电力电子技术总结

合集下载

电力电子技术概述

电力电子技术概述

电力电子技术概述电力电子技术是一门研究电力系统中电能的控制与转换的学科,它涉及到电力电子器件、电力电子电路、电力电子系统以及与之相关的控制策略和应用领域等方面。

本文将概述电力电子技术的起源、应用领域、主要器件和电路拓扑结构,以及未来发展趋势。

一、电力电子技术的起源与发展电力电子技术源于20世纪60年代的美国,当时希望能够利用电子器件来实现电力的调节、控制和转换。

最早应用于变频调速装置、静态无功补偿装置、电能质量改善装置等,逐渐发展成为一个独立的技术领域。

电力电子技术的发展也受益于电子器件的进步,如功率半导体器件的改进和智能控制技术的应用。

二、电力电子技术的应用领域1. 变频调速技术:电力电子技术在工业生产中的一个重要应用领域就是变频调速技术。

通过改变电机的输入电压和频率,可以实现对电机转速的精确控制。

变频调速器广泛应用于印刷机械、纺织机械、化工设备等领域,提高了生产效率和节能效果。

2. 静态无功补偿技术:电力电子技术可以实现对电力系统中无功功率的补偿控制,提高电力系统的功率因数和稳定性。

静态无功补偿装置主要应用于电力系统中的无功功率补偿和谐波抑制,有效改善了电能质量,降低了线损和电流谐波。

3. 新能源发电技术:电力电子技术在新能源领域的应用也日益广泛。

光伏逆变器、风力发电控制器等电力电子装置将新能源转换为交流电能,并通过电网进行输送和利用。

这种技术可以实现对新能源发电的有效控制和管理,推动了可再生能源的利用。

4. 电力系统调节和控制:电力电子技术在电力系统调节和控制中扮演着重要角色。

通过电力电子器件和控制策略,可以实现对电力系统的电压、频率、质量等方面的调节和保护。

这对于电力系统的稳定运行具有重要意义。

三、电力电子技术的主要器件和电路拓扑结构1. 功率半导体器件:电力电子技术的基础是功率半导体器件,主要包括二极管、晶闸管、MOSFET、IGBT等。

这些器件具有承受高压和高电流的特点,并能实现高效率的电能转换。

电力电子技术复习总结(判断题答案)

电力电子技术复习总结(判断题答案)

电力电子技术复习一、选择题(每小题10分,共20分)1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差A度。

A、180°,B、60°,c、360°,D、120°2、α为C度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

`A,0度,B,60度,C,30度,D,120度,3、晶闸管触发电路中,若改变B的大小,则输出脉冲产生相位移动,达到移相控制的目的。

A、同步电压,B、控制电压,C、脉冲变压器变比。

4、可实现有源逆变的电路为A。

A、三相半波可控整流电路,B、三相半控桥整流桥电路,C、单相全控桥接续流二极管电路,D、单相半控桥整流电路。

5、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理A。

A、30º-35º,B、10º-15º,C、0º-10º,D、0º。

6、在下面几种电路中,不能实现有源逆变的电路有哪几种BCDA、三相半波可控整流电路。

B、三相半控整流桥电路。

C、单相全控桥接续流二极管电路。

D、单相半控桥整流电路。

7、在有源逆变电路中,逆变角的移相范围应选B为最好。

A、=90º∽180º,B、=35º∽90º,C、=0º∽90º,8、晶闸管整流装置在换相时刻(例如:从U相换到V相时)的输出电压等于C。

A、U相换相时刻电压u U,B、V相换相时刻电压u V,C、等于u U+u V的一半即:9、三相全控整流桥电路,如采用双窄脉冲触发晶闸管时,下图中哪一种双窄脉冲间距相隔角度符合要求。

请选择B。

10、晶闸管触发电路中,若使控制电压U C=0,改变C的大小,可使直流电动机负载电压U d=0,使触发角α=90º。

达到调定移相控制范围,实现整流、逆变的控制要求。

B、同步电压,B、控制电压,C、偏移调正电压。

电力电子技能实训报告(3篇)

电力电子技能实训报告(3篇)

第1篇一、实训背景随着我国经济的快速发展,电力电子技术在各个领域的应用越来越广泛。

为了提高学生的实践能力和专业技能,我校组织了一次电力电子技能实训。

本次实训旨在使学生了解电力电子技术的基本原理、电路设计方法以及在实际工程中的应用,培养学生的动手能力和团队合作精神。

二、实训目的1. 理解电力电子技术的基本概念和原理;2. 掌握电力电子电路的设计方法和调试技巧;3. 学会使用电力电子实验设备;4. 培养学生的动手能力和团队合作精神;5. 提高学生对电力电子技术的实际应用能力。

三、实训内容1. 电力电子技术基础理论实训期间,我们学习了电力电子技术的基本概念、工作原理和主要特点。

通过对电力电子器件、电路拓扑结构、控制策略等方面的学习,使我们对电力电子技术有了更深入的了解。

2. 电力电子电路设计实训过程中,我们学习了电力电子电路的设计方法和步骤。

以单相桥式逆变器为例,我们进行了电路设计和仿真实验。

通过仿真实验,我们验证了电路设计的正确性,并优化了电路参数。

3. 电力电子实验设备使用实训期间,我们学习了电力电子实验设备的使用方法。

包括实验设备的操作规程、安全注意事项以及故障排除等。

通过实际操作,我们熟练掌握了实验设备的操作技巧。

4. 电力电子电路调试在完成电路设计后,我们进行了电路调试。

通过调整电路参数,使电路达到预期的工作状态。

在调试过程中,我们遇到了一些问题,如电路参数不稳定、波形失真等。

通过查阅资料、请教老师和同学,我们逐一解决了这些问题。

5. 电力电子技术实际应用实训过程中,我们学习了电力电子技术在实际工程中的应用。

以变频调速为例,我们了解了变频调速的原理、电路设计方法以及在实际工程中的应用。

四、实训过程1. 理论学习在实训开始前,我们进行了电力电子技术基础理论的学习。

通过查阅教材、资料和参加讲座,我们对电力电子技术有了初步的了解。

2. 电路设计在电路设计环节,我们以单相桥式逆变器为例,进行了电路设计。

电力电子技术总结报告

电力电子技术总结报告

电力电子技术总结报告..《电力电子应用设计》课程学习总结报告__nn 马云1.理论方面:本课程主要以人造金刚石液压机合成加热调功控制系统为案例,主要学习了单相交流调压电路、触发脉冲发生电路、电压检测电路、电流检测转换电路、相位失衡检测电路、相位失衡保护电路、过压-过流保护电路、电源电路、比较与比例-积分电路等。

我们先将总图分解成三个部分,我所负责的是触发脉冲发生电路和电压检测电路(总图的左上方部分),我先通过DXP软件画出这两个电路的原理图,再通过SIM软件对触发脉冲发生电路和电压检测电路进行仿真,确认无误后用DXP开始PCB图的绘制,因为实际原因(铜板的大小)尽量将元器件安排的紧凑一些,最后将各个成员的PCB图汇总。

打印出PCB图后去实验室进行板子的印刷、腐蚀、打孔、焊接,最后用实验室的仪器进行调试。

1.1 主电路及其工作原理在电路中,要使晶闸管正常导通,必须同时满足下面两个条件:(1)阳极对阴极加正向电压;(2)控制极对阴极加正向电压(或正向脉冲)。

而且,晶闸管还有一个重要特点,就是它一旦导通后控制极即失去控制作用,器件始终处于导通状态,除非阳极对阴极电压降低到很小,致使阳极电流降到某一数值之下。

1.2 闭环控制系统主回路及其工作原理1.3 电源电路及其工作原理本系统电路工作需要的电源有5V、15V两个..1.3.1 正、负15V电路及其工作原理桥式整流:用4个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器。

负载上的电流波形和输出电压值与全波整流电路相同。

7815、7915芯片:7815、7915是一种三端正稳压器电路,TO-220F封装,能提供多种固定的输出电压,应用范围广,内含过流、过热和过载保护电路。

芯片前面两个电容成缓冲,后面两个芯片起滤波作用,使电压更稳定,二级管指示作用。

1.3.2正5V电路及其工作原理桥式整流:用4个二极管组成的桥式整流电路可以使用只有单个次级线圈的变压器。

电力电子技术中的电力电子控制技术是什么

电力电子技术中的电力电子控制技术是什么

电力电子技术中的电力电子控制技术是什么电力电子技术是指将电力和电子技术相结合,用于实现电力的调控、变换和控制的一门学科。

其中,电力电子控制技术则是电力电子技术中的重要组成部分,主要用于控制电力电子设备的工作状态和输出特性,以满足不同的应用需求。

本文将就电力电子控制技术的基本原理、应用领域以及发展趋势等方面展开论述。

一、电力电子控制技术的基本原理电力电子控制技术的基本原理可归纳为以下几点:1. 可控硅技术:可控硅是一种具有开关特性的电子元器件,可通过外部控制信号,实现对电流的控制。

在电力电子应用中,可控硅被广泛应用于交流电压的调制、变换和控制等方面。

2. 双向开关技术:双向开关是指能够实现正向和反向电流流动的电子开关元器件。

双向开关技术常用于直流电源和交流电源之间的转换与控制。

3. 脉宽调制技术:脉宽调制技术是一种通过改变电流或电压的脉冲宽度来控制输出功率的方法。

通过调整脉冲的宽窄,可以实现对输出电压、电流的精确控制。

二、电力电子控制技术的应用领域电力电子控制技术广泛应用于以下几个领域:1. 交流传动系统:在交流传动系统中,电力电子控制技术可用于调节电机的速度、转矩和位置。

例如,变频调速技术可以通过调整电机的频率和电压,实现对电机转速的精确控制。

2. 新能源发电系统:在新能源发电系统中,电力电子控制技术可以用于控制光伏发电系统、风力发电系统和储能系统等。

例如,逆变器技术可将直流电能转换为交流电能,实现与电网的互连。

3. 电力质量控制:电力质量控制是指在电力系统中,通过电力电子控制技术提高电力质量的稳定性和可靠性。

例如,采用无功补偿技术可以减小电压波动和谐波,改善电力系统的供电质量。

三、电力电子控制技术的发展趋势随着科技的不断进步,电力电子控制技术也在不断发展。

未来的发展趋势主要表现在以下几个方面:1. 高效节能:电力电子控制技术将更加注重提高能量的利用效率,减少能源消耗。

例如,采用无感应功率器件和高效控制算法,以提高系统的能源转换效率。

电力电子课程实践报告(2篇)

电力电子课程实践报告(2篇)

第1篇一、引言电力电子技术是现代电力系统中的重要组成部分,它涉及到电力系统的电能转换、控制和保护等方面。

为了更好地理解和掌握电力电子技术,我们选择了电力电子课程进行实践学习。

本报告将详细记录我们在电力电子课程中的实践过程、实践成果以及实践体会。

二、实践目的1. 通过实践,加深对电力电子基本原理和电路的理解。

2. 培养动手能力和团队协作精神。

3. 掌握电力电子电路的设计、调试和测试方法。

4. 提高对电力电子设备的维护和故障排除能力。

三、实践内容1. 电力电子电路原理实验在实验过程中,我们学习了电力电子电路的基本原理,包括二极管、晶闸管、功率MOSFET等功率器件的工作原理。

通过搭建实验电路,我们验证了电路的工作特性,如整流、逆变、斩波等。

2. 电力电子电路设计实验在实验中,我们根据给定的要求,设计并搭建了以下电路:(1)单相桥式整流电路:实现了交流电到直流电的转换。

(2)三相桥式逆变电路:实现了直流电到交流电的转换。

(3)PWM斩波电路:实现了直流电压的调节。

(4)有源电力滤波器(APF):用于抑制谐波电流。

3. 电力电子电路调试与测试实验在调试过程中,我们使用示波器、万用表等仪器对电路进行测试,观察电路输出波形,分析电路性能。

通过不断调整电路参数,使电路达到最佳工作状态。

四、实践成果1. 成功搭建了单相桥式整流电路、三相桥式逆变电路、PWM斩波电路和有源电力滤波器等电力电子电路。

2. 通过实验,掌握了电力电子电路的设计、调试和测试方法。

3. 提高了动手能力和团队协作精神。

4. 对电力电子技术有了更深入的理解。

五、实践体会1. 电力电子技术是一门实践性很强的学科,理论知识与实际操作相结合是学习的关键。

2. 在实践过程中,要注重细节,严格按照实验步骤进行操作,确保实验结果的准确性。

3. 团队协作精神在实践过程中至关重要,要学会与他人沟通、交流,共同解决问题。

4. 电力电子技术在现代社会中具有广泛的应用,如新能源发电、电力电子设备等,学习电力电子技术具有重要的现实意义。

电力电子技术实验总结

电力电子技术实验总结物理系自动化二班对于工科大学生,在大学里我们应在生活学习中参加科学研究实践,学会进行科学研究的方法,为今后参加科学研究工作打下基础尤为重要。

拿我个人来说,通过半年对电力电子技术实验的学习,在老师的循循善诱,谆谆教导下,通过循序渐进的系统学习和操作训练,对实验的知识和思想有了冰山之一角的认识,自己从中受益匪浅。

首先,实验课给我提供了手脑并用的良好机会,对培养自己理论联系实际的科学作风也有特殊的功能,每次做实验前,都会提前读实验教材讲义和相关参考资料,完成预习报告,做好实验准备,经过一年半的学习,明显觉得自己的自学能力大大提高了。

其次,在实验教材和老师的提示下,独立地对实验进行操作,正确观察实验现象,进行实验数据测量,发现自己的动手能力也提高了。

同时,每次都会列出实验表格,记录和处理数据,绘制数据曲线,运用课本上的理论对实验进行分析判断,并撰写实验报告,明显感觉到自己的分析判断能力和表达能力得到充分的锻炼。

通过这个学期的电力电子技术基础实验,我觉的作为一名工科类的学生,我深知自己的实践能力仍十分欠缺,需要不断的提高,而实验正是一个很好的机会能够锻炼我的动手能力和思维创新能力,在学习及实验的同时我也学到了很多其他课程上没有学到的知识。

这样的学习方法使得我们可以更深入的理解实验的原理,也同时拓宽了我们的思维创新能力。

随着实验的水平的提高,对我们的要求也会越来越高,这更能够促使我们进步。

希望以后我们会有比较开放的实验,这样可以充分调动我们的动手能力,提高我们的实践水平。

我想,大学的实验并不重在对实验结果测量的准确性上,而是在与在实验过程中的思考问题的能力,以及将其付诸实验的动手能力,所以我期待着新的实验,期待着自己不断的进步。

亲自做过实验后让我更明白从事科学研究必须要有严谨的科学作风,研究工作要一丝不苟,实事求是,科学实验常常要做大量的重复工作。

在现阶段,我们所接触的实验还处在基础实验和提高部分,这些是以后创新实验的坚实基础。

电力电子技术考核点总结--填空选择

1 简要说明四类基本的电力电子变流电路表答:交流变直流,即整流电路交流变交流,即交流电力控制电路或变频变相电路直流变直流,即直流斩波电路直流变交流,即逆变电;2 美国学者W.Newell用倒二角形对电力电子技术进行形象的描述,认为电力电子学是由电力学,电子学,控制理论三个学科交义而形成的。

3 电力电子技术是使用电力电子器件对电能进行变换和控制的技术,其电力变换常分为四大类:直流变直流、直流变交流、交流变交流、交流变直流。

4 根据二极管反向恢复时间的长短,可以将二极管分为普通二极管、快恢复二极管和肖特基二极管。

5 驱动电路需要提供控制电路和主电路之间的电气隔离环节,一般采用光隔离和磁隔离。

6 电力电子装置中可能发生的过电压分为外因过电压和内因过电压,其中内因过电压包括换相过电压和关断过电压。

7 电力电子系统一般由控制电路,驱动电路,主电路组成8 电力电子器件的损耗主要包括开关损耗和通态损耗9 单相半波整流电路带阻性负载时,晶闸管触发角a移相范围是【0~π】,晶闸管导通角沒和触发角α之间的关系是α+β=π或互补10 三相半波整流电路带阻性负载时,晶闸管触发角a移相范围是0-150度,输出电压连续时触发角α移相范围是0-30度11 同步信号为锯齿波的晶闸管触发电路主耍由脉冲的形成与放大,锯齿波的形成和脉冲移相,同步环节三个基本环节12 一般来说,电力电子变流电路中换流方式有器件换流、负载换流、电网换流和强迫换流。

13 直流斩波电路主要有三种控制方式:脉宽调制、脉频调制和混合调制。

14 正弦脉宽调制(SPWM)中,根据载波比N是否为固定值,可以分为同步调制和异步调制15 PWM控制方案优劣体现在输出波形谐波的多少、直流侧电压利用率; 一个周期内的开关次数。

16 PWM整流电路根据是否引入电流反馈可分为直接电流控制和间接电流控制17 根据电力电子电路中的功率器件开关过程中是否产生损耗,其开关方式可以分为软开关和硬开关。

电力电子技术课程总结

电力电子技术课程总结截止到第十七周,意义非比寻常的电力电子技术课程就要结束了,本人对这门课程开始就是心怀重视态度对待它,奈何一看教学模式竟然是考查,然后又见到旁边那么多的同学都是采取消极的态度,所以本人的态度也是一落千丈,至此就是心情好时就听老师讲,心情不好抑或是有其他比较有趣的事情的时候就干自己的事情去了,虽然偶尔也会忌惮于老师的发威而艰难的将眼睛往黑板上挪,但心中始终想的是自己的事情(呵呵,在此对老师说句sorry ),好了,废话不扯了,还是说正事吧,以下就是我本人对电力电子的一些想法和理解以及从网上了解的相关应用,当然这些仅仅只是从我听了课的那几次课来介绍,其他没有介绍的请见谅(原因就不多说了哈)。

首先解释一下,什么是电力电子技术。

书本上如是说:电力电子技术就是应用于电力领域的电子技术。

我理解是,就是强电模块的电力和弱电模块的电子相结合从而形成的一门新兴技术,主要是由电力学,电子学以及控制理论三个学科相互交叉相互补充而成的,已经成为现代电气工程与自动化专业不可缺少的一门专业基础课程(可惜,本校由于课程改革竟然把本课程放到大四来开,而且还是考查,这就导致本校学生对电力电子技术这门课程的不重视以及对相关技术术语的迷茫不懂,这是一个亟待改进的问题)。

然后就是介绍一些相关的但是比较重要的电力电子器件。

首先是种类:其中器件的典型代表就是晶闸管,谈到晶闸管必须讨论一下这原件的两个主要功能:整流和续流。

我只介绍关于整流方面的相关类容(原因就不多说哈)。

经过我的听课,整流电路是电路中保证稳定的一个必要因素,也是不可缺少的因素,由于可控元件的不同导致导通角和关断角都会不一样,至于工作原理,波形以及管压降就请自行查阅相关书本。

整流电路中存在几种特殊的状态依次是:逆变(有源/无源);整流以及无环流(可能由于对术语不熟悉的原因,某些字不是很精确,不可控器件(SR )半控型器件 (SCR) 开通条件、关断条件全控型器件 (GTO 、GTR 、MOSFET 、IGBT)VTVT U 请见谅)。

电力系统中的电力电子技术应用

电力系统中的电力电子技术应用一、介绍电力电子技术是指在电力系统中使用电子器件和控制技术来实现电能的转换、调节和控制。

通常是基于半导体器件的使用和使用PWM技术来实现的。

电力电子技术的应用使得电力系统变得更加智能化和灵活。

在电力系统中的电力电子技术应用是我们的重点研究对象。

二、交流电力电子技术的应用1. 交流电机控制器交流电机控制器主要是通过控制交流电机的供电方式来实现对电机运行状态的控制。

基于交流电力电子器件和PWM技术的交流电机控制器可以实现对电机的转速和电流进行控制,从而实现电机的速度控制、转矩控制等。

2. 柔性交流输电系统柔性交流输电系统是一种高压交流输电系统,可以通过电力电子设备将电力信号进行调节,从而实现对电网稳定性的控制,在交流输电系统的长距离传输中提高了稳定性和可靠性。

3. 交流稳压器交流稳压器是一种常用的电力电子器件。

它能够在交流电路中实现稳定的输出电压和频率,以保持供电设备的正常运行。

交流稳压器广泛应用于电力系统中的各种设备和电路控制系统中,如UPS、变频器等。

4. 交流电动机驱动器交流电动机驱动器是电力系统中使用最广泛的电力电子器件之一。

它将交流电源转换成可变频率的交流电,从而实现对交流电机的精确控制。

交流电动机驱动器可用于控制工业机械、风力发电机、航空航天领域等各种设备的运行状态。

三、直流电力电子技术的应用1. 直流电源直流电源是电力系统中最早应用的电力电子技术之一。

它可以将交流电源转换为稳定的直流电源,从而实现对电路和设备的供电控制。

应用广泛于电子器件、通讯和射频电路中。

2. 直流电机驱动器直流电机驱动器是一种用于控制直流电机转速的电力电子器件。

其主要功能是将输入电压由控制器控制转化为直流电流,实现对电机的转速和力矩的控制。

直流电机驱动器广泛应用于工业生产中的各种设备、机床、机器人等。

3. 直流电池充电器直流电池充电器通过使用电力电子器件和智能化的控制系统,实现对各种类型的直流电池的快速充电,充电效率高,充电时间短,而且更加灵活可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子技术总结
Company number:【0089WT-8898YT-W8CCB-BUUT-202108】
1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。
2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器
件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。
4、70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场
效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。
5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关
断。
6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路
(PIC)。
第二章
1、电力电子器件的特征
◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一
般都远大于处理信息的电子器件。
◆为了减小本身的损耗,提高效率,一般都工作在开关状态。
◆由信息电子电路来控制 ,而且需要驱动电路。
◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器
2、电力电子器件的功率损耗

3、电力电子器件的分类
通态损耗
断态损耗
开关损耗
开通损耗

关断损耗
(1)按照能够被控制电路信号所控制的程度
◆半控型器件:主要是指晶闸管(Thyristor)及其大部分派生器件。
器件的关断完全是由其在主电路中承受的电压和电流决定的。
◆全控型器件:目前最常用的是 IGBT和Power MOSFET。
通过控制信号既可以控制其导通,又可以控制其关断。
◆不可控器件: 电力二极管(Power Diode) 不能用控制信号来控制其通断。
(2)按照驱动信号的性质
◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。
◆电压驱动型
仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。
(3)按照驱动信号的波形(电力二极管除外 )
◆脉冲触发型
通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。
◆电平控制型
必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通
并维持在导通状态或者关断并维持在阻断状态。
4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管
肖特基二极管优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明
显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;
因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。
弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此
多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能
忽略,而且必须更严格地限制其工作温度。
5、晶闸管除门极触发外其他几种可能导通的情况
◆阳极电压升高至相当高的数值造成雪崩效应 ◆阳极电压上升率du/dt过高
◆结温较高 ◆光触发
6、延迟时间td ~ 上升时间tr ~3us) 开通时间tgt=td+tr
反向阻断恢复时间trr 正向阻断恢复时间tgr 关断时间tq=trr+tgr
7、GTO(门极可关断晶闸管)是晶闸管的一种派生器件,但可以通过在门极施加负的
脉冲
电流使其关断,因而属于全控型器件。
8、◆开通时间ton 延迟时间与上升时间之和。
◆关断时间toff 一般指储存时间和下降时间之和,而不包括尾部时间。
9、电力场效应晶体管(电力MOSFET)特点:
◆驱动电路简单,需要的驱动功率小。 ◆开关速度快,工作频率高。
◆热稳定性优于GTR。◆电流容量小,耐压低,多用于功率不超过10kW的电力电子装
置。
10、绝缘栅双极晶体管开关特性:
开通过程:开通延迟时间td(on) 电流上升时间tr 电压下降时间t
fv

开通时间ton= td(on)+tr+ tfv tfv分为tfv1和tfv2两段。
关断过程:关断延迟时间td(off) 电压上升时间trv 电流下降时间t
fi

关断时间toff = td(off) +trv+tfi tfi分为tfi1和tfi2两段
11、硅的禁带宽度为电子伏特(eV)
12、功率集成电路与集成电力电子模块特点:可缩小装置体积,降低成本,提高可靠
性。对工作频率高的电路,可大大减小线路电感,从而简化对保护和缓冲电路的要求。
功率集成电路与集成电力电子模块发展现状:
◆功率集成电路的主要技术难点:高低压电路之间的绝缘问题以及温升和散热的处
理。
◆以前功率集成电路的开发和研究主要在中小功率应用场合。
◆智能功率模块在一定程度上回避了上述两个难点,最近几年获得了迅速发展。
◆功率集成电路实现了电能和信息的集成,成为机电一体化的理想接口。
第三章
1、整流电路的作用是将交流电能变为直流电能供给直流用电设备。
2、◆单相全波与单相全控桥的区别
单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应地,门极驱动电路也少2个;但是晶闸管
承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
从上述后两点考虑,单相全波电路有利于在低输出电压的场合应用。
3、变压器漏感对整流电路影响的一些结论:
出现换相重叠角,整流输出电压平均值Ud降低。
整流电路的工作状态增多。
晶闸管的di/dt减小,有利于晶闸管的安全开通,有时人为串入进线电抗器以抑制晶闸管的di/dt。
换相时晶闸管电压出现缺口,产生正的du/dt,可能使晶闸管误导通,为此必须加吸收电路。
换相使电网电压出现缺口,成为干扰源。
4、无功的危害:◆导致设备容量增加。◆使设备和线路的损耗增加。◆线路压降增大,冲击性负载
使电压剧烈波动。
谐波的危害 ◆降低发电、输电及用电设备的效率。 ◆影响用电设备的正常工作。 ◆引起电网
局部的谐振,使谐波放大,加剧危害。 ◆导致继电保护和自动装置的误动作。 ◆对通信系统造成
干扰。
5、逆变(invertion):把直流电转变成交流电的过程。
6、变流电路的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交
流电供给负载,称为无源逆变。
7、产生逆变的条件
要有直流电动势,其极性须和晶闸管的导通方向一致,其值应大于变流器直流侧的平均电压。
要求晶闸管的控制角a>π/2,使Ud为负值。
两者必须同时具备才能实现有源逆变。
8、半控桥或有续流二极管的电路,因其整流电压ud不能出现负值,也不允许直流侧出现负极性的
电动势,故不能实现有源逆变,欲实现有源逆变,只能采用全控电路。
第五章

第七章
1、PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术,即通过对
一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
2、PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻
第八章

电路 优点 缺点 功率范围 应用领域
正激 电路较简单,成本低,可靠性 变压器单向激磁,利用率低 几百W~几kW 各种中、小
功率电源

反激 电路非常简单,成本很低,可靠 难以达到较大的功率,变压器单 几W~几十W 小功率电子
设备、计算

全桥 变压器双向励磁,容易达到大功率 结构复杂,成本高,有直通问题,可靠性 几百W~几百kW 大功率工业
用电源、焊

半桥 变压器双向励磁,没有变压器 有直通问题,可靠性低,需要复 几百W~几kW
各种工业用电

源,计算机电

推挽 变压器双向励磁,变压器一次侧电流回路中只有一个开 有偏磁问题 几百W~几kW 低输入电压
的电源
1、现代电力电子装置的发展趋势是小型化、轻量化,同时对装置的效率和电磁兼容性
也提出了更高的要求。
2、软开关电路的分类
◆根据电路中主要的开关元件是零电压开通还是零电流关断,可以将软开关电路分成
零电压电路和零电流电路两大类,个别电路中,有些开关是零电压开通的,另一些开关
是零电流关断的。
◆根据软开关技术发展的历程可以将软开关电路分成准谐振电路、零开关PWM电路
和零转换PWM电路。

相关文档
最新文档