利于增强药效并降低毒副作用;此外,介孔二氧化硅的体内细胞毒性、生物降解、生物分布排泄等一系列生物安全性评价均显示良好结果。

其次,介孔二氧化硅可以与磁性或荧光物质结合,实现药物传递和生物成像的双重功能。

这有利于提高成像质量和药物治疗效果。

此外,介孔二氧化硅作为生物活性材料用于组织再生等方面,也展现出良好的应用前景。

同时,根据介孔二氧化硅或普通硅包不同物质(如硅包银、硅包金等)的特点及应用,可以用于药物装载及传递、肿瘤靶向治疗、MRI成像等。

总的来说,介孔二氧化硅在生物医药方面具有优良的特性和广泛的应用,对生物医药的发展起到了重要的作用。

介孔二氧化硅的应用

介孔二氧化硅的应用
➢ DNA染色结合流式细胞仪分析→细胞吸收MSN后仍旧保留了完整
的细胞膜
➢ 显微镜观察→细胞形态正常
➢ 3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐比色法(MTT)测试→
线粒体活性仍然处于正常水平
2020/6/9
同济大学 材料科学与工程学院
13
介孔二氧化硅
2020/6/9
同济大学 材料科学与工程学院
➢ 进,一装步载用药H物N阿O霉3进素行用萃于取化和学蚀疗刻法,。得到含有HP的中空介孔二氧化硅壳的纳米材料
2020/6/9
28
2020/6/9
同济大学 材料科学与工程学院
29
21
介孔二氧化硅纳米材料在生物医学上的应用 介孔二氧化硅纳米材料在催化方面的应用
中空介孔二氧化硅壳纳米材料的应用
介孔二氧化硅纳米材料在生物医学上的应用
➢ 基于MSNs独特的结构性质和较高的生物相容性,介孔二氧化硅纳米材料在生 物医学领域具有良好的应用潜力。同时,纳米粒子在水溶液中稳定的分散性 ,也是其能够被细胞吸收的前提,为药物发挥作用提供了可能。
➢ 首先合成了含有(3-异氰基丙基)三乙氧基硅烷 ,并在MSNs的孔道内组装了荧光剂。将第 二代聚酞胺-胺型树枝状高分子G2-PAMAM 引入材料中。作为孔道“门” ,G2-PAMAM 上大量的氨基与(3-异氰基丙基)三乙氧基硅烷 上的异氰基作用将荧光剂固定在孔道内,同 时充分结合质粒DNA,pEGFP-C1。
2020/6/9
同济大学 材料科学与工程学院6微波合成法利用微波加热的主要原理:就是令其极性分子溶剂快 速吸收微波,温度快速上升。 按照物理学理论,分子可分为极性分子和非极性分子 两大类,其中极性分子的正、负电 荷的中心不重合,因而极性分 子具有永久偶极矩,分子在外加电场下,使原来无序的极 性分子变成一定顺序的排 列方式,这就产生了偶极极化,因为微波产生的交变电场是具 有高速的变向性,这 就使得偶极转向极化速度慢而没有能够迅速跟上交变电场导致滞后 于电场,最后使 得纳米材料的里面结构损耗,而且还导致少量的微波转化成了热能加热 了纳米材料。

介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究

介孔二氧化硅纳米材料的制备及在药物递送方面的应用研究

介孔二氧化硅纳米材料的制备及在药物递送方面的应用探究1. 引言随着人们对治疗药物副作用和提高治疗效果的要求越来越高,纳米载药技术被广泛应用于药物递送领域。

其中,介孔二氧化硅纳米材料因其奇特的孔道结构和高度可控的孔径大小受到了探究者的关注。

2. 介孔二氧化硅纳米材料的制备方法2.1 模板法2.2 溶胶凝胶法2.3 气相沉积法3. 介孔二氧化硅纳米材料在药物递送方面的应用探究进展3.1 肿瘤治疗3.1.1 化学药物载药3.1.2 生物大分子药物载药3.2 抗菌治疗3.3 组织工程3.4 缓释药物递送系统3.5 合成药物递送系统4. 介孔二氧化硅纳米材料在药物递送中的优缺点4.1 优点4.2 缺点5. 结论介孔二氧化硅纳米材料作为一种具有良好生物相容性和可控释放性能的载药材料,其制备方法日益完善,对于药物递送领域具有重要的应用潜力。

然而,其在临床应用中仍面临一些挑战,包括制备成本高、长期稳定性等问题。

因此,将来的探究还需要进一步优化制备方法,并解决潜在的安全问题,以提高介孔二氧化硅纳米材料在药物递送方面的应用前景。

关键词:介孔二氧化硅纳米材料,制备方法,药物递送,应用探究,优缺点。

Abstract: With the development of nanotechnology, mesoporous silica nanoparticles (MSN) have attracted extensive research interest as a drug carrier material due to their excellent biocompatibility and controllable release properties. This article reviews the preparation methods of mesoporous silica nanoparticles and their research progress in drug delivery.1. IntroductionWith the increasing demand for reducing drug side effects and improving treatment efficacy, nanocarriers have been widely used in drug delivery. Among them, mesoporous silica nanoparticles have received attention from researchers due to their unique pore structure and highly controllable pore size.2. Preparation methods of mesoporous silica nanoparticles2.1 Template method2.2 Sol-gel method2.3 Vapor deposition method3. Research progress of mesoporous silica nanoparticles in drug delivery3.1 Tumor therapy3.1.1 Chemical drug loading3.1.2 Biopolymer drug loading3.2 Antibacterial therapy3.3 Tissue engineering3.4 Sustained drug delivery systems3.5 Synthetic drug delivery systems4. Advantages and disadvantages of mesoporous silica nanoparticles in drug delivery4.1 Advantages4.2 Disadvantages5. ConclusionMesoporous silica nanoparticles, as a drug carrier material with good biocompatibility and controllable release properties, have great application potential in the field of drug delivery. However, challenges still exist in their clinical application, including high preparation cost and long-term stability. Therefore, future research needs to further optimize the preparation methods and address potential safety issues to improve the application prospects of mesoporous silica nanoparticles in drug delivery.Keywords: mesoporous silica nanoparticles, preparation methods, drug delivery, application research, advantages and disadvantages综上所述,介孔硅纳米颗粒在药物传递领域具有许多优点,如高载药能力、可控释放性和可调整的生物相容性。

介孔二氧化硅纳米粒子的种类和特点

介孔二氧化硅纳米粒子的种类和特点

介孔二氧化硅纳米粒子是一种具有特殊孔道结构的纳米材料,根据其制备方法和特性不同,可以分为以下几种类型:1. 化学合成的介孔二氧化硅纳米粒子化学合成的介孔二氧化硅纳米粒子是通过一系列化学反应制备而成的,具有较高的比表面积和均匀的孔道结构。

这种类型的介孔二氧化硅纳米粒子可以根据需要调控孔径大小和孔道结构,具有很高的可控性和可定制性。

2. 生物合成的介孔二氧化硅纳米粒子生物合成的介孔二氧化硅纳米粒子是利用生物体或生物材料作为模板,在其表面或内部合成介孔结构的硅材料。

这种类型的介孔二氧化硅纳米粒子具有生物相容性好、表面修饰方便等特点,在生物医学领域有广泛的应用前景。

3. 模板法制备的介孔二氧化硅纳米粒子模板法制备的介孔二氧化硅纳米粒子是利用有机或无机模板在合成过程中形成介孔结构的硅材料。

这种方法制备的介孔二氧化硅纳米粒子孔道结构较为复杂且孔径分布均匀,具有较高的热稳定性和化学稳定性。

介孔二氧化硅纳米粒子具有以下几个显著的特点:1. 高比表面积介孔二氧化硅纳米粒子具有非常高的比表面积,这是由于其内部有大量的孔道结构,有些介孔二氧化硅纳米粒子的比表面积甚至可以达到数百或数千平方米/克。

这种高比表面积使介孔二氧化硅纳米粒子具有很强的吸附能力,可以用于吸附有机分子、金属离子等。

2. 调控的孔径大小和孔道结构由于介孔二氧化硅纳米粒子的制备方法多样,可以根据需要对其孔径大小和孔道结构进行调控。

这种可调控性使介孔二氧化硅纳米粒子在催化、药物载体等领域有着广泛的应用。

3. 良好的生物相容性生物合成的介孔二氧化硅纳米粒子具有良好的生物相容性,可以被人体组织所吸收和代谢,不会对机体造成损害。

这种特点使介孔二氧化硅纳米粒子在药物传递、生物成像等领域有着广阔的应用前景。

4. 可表面修饰由于介孔二氧化硅纳米粒子具有较为活泼的表面羟基,可以方便地进行表面修饰,引入不同的功能基团,赋予其特定的性质和功能。

这种特点使介孔二氧化硅纳米粒子在药物传递、催化、生物成像等领域具有多种应用可能。

二氧化硅纳米颗粒在医药领域中的应用

二氧化硅纳米颗粒在医药领域中的应用

二氧化硅纳米颗粒在医药领域中的应用二氧化硅纳米颗粒是一种应用最为广泛的纳米材料,其化学性质稳定,表面活性低,不具有毒性和免疫原性,因此在医药领域中有着广泛的应用前景。

一、药物输送系统二氧化硅纳米颗粒在药物输送系统中发挥了重要作用。

在疾病治疗中,药物的低溶解度、不稳定性以及被免疫系统清除等问题严重限制了药物疗效。

通过将药物包裹在二氧化硅纳米颗粒内,能够有效地增加药物的溶解度,提高药物的稳定性,并保护药物免受免疫系统的攻击,从而延长药物的有效时间。

另外,二氧化硅纳米颗粒也可以作为靶向药物输送系统的载体。

通过将二氧化硅纳米颗粒表面特定的功能化修饰,如肿瘤靶向的配体分子或单克隆抗体等,可以使药物直接靶向肿瘤细胞,提高治疗效果,同时减少药物对正常细胞的影响。

二、生物成像二氧化硅纳米颗粒在生物成像中也有广泛应用。

在生物学研究中,对于细胞、组织和器官的精确检测和非侵入性成像是极为重要的。

二氧化硅纳米颗粒具有优异的透明度和荧光性能,因此可以作为成像剂直接注射到生物体内,将目标组织或器官的信息转化为可视化的影像,从而快速诊断疾病。

此外,二氧化硅纳米颗粒还可以用于标记和追踪细胞的位置。

通过将二氧化硅纳米颗粒包裹在细胞外膜或内部,就可以利用其优良的生物相容性和成像性能,追踪细胞的迁移、分化和增殖情况,促进医学研究的进一步发展。

三、医用材料二氧化硅纳米颗粒还可以用于医用材料的制备。

在医学领域中,生物相容性是一项基本要求,而二氧化硅纳米颗粒具有良好的生物相容性,与细胞和组织相互作用的能力也很强。

因此,制备具有二氧化硅纳米颗粒的医用材料,不仅具有良好的生物活性和生物相容性,而且还具有优异的力学性能和稳定性能。

举例来说,二氧化硅纳米材料可以应用于人工骨骼的制作。

与传统的人工骨骼相比,二氧化硅纳米颗粒材料具有更高的生物相容性和生物活性,因此能够更好地结合身体组织,在骨骼再生方面发挥更好的作用。

综上所述,二氧化硅纳米颗粒在医药领域中有着广泛的应用前景,从药物输送、生物成像到医用材料制备均有着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

介孔二氧化硅纳米粒的功能化修饰及其在药物研究中的应用目的:提高介孔二氧化硅纳米粒作为药物载体的性能,促进其在药物治疗中的应用。

方法:以“介孔二氧化硅纳米粒”“功能化修饰”“药物”“Mesoporous silica nanoparticles”“Functionalized modification”“Drug”等为关键词,组合查询2012年1月-2018年3月在中国知网、万方数据、维普网、PubMed、SpringerLink、Elsevier 等数据库中的相关文献,主要对介孔二氧化硅纳米粒的肿瘤靶向性修饰、内源性刺激响应性修饰、外源性刺激响应性修饰及其在药物研究中的应用进行论述。

结果与结论:共检索到相关文献292篇,其中有效文献43篇。

根据肿瘤部位的靶向受体(包括叶酸受体、线粒体受体、透明质酸受体等)和肿瘤内部微环境(包括酸性pH环境、还原性环境、多种酶环境等)以及外部环境刺激(包括温度变化、光和磁场等),采用肿瘤靶向性材料(如叶酸、线粒体靶向肽三苯基膦、转铁蛋白等)、内源性刺激响应性材料(如pH敏感性接头、二硫键、酶响应性材料等)、外源性刺激响应性材料(如温敏性材料聚N-异丙基丙烯酰胺、光敏性材料偶氮苯、超顺磁性四氧化三铁等)对介孔二氧化硅纳米粒进一步功能化修饰,可实现药物的特异性递送,避免药物提前释放,提升药物的抗肿瘤效率,提高药物的生物利用度。

介孔二氧化硅纳米粒要应用于临床,还需要解决其大规模生产问题、稳定性问题以及在动物实验中的良好效果能否在临床重现的问题,此外对其毒性和体内分布、代谢过程也需进行深入研究。

关键词介孔二氧化硅纳米粒;功能化修饰;药物;靶向性修饰;刺激响应性修饰介孔二氧化硅纳米粒(Mesoporous silica nanoparticles,MSNs)因其独特的介孔结构和高比表面积,在药物传递系统(Drug delivery system,DDS)中显示出优于其他纳米载体(如脂质体、纳米球、聚合胶束等)的特点[1]。

且MSNs 粒径可控、稳定性和生物相容性强,药物负载能力强[2],在过去的10年中,以二氧化硅为基础的介孔材料成为研究热点[3]。

在当前的肿瘤治疗中,主要采用手术治疗、放射治疗、化学药物治疗等方法,但却会产生严重的副作用。

而纳米载体可通过实体瘤的高通透性和滞留效应(EPR效应)被动靶向[4]或功能化修饰后主动靶向到肿瘤组织,使药物在肿瘤组织中富集,而对正常组织不产生过多的破坏[5]。

MSNs作为纳米载体,对药物分子的负载主要是利用氢键、物理吸附、静电作用和p-p堆积来实现,而这些作用力普遍较弱[6]。

介孔二氧化硅纳米粒拥有内外两个表面,通过表面功能化的方法在内外表面修饰功能性基团以改善客体分子与表面之间的作用力[7],不但能有效地控制药物负载量,还能改善药物释放速度[6],满足不同的运载需要[8]。

近年来,研究者们积极探究基于MSNs药物载体的功能化修饰,以改善未修饰前MSNs生物降解速度较快、半衰期短[9]、药物与MSNs之间作用力弱[7]、对疏水性抗癌药物的负载和释放能力弱[10]等缺点。

笔者以“介孔二氧化硅纳米粒”“功能化修饰”“药物”“Mesoporous silica nanoparticles” “Functionalized modification”“Drug ”等为关键词,组合查询2012年1 月-2018年3月在中国知网、万方数据、维普网、PubMed、SpringerLink、Elsevier 等数据库中的相关文献。

结果,共检索到相关文献292篇,其中有效文献43篇。

现对MSNs的肿瘤靶向性修饰、内源性刺激响应性修饰、外源性刺激響应性修饰及其在药物研究中的应用进行论述,以期为MSNs的功能化修饰及其在药物研究中的应用提供参考。

1 靶向性修饰在肿瘤的传统治疗过程中,药物会迅速分散到各组织和器官中,到达肿瘤组织的药物量一般较少。

而对包载药物的纳米粒的修饰,可防止纳米粒快速消除,使靶向循环时间增长。

此外,通过特异性配体或抗体对包载药物的纳米粒进行靶向性修饰,可使包载的药物分子与肿瘤组织、细胞的特定结构或靶点识别,完成对包载药物的特异性输送,提高肿瘤组织中药物的浓度。

目前,常用的靶向材料有叶酸(FA)[11]、透明质酸(HA)[12] 、蛋白质(如黏蛋白-1、转铁蛋白等)[13-14]、多肽[如细胞膜穿透肽四羧基苯基卟啉(TCPP)和线粒体靶向肽三苯基膦(TPP)等][15-16]、多糖[17]等。

Qu Q等[18]制备了平均粒径为68 nm的线粒体靶向MSNs。

其通过在MSNs上的表面修饰TPP来实现靶向肿瘤细胞内线粒体的性质,并装载疏水性抗癌剂α-生育酚琥珀酸酯(α-TOS)。

其后在人宫颈癌HeLa 细胞、人肝癌HepG2细胞及人胚肾HEK293正常细胞中评估了MSNs-TPP-TOS 的细胞内摄取和线粒体靶向性。

结果发现,MSNs-TPP-TOS表现出良好的细胞内摄取性能,与α-TOS比较,通过MSNs靶向递送α-TOS具有更高的抗癌率。

Lv Y等[19]将甘草次酸(GA)通过酰胺键共价修饰到MSNs的表面,制备了GA调控的靶向药物输送载体MSNs-GA并负载姜黄素(CUR)用于肝肿瘤靶向。

结果,MSNs-GA显示出了对CUR的高负载能力,载药量为(8.78±1.24)%。

MSNs-GA-CUR的体外细胞试验的结果表明,与CUR比较,MSNs-GA-CUR通过特异性GA受体介导的内吞作用机制显著增强了对药物的细胞摄取和对肝癌细胞的细胞毒性作用,表明该体系对肝肿瘤具有选择性靶向作用。

2 内源性刺激响应性修饰MSNs可运输和保护药物分子,为了防止包载于MSNs中的药物过早释放,可使用刺激响应性材料将孔封闭。

当其暴露于肿瘤内部环境[如pH、酶、谷胱甘肽(GSH)等]刺激中时,MSNs的孔打开并将负载的药物释放。

内源性刺激响应性MSNs能选择性地到达目标组织并以特定和受控的方式释放药物[20],从而避免药物提前释放,有希望成为肿瘤常规化疗的替代方案。

2.1 pH响应性修饰作为理想的刺激响应性纳米系统,应能选择性识别肿瘤微环境并响应刺激以达到精确释放药物。

肿瘤细胞外的组织中pH呈弱酸性,低于正常组织。

当被肿瘤细胞内化时,纳米粒被包埋在溶酶体中,最终到达pH值4~5范围内的环境中[21]。

肿瘤微环境中的异常pH与MSNs的优点相结合,可为设计对pH信号敏感的纳米载体提供机会。

使药物在肿瘤酸性环境中选择性释放的主要方法包括采用聚电解质、pH敏感性接头和酸可分解的无机材料对纳米粒进行修饰[22]。

Zhang Q等[23]将聚乙二醇修饰在MSNs外表面后,将亚氨基二乙酸连接在中孔表面,再通过配位键顺序螯合二价铁和多柔比星(DOX),修饰后的MSNs在pH 5.0时的释放速度比在pH 7.4中快,显示出pH响应性释放性质。

Zhang Q等[23]在健康大鼠中的药动学研究中发现,与DOX溶液比较,MSNs-DOX具有较长的循环时间和较低的血浆清除率,这些结果表明具有pH响应释放能力的MSNs可避免药物在循环中的过早释放并且在肿瘤细胞内实现按需释放,其作为抗癌药物递送系统前景广阔。

Xiao X等[24]采用聚丙烯酸(PAA)作为pH响应性生物材料在MSNs表面上进行修饰,改善毒性较高的三氧化二砷(ATO)的药动学参数,以实现药物在酸性微环境中的释放,避免在循环中突释,降低毒副作用,提高抗肿瘤作用。

在Xiao X等[24]进行的药动学研究中,与游离ATO组比较,MSNs- PAA-ATO组的半衰期延长了1.3倍,曲线下面积增加了2.6倍,体外(SMMC-7721细胞系)和体内(H22异种移植瘤)抗肿瘤效力也显著增强,表明MSNs-PAA 改善了ATO的毒副作用,增加了抗肿瘤效力。

以上结果表明,pH响应性材料修饰的MSNs通过响应肿瘤部位酸性pH环境释放药物,可改善毒性抗癌药物药动学特性,有希望成为高效、低毒副作用的纳米载体。

2.2 氧化还原响应性修饰开发用于递送药物的氧化还原反应性载体是非常有效的治疗肿瘤的策略。

氧化还原反应性DDS的基本原理是基于肿瘤组织和正常组织之间氧化还原剂GSH 浓度的显著差异[22]。

内源性氧化还原剂GSH在细胞内液中浓度较高(比细胞外液高100~1 000倍),特别是在一些癌细胞中(与正常细胞比较至少高4倍)[25]。

作为氧化还原敏感性基团,二硫键在GSH的存在下易裂解,使其成为设计氧化还原反应性DDS的最佳受体位点[22]。

Chen X等[14]将天然存在的蛋白质转铁蛋白(Tf)通过氧化还原可裂解的二硫键修饰到MSNs的表面上,同时作为封端剂和靶向配体。

研究发现,模型抗癌药DOX可在没有GSH的情况下有效地包封在MSNs中,当系统暴露于GSH中时,观察到DOX的暴发性释放,表明Tf具有良好的封盖效率,二硫键具有良好的氧化还原响应特性,从而实现了DOX在特定位点的按需释放,并为设计基于氧化还原反应性的MSNs载体提供了思路。

Xiao D等[26]使用靶向肿瘤的治疗性肽[(RGDWWW)2KC]修饰MSNs 并用作封端剂,结果,纳米粒被癌细胞吸收后,癌细胞中高浓度的GSH使二硫键裂解,MSNs表面的治疗性肽被释放,最终扩散到细胞质中发挥治疗作用。

2.3 酶响应性修饰基于酶刺激响应性的DDS因其温和的反应条件和对正常组织的低副作用越来越受到关注[27]。

而肿瘤中过表达的酶[28],也可被用作释放触发因子。

Hu C 等[29]通过赖氨酸-多巴胺的自聚合构建了聚(赖氨酸-多巴胺)(PLDA)修饰的MSNs,并负载模型药物DOX,形成DOX-PLDA-MSNs。

由于赖氨酸和多巴胺之间存在肽键,当DOX- PLDA-MSNs进入癌细胞后,可在癌细胞中酶的影响下降解肽键而有效释放药物,显示出明显的抗癌活性。

笔者认为,这种简单的策略可以为构建酶响应性药物递送系统提供一个新的平台。

Kumar B等[30]开发了一种基于MSNs的酶响应性材料,用于结肠癌药物的运输。

其使用瓜尔胶(GG)对MSNs进行修饰并用作封端剂,之后负载模型药物5-氟尿嘧啶(5-FU)。

通过模拟结肠微环境发现,结肠酶可促進GG的生物降解,特异性地引发了5-FU的释放。

GG-MSNs系统也被证明在胃肠道不同模拟条件下,在不存在酶时可接近“零释放”[30],从而避免药物的过早释放并在结肠癌细胞内定点释放。

2.4 多重刺激响应性修饰由于肿瘤形成是一个复杂而多因素的过程,因此多重刺激响应性药物传送系统增加了提高抗癌效果的可能性。

有两种类型的刺激响应性组合(例如pH和GSH)修饰的智能MSNs系统已被广泛研究。

Yang D等[31]开发了巯基和氨基修饰的多阶段反应性SH/NH2-MSNs药物传送系统,同时HA衍生物被连接到SH/NH2-MSNs上用于靶向递送二硫键并控制药物释放。

相关文档
最新文档