芝罘区数学数列求通项7法

合集下载

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法(例题+详解)

求数列通项公式的十种方法一.公式法 例1已知数列{勺}满足d”|=2勺+3x2", q=2,求数列{勺}的通项公式。

扌,故数列{影}是 以沪知为首项,以扌为公差的等差数列,由等差数列的通项公式,畤“+心)|,3 1 所以数列{©}的通项公式为a n =(-n —)2\2 2评注:本题解题的关键是把递推关系式。

心=2©+3><2”转化为增一牛=3,说明数列 2 2 2 {*}是等差数列,再直接利用等差数列的通项公式求出*=1+5—1)_,进而求出数列 2 2 2{q r }的通项公式。

例2.若S”和7;分别表示数列{©}和0}的前"项和,对任意正整数a n =-2(n + l), T n -3S n =4n.求数列{b K }的通项公式;解:•/ a fj = -2(n + I)/. “] = -4 cl = -2 = 一昇 一 3n.・.坊=3»+4"=-3舁2_5加 2 分 当 ”=1 时,7j 訥=—3—5=—8 当 n>2^\,b f J =T f J —7^2—1 =-6/2—2 ........... . ^=—6/2—2. 4 分I练习:1.已知正项数列{an },其前n 项和Sn 满足10Sn=an 2+5a n +6且a 】,a3,a 】5成等 比数列,求数列{%}的通项%. 解:T 105>訂+5/+6,① ・:108产日「+5/+6,解之得创=2或力产3,又 10$-产②-:+5②T +6(〃$2),②由①—②得 10a = (a^—a…-i 2) +6(a…—a…-x ),即(8”+$Q (%—/一】—5) =0T 色+/_1>0 , 二 a :—乔产5 (77^2) •当 ai =3 时,a.\— 13* ^i5=73. EL \* 越,去不成等比数列Si^3; 当 ai —2 时» 3.\— 12 9 ai5=72,有 &3 二日15 、二2, • • @7二5/7 —3,三、累加法 例3已知数列{©}满足如=©+2几+ 1, q=l,求数列{©}的通项公式。

数列通项公式的求法(共21张PPT)

数列通项公式的求法(共21张PPT)


a2 a3 a4 a5 an1 an 31 32 33 34 3n2 3n1 a1 a2 a3 a4 an2 an1
n ( n 1) an 1 23 n 1 3 3 2 a1
an a1 3
n ( n 1) 2
注意:并非每一个数列都可以写出通项公式,数列的通项公式,也 并非是唯一的. 数列也可以用作下面两个条件结合起来的方法表示: (1)给出最初的n项或一项. (2)给出数列中后面的项用前面的项来表示的公式,这种方法叫 做递推法,后者称为该数列的递推公式. 一、观察法
(1) 1,1,1,1,1,1 ( 2) 1,0,1,0,1,0,
令bn an1 an (n N ),b1 2
则bn an1 an 2 2n1 2n
an (an an 1 ) (an 1 an 2 ) (a2 a1 ) a1 2n 1 2n 2 2n 3 2 1 2 1
又a1 3, S1 S2 2a2 , a2 6.
当n 2时, an 6 3n2 2 3n1.
(n 1) 3 an n 1 2 3 (n 2)
法二(统一成关于 Sn 的递推关系)
Sn1 Sn 2an1 2(Sn1 Sn ),
2n 2 3n 1 2n 2 4n 2 3n 3 1 4n 5
经验证(1)不包含在(2)中,所以由(1)(2)知通项公式为
(一)已知前n项和公式求通项公式
2, 当n 1时 an 4n 5, 当n 2时
an 的前项和为Sn 3n2 2n, 求通项公式an . (2) 已知数列

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a .注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

数列求通项7法

数列求通项7法

高二数学数列求通项方法汇总1、观察法:2、定义法:3、公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式1 (1) (2)n n n n S n a S S n -=⎧=⎨-≥⎩例1、已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 解 ∵当2n ≥时,1n n n a S S -=-,∴1120n n n n S S S S --+=-,即nS 1-11-n S =2, ∴数列⎭⎬⎫⎩⎨⎧n S 1是公差为2的等差数列,又S 1=a 1=21,∴11S =2,∴n S 1=2+(n -1)×2=2n , ∴S n =n21,∴当n ≥2时,12n n n a S S -=-=-)1(21-n n ,∴a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n . 例2、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解由()()2*14nna S n N +=∈得()()()221114411n n n n n a S S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.通项公式,只要)()2()1(n f f f +++Λ能进行求和,则宜采用此方法求解.解题思路:利用累差迭加法,将1(1)n n a a f n --=-,--1n a 2-n a =(2)f n -,…,-2a 1a =(1)f ,各式相加,正负抵消,即得n a .例1、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原式可化为:1111+-+=+n n a a n n ,则,211112-+=a a 312123-+=a a , 413134-+=a a ,……,nn a a n n 1111--+=-,逐项相加得:n a a n 111-+=,故na n 14-=. 例2、已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式. 解:由132a a n n 1n +⋅+=+,得132a a n n 1n +⋅=-+,则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---Λ1221(231)(231)(231)(231)3n n --=⋅++⋅+++⋅++⋅++L12212(3333)(1)3n n n --=+++++-+L ,所以1n 32n 31332a n nn -+=++--⋅=.例3、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a . 解:由112231n n n n a a ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,∴有12121223112222a a -=-+,23232333112222a a -=-+,…,1113112222n n n n n n n a a ----=-+,将这1n -式子相加,得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n nΛΛ,又由已知求得16a =,∴()*231n n n n N a n ∈=•++.)()2()1(n f f f ⋅⋅Λ的值可以求积时,宜采用此方法.解题思路:由()11n n a f n a -=-,()122n n a f n a --=-,…,()211af a =,将各式左右两边分别相乘,得()()()12112211f n f n f a a a a a a n n n n ΛΛ-⋅-=⋅⋅⋅---,即得n a . 例1、在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 解:由条件得2113a a =⋅,3224a a =⋅,4335a a =⋅,5446a a =⋅,…,111n n n a a n --=⋅+, 将这n -1个式子相乘化简得:)1(1+=n n a n .例2、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅L 121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯L (1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯L L ,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.6、递推法(迭代法):例1、已知数列{}n a 中,111,n n a a a n +=-=,求通项公式n a .(也满足叠加法) 解:由已知,得()()()12112n n n a a n a n n --=+-=+-+-()()()21n n-1n n+2121122a n n -==+-+-++=+=L L .例2、设数列{}n a 是首项为1的正项数列,且()()22*11n+10n n n na na a a n N ++-+=∈,求数列的通项公式.(也满足叠乘法)解:由题意知11,0n a a =>,将条件变形,得()()1110n n n n a a n a na ++++-=⎡⎤⎣⎦, 又0n a >,得10n n a a ++≠,所以11n n na a n +=+,即11n n a n a n +=+,到此可采用:法一:121112121112n n n n n n n n a a a a n n n n n -------==⋅==⋅⋅⋅--L L ,从而1n a n =.法二:12121121,12n n n n a a a n n a a a n n -----⋅⋅⋅=⋅⋅⋅-L L 所以1n a n= . 法三:由11n n a n a n +=+,故{}n na 是常数列,1111,n n na a a n =⨯=∴=. 点拨:解法一是迭代法,这是通法;解法二是叠乘法,适合由条件()1nn a f n a -=求通项的题型;解法三是构造法(简单+经典),根据条件特点构造特殊数列求通项,技巧性较强,体现了转化思想.例4、已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式. 解:由已知,得(两边除以1n 3+),得1n nn 1n 1n 31323a 3a +++++=,即1n n n 1n 1n 31323a 3a ++++=-, 故11221122111()()()333333n n n n n n n n n n a a a a a a a a a a ------=-+-++-+L 122121213()()()3333333n n -=+++++++L 1)3131313131(3)1n (222n 1n n n +++++++-=--Λ,∴n 1n n n n 321213n 2131)31(313)1n (23a ⋅-+=+--⋅+-=-,即213213n 32a n n n-⋅+⋅⋅=或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式.(1)f(n)= q (q 为常数)例1、已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a .解:∵121+=+n n a a ,∴)1(211+=++n n a a ,令1+=n n a b ,则数列}{n b 是公比为2的等比数列,∴11-=n n q b b ,即n n n qa a 2)1(111=+=+-,∴12-=n n a . 例2、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-.点拨:一般地,递推关系式a n+1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)可等价地改写成{p q a n --1}为等比数列,从而可求n a .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nnn n qa p q a q, 令nnn a b q=,则可转化为b n+1=pb n +q 的形式求解. 例3、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n)+1,令b n =2 n a n ,则b n+1=32b n +1 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 例4、已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求通项n a .解:由条件,得113222n n n n a a ++=+,即113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列, ∴31(1)22n na n =+-, 故31()222n n a n =-.(3) f(n)为非等差数列,非等比数列 法一、构造等差数列法例7、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+.例8、在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n . 解:由条件可得:12(1)(2)(1)n n a a n n n n +=++++,∴数列{}(1)n a n n +是首项为13(11)12a =+×、公差为2的等差数列,∴a n n n n =+-12141()(). 法二、构造等比数列法例9、已知数列{}n a 满足11a =,13524nn n a a +=+⨯+,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+,将已知条件代入此式,整理后得(52)24323nnx y x y +⨯++=⨯+,令52343x xy y +=⎧⎨+=⎩,解得52x y =⎧⎨=⎩,∴有115223(522)n n n n a a +++⨯+=+⨯+,又11522112130a +⨯+=+=≠,且5220n n a +⨯+≠,故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,∴1522133n n n a -+⨯+=⨯,故1133522n nn a -=⨯-⨯-.例10、设在数列{a n }中,a a a a n n n112222==++,,求{a n }的通项公式.(构造完全平方)解:将原式变形为a a a n n n ++=+12222()……①,a a a n n n+-=-12222()……②,①÷②得:a a a a n n n n +++-=+-1122222[],即lglg[]a a a a n n n n +++-=+-1122222……③,令b a a n n n =+-lg[]22………④,则③式可化为12n nb b +=,则数列{b n }是以 b 1=lg[]lglg()a a 11222222221+-=+-=+为首项、公比为2的等比数列,于是b n n n =+=+-22122211lg()lg()×,代入④式得:a a n n +-22=21)n,解得a n nn=+++-221121122[()](). 例11、已知数列{}a n ,其中a 11=,且a a a n nnn +=-123·,求通项a n . 解:由条件得1321a a n n n +=-+,设b n =1a n,则b b n n n +=-+132,(之前方法) 令1123(2)n n n n b b λλ+++=-+··,解得15λ=-,于是有111123(2)55n n n n b b ++-=--··,∴数列1{2}5n n b -·是一个以1113255b -=·为首项,公比是-3的等比数列,∴1132(3)55n n n b --=-·,即112(3)55n n n b =--·,代入b n =1n a ,得a n n n=--523(). 例12、⑴在数列}{n a 中,12a =,23a =,2132n n n a a a ++=⋅-⋅,求n a ; ⑵在数列{}n a 中,11a =,22a =,212133n n n a a a ++=+,求n a .解:⑴由条件,2312n n n a a a ⋅-⋅=++ ∴),(2112n n n n a a a a -=-+++故1212n n n a a -++-=,再叠加法可得:2222(12)2112n n n a a --=+=--;⑵由条件可得2111()3n n n n a a a a +++-=--,∴ 数列1{}n n a a +-是以112=-a a 为首项,以13-为公比的等比数列,∴11)31(-+-=-n n n a a , 故n a =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+----=+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n .。

递推数列通项求法七种常用策略(word版)

递推数列通项求法七种常用策略(word版)

递推数列通项求法——七种常用策略数列是高中知识的难点之一,本课件讲述递推数列求通项方法,由于数列的多变,这里所讲述的方法,所求的数列,也只适用于一些常见的数列,基础的数列,一般可以为解答较难的数列作铺垫,对于其他有高难度的数列,通项不一定都可以求出,因此本课件涉及的数列,都是简单难度的数列. 七种常用策略分别是:①累加法 ②累乘法 ③待定系数法 ④两边取对数 ⑤两边取倒数 ⑥特征根法 ⑦两边同除式子法211221*1,22,(1)(1)21,22,n nn n n n n n S a S n nn a S n a S S n n n n nn a n a n n N -=+===≥=-=+----====∈问题一:已知 求例 当时当时代入符合情况所以1111111111*:,(,)23,12()233,233,442223,n n n n n n n n n n n n n n n n n n a pa q p q a a a aC a C C a a Ca C ab a b b b a n N ------++=+=+=+=+=++==+=+==∙==-∈问题二为常数使用待定系数法是常数令且易知显然是等比数列,11111111*:,(,)23,12[(1)],22363,20,6,23(1)636,10102525236,n n n n n n n n n n n n n n n n nn a pa qn p q a a n a a Cn D a C n D C D a a Cn C D a n C C D D a n b a n b b b a n n N ------=+=+=++=+-+=+-+++=-+===+-+=++==∙=∙=∙--∈问题三为常数使用待定系数法是常数所以令且易知显然是等比数列,1111221122*(1)3,133(1)............323(23....)33413(1),22n n n n n n n n p a a n a a a na a n a a a a n n n n n a n N ----==+=-=⎧⎪-=-⎪⎪⎨⎪⎪-=⎪⎩-=+++++-=+-=∈ 问题三变式的情况:使用累加法上述各式累加得到,11111111111:,(,)()23,13,221,1333331,332(),,33328,3,33382,()(33nn n n n n n n n n n n n n n n n n n n n n n n n n n a pa q p q a a a a a a a a b b b C b C C C b x b x b x x --------=+=+==+=+==+=+=--==-=--=-= 问题四为常数解法一两边同除以巧妙变化:令且易知使用待定系数法是常数解得令且易知是等比数列所以1*24)()32(4)()3323[(4)()3](4)23,3nn n n n n n n b a n N +-=-+=-+=-+∈ 11111111111*:,(,)()23,132[3]22()3,333323333,882(4)2(4)23,nn n n n n nn n n n n n nn n n n n n n nn n n n n a pa q p q a a a a C a C C a a C C C a a b a b b b a n N --------+=+=+=+=+=+-=--=-=-=-=-∙=-∙=-∙+∈问题四为常数解法二使用待定系数法是常数令且易知显然是等比数列,11112111211124121111()()*2284123112221(),()()(),2,02,............n n n n kn n n n n n n n n n n n a a k a a a a a a a a a a n N a a a a ----------===>⎧=⎪⎪⎪=⎪⎪⇒==∈=⎨⎪⎪⎪⎪⎪=⎩问题五:为常数解法一两边开方,使用累乘法各式累乘得到:111211211111111lg 2()()*22(),()()(),2,0lg()lg ,2lg lg ,lg 1,lg ,lg 2lg 211,lg 2(),lg lg 2(),22102,n n k n n n n n n n n n nn n n n n n n n n a a k a a a a a a a a a b a b a b b a a n N ---------∙===>======∙=∙==∈问题五:为常数解法二两边取对数,有根据对数的性质有令易知是等比数列因此1212112121211211(,)()2,1,2,()1121122n n n n n n n n n n n n n n n n n n n n a Aa Ba A B a Aa Ba a a a a ABa a a a a a a a a a a a αβααβαβαβαβαααββαβ--------------=+=+-=-+=⎧⎨-=⎩=+==-=-⎧=+=⎧⎪⎪⎪⇒⎨⎨=-⎪⎪-=⎩⎪⎩--问题六:为常数此数列一般式用待定系数法凑配如下:解出和即可例题:使用待定系数法111212121312210212*1,,1211,(),()221()21()121()2......13......1()2511(),332n n n n n n n n n n n n n n n n n n n b a a b a b b b a a a a a a a a a n N -------------=-=-==-=-⎧-=-⎪⎪⎪-=-⎪--⎪⇒-=-⎨⎪⎪⎪-=-⎪⎪⎩=+-∈令易知是等比数列所以111111111*:,(,,),1212111112,,11,,,n n n n n n n n n n n n n n n n Aa a A C D Ca D a a a a a a a b b a a a b b n a n N n -------=+==++=-=====∈问题七为常数两边取倒数令易知为等差数列所以11111:,(,,,,)()[]n n n n n n Aa Ba a m A B C D m Ca D A B C D B D A C a A C a Ca D ααααααα----+==++=+--+--=+问题八是常数特征根法推导过程省略再使用两边取倒数法即可解决。

数列通项的十一种求法

数列通项的十一种求法

数列通项公式的十一种方法知识概要一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列通项的十一种求法

数列通项公式的^一种方法知识概要一•利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三•求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四•求数列通项的基本方法是:累加法和累乘法。

五•数列的本质是一个函数,其定义域是自然数集的一个函数。

3 n 1、累加法1 .适用于:a n i a n f (n) ------ 这是广义的等差数列累加法是最基本的二个方法之一。

2•若 a n 1 a n f (n) (n 2), a 2 a i f(1) 小 a 3 a 2 f (2) L L a n 1 a n f (n) n两边分别相加得 a n 1 a 1 f(n) k 1 例1已知数列{a n }满足a n 1 a n 2n 1,& 1,求数列{a n }的通项公式。

解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则 a n (a n a n 1 ) (a n 1 a n 2) L (a 3 a 2) (a 2 aj a 1 [2( n 1) 1] [2( n 2) 1] L (2 2 1) (2 1 1) 1 2[( n 1) (n 2) L 2 1] (n 1) 12(n 1)n (n 1) 12 (n 1)( n 1) 1 n 2 2 所以数列{a n }的通项公式为a n n 。

例2已知数列{a n }满足a n 1 a n 2 3n1,a 1 3,求数列{a n }的通项公式。

解法 (a n a n 1 ) (a n 1 a n 2) L (a 3 a ?) (a 2 a 1 ) a 1 (2 3n 1 1) (2 3n 21) L(2 32 1) (2 311) 32(3n1 3n2L32 31) (n 1) 33(1 3n1)所以a n 3nn 1(n 1) 3由 a n 1 a n 2 3n 1 得 a . 1 a n 2 3n 1 则 1 3 3n 3 n 1 3 n又S1a1 得 a1S nn(n 1)2,又an0 Sn2n(n 1)2a n..2n(n 1)、2n(n 1)2此题也可以用数学归纳法来求解二、累乘法1•适用于: a n 1 f(n)a n --------------------------- 这是广义的等比数列 累乘法是最基本的二个方法之二。

(完整版)数列通项的十一种求法

数列通项公式的十一种方法知识概要一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列通项的七种方法

数列通项的七种方法一、递推公式法递推公式法是一种常见的求解数列通项的方法。

通过观察数列中相邻两项的关系,可以找到递推公式,从而求得数列的通项。

例如,我们考虑一个等差数列,已知首项为a,公差为d。

根据等差数列的性质,我们可以得到递推公式an = an-1 + d。

其中,an 表示数列的第n项,an-1表示数列的第n-1项。

利用递推公式,我们可以通过已知的首项和公差,依次求得数列的每一项。

这种方法简单直观,适用于求解各种类型的数列。

二、通项公式法通项公式法是一种通过数学公式来表示数列通项的方法。

对于某些特殊的数列,可以通过观察数列中的规律,建立通项公式,从而直接求得数列的任意项。

例如,斐波那契数列就可以通过通项公式来表示。

斐波那契数列的通项公式为Fn = (1/sqrt(5)) * (((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)。

其中,Fn表示数列的第n项。

通项公式法适用于某些特殊的数列,可以直接求得数列的任意项,省去了逐项求解的步骤,提高了求解效率。

三、递归关系法递归关系法是一种通过递归关系来求解数列通项的方法。

通过观察数列中相邻两项的关系,可以建立递归关系式,从而求得数列的通项。

例如,斐波那契数列就可以通过递归关系来表示。

斐波那契数列的递归关系式为Fn = Fn-1 + Fn-2。

其中,Fn表示数列的第n项,Fn-1表示数列的第n-1项,Fn-2表示数列的第n-2项。

利用递归关系,我们可以通过已知的前两项,依次求得数列的每一项。

递归关系法适用于一些特殊的数列,可以通过递归的方式来求解。

四、等差数列通项公式对于等差数列,我们可以通过等差数列的通项公式来求解数列的任意项。

等差数列的通项公式为an = a1 + (n-1)d。

其中,an表示数列的第n项,a1表示数列的首项,d表示数列的公差。

利用等差数列的通项公式,我们可以直接求解数列的任意项,无需逐项计算,提高了求解效率。

数列通项公式的求法13种和求和的七种方法

最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。

而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。

本文给出了求数列通项公式的常用方法。

一、直接法根据数列的特征,使用作差法等直接写出通项公式。

例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=nn a(2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:关键是找出各项与项数n 的关系例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bqd n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11. 已知数列{}n c 中,b b c +=11,bb c b c n n ++⋅=-11, 其中b 是与n 无关的常数,且1±≠b 。

求出用n 和b 表示的a n 的关系式。

解析:递推公式一定可表示为)(1λλ-=--n n c b c 的形式。

由待定系数法知:bbb ++=1λλ )1(1,1,12122b bc b b b c b b b n n --=--∴-=∴≠-λ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n 点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求通项方法汇总1、观察法:2、定义法:3、公式法:若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩例1、已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 解 ∵当2n ≥时,1n n n a S S -=-,∴1120n n n n S S S S --+=-,即n S 1-11-n S =2, ∴数列⎭⎬⎫⎩⎨⎧n S 1是公差为2的等差数列,又S 1=a 1=21,∴11S =2,∴n S 1=2+(n -1)×2=2n , ∴S n =n 21,∴当n ≥2时,12n n n a S S -=-=-)1(21-n n ,∴a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .例2、数列{}n a 的各项都为正数,且满足()()2*14n na S n N +=∈,求数列的通项公式.解由()()2*14n na S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.通项公式,只要)()2()1(n f f f +++ 能进行求和,则宜采用此方法求解.解题思路:利用累差迭加法,将1(1)n n a a f n --=-,--1n a 2-n a =(2)f n -,…,-2a 1a =(1)f ,各式相加,正负抵消,即得n a .例1、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原式可化为:1111+-+=+n n a a n n ,则,211112-+=a a 312123-+=a a , 413134-+=a a ,……,nn a a n n 1111--+=-, 逐项相加得:n a a n 111-+=,故na n 14-=.例2、已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式. 解:由132a a n n 1n +⋅+=+,得132a a n n 1n +⋅=-+,则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---1221(231)(231)(231)(231)3n n --=⋅++⋅+++⋅++⋅++12212(3333)(1)3n n n --=+++++-+ ,所以1n 32n 31332a n nn -+=++--⋅=. 例3、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a . 解:由112231n n n n a a ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,∴有12121223112222a a -=-+,23232333112222a a -=-+,…,1113112222n n n n n n n a a ----=-+,将这1n -式子相加,得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n,又由已知求得16a =,∴()*231n n n n N a n ∈=∙++.)()2()1(n f f f ⋅⋅ 的值可以求积时,宜采用此方法.解题思路:由()11n n a f n a -=-,()122n n a f n a --=-,…,()211af a =,将各式左右两边分别相乘,得()()()12112211f n f n f a aa a a a n n n n -⋅-=⋅⋅⋅---,即得n a . 例1、在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 解:由条件得2113a a =⋅,3224a a =⋅,4335a a =⋅,5446a a =⋅,…,111n n n a a n --=⋅+,将这n -1个式子相乘化简得:)1(1+=n n a n .例2、已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅ 121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯ ,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.6、递推法(迭代法):例1、已知数列{}n a 中,111,n n a a a n +=-=,求通项公式n a .(也满足叠加法) 解:由已知,得()()()12112n n n a a n a n n --=+-=+-+-()()()21n n-1n n+2121122a n n -==+-+-++=+= .例2、设数列{}n a 是首项为1的正项数列,且()()22*11n+10n n n n a na a a n N ++-+=∈,求数列的通项公式.(也满足叠乘法)解:由题意知11,0n a a =>,将条件变形,得()()1110n n n n a a n a na ++++-=⎡⎤⎣⎦, 又0n a >,得10n n a a ++≠,所以11n n n a a n +=+,即11n n a na n +=+,到此可采用: 法一:121112121112n n n n n n n n a a a a n n n n n -------==⋅==⋅⋅⋅-- ,从而1n a n =.法二:12121121,12n n n n a a a n n a a a n n -----⋅⋅⋅=⋅⋅⋅- 所以1n a n = .法三:由11n n a na n +=+,故{}n na 是常数列,1111,n n na a a n =⨯=∴=. 点拨:解法一是迭代法,这是通法;解法二是叠乘法,适合由条件()1nn a f n a -=求通项的题型;解法三是构造法(简单+经典),根据条件特点构造特殊数列求通项,技巧性较强,体现了转化思想.例4、已知数列}a {n 满足3a 132a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式. 解:由已知,得(两边除以1n 3+),得1n nn 1n 1n 31323a 3a +++++=,即1n n n 1n 1n 31323a 3a ++++=-, 故11221122111()()()333333n n n n n n n n n n a a a a a a a a a a ------=-+-++-+ 122121213()()()3333333n n -=+++++++ 1)3131313131(3)1n (222n 1n n n +++++++-=-- , ∴n1n n n n 321213n 2131)31(313)1n (23a ⋅-+=+--⋅+-=-,即213213n 32a n n n -⋅+⋅⋅=或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式.(1)f(n)= q (q 为常数)例1、已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a .解:∵121+=+n n a a ,∴)1(211+=++n n a a ,令1+=n n a b ,则数列}{n b 是公比为2的等比数列,∴11-=n n q b b ,即n n n q a a 2)1(111=+=+-,∴12-=n n a .例2、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 点拨:一般地,递推关系式a n+1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)可等价地改写成{p q a n --1}为等比数列,从而可求n a . (2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nnn n qa p q a q, 令nnn a b q=,则可转化为b n+1=pb n +q 的形式求解. 例3、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a .解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 例4、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a . 解:由条件,得113222n n n n a a ++=+,即113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列, ∴31(1)22n n a n =+-, 故31()222n na n =-. (3) f(n)为非等差数列,非等比数列 法一、构造等差数列法例7、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+.例8、在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n . 解:由条件可得:12(1)(2)(1)n n a a n n n n +=++++,∴数列{}(1)n a n n +是首项为13(11)12a =+×、公差为2的等差数列,∴a n n n n =+-12141()(). 法二、构造等比数列法例9、已知数列{}n a 满足11a =,13524n n n a a +=+⨯+,求数列{}n a 的通项公式. 解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+,将已知条件代入此式,整理后得(52)24323n nx y x y +⨯++=⨯+,令52343x xy y+=⎧⎨+=⎩,解得52x y =⎧⎨=⎩,∴有115223(522)n n n n a a +++⨯+=+⨯+,又11522112130a +⨯+=+=≠, 且5220n n a +⨯+≠,故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,∴1522133n n n a -+⨯+=⨯,故1133522n n n a -=⨯-⨯-.例10、设在数列{a n }中,a a a a n n n112222==++,,求{a n }的通项公式.(构造完全平方) 解:将原式变形为a a a n n n ++=+12222()……①,a a a n n n+-=-12222()……②,①÷②得:a a a a n n n n +++-=+-1122222[],即lglg[]a a a a n n n n +++-=+-1122222……③,令b a a n n n =+-lg[]22………④,则③式可化为12n nb b +=,则数列{b n }是以b 1=lg[]lglg()a a 11222222221+-=+-=+为首项、公比为2的等比数列,于是b n n n =+=+-22122211lg()lg()×,代入④式得:a a n n +-22=21)n,解得a n nn=+++-221121122[()](). 例11、已知数列{}a n ,其中a 11=,且a a a n nnn +=-123·,求通项a n . 解:由条件得1321a a n n n +=-+,设b n =1a n,则b b n n n +=-+132,(之前方法) 令1123(2)n n n n b b λλ+++=-+··,解得15λ=-,于是有111123(2)55n n n n b b ++-=--··, ∴数列1{2}5n n b -·是一个以1113255b -=·为首项,公比是-3的等比数列,∴1132(3)55n n n b --=-·,即112(3)55n n n b =--·,代入b n =1n a ,得a n n n=--523(). 例12、⑴在数列}{n a 中,12a =,23a =,2132n n n a a a ++=⋅-⋅,求n a ; ⑵在数列{}n a 中,11a =,22a =,212133n n n a a a ++=+,求n a .解:⑴由条件,2312n n n a a a ⋅-⋅=++ ∴),(2112n n n n a a a a -=-+++故1212n n n a a -++-=,再叠加法可得:2222(12)2112n n n a a --=+=--;⑵由条件可得2111()3n n n n a a a a +++-=--,∴ 数列1{}n n a a +-是以112=-a a 为首项,以13-为公比的等比数列,∴11)31(-+-=-n n n a a , 故n a =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+----=+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n .。

相关文档
最新文档