变量之间的相关关系
多个自变量和多个因变量的相关关系

多个自变量和多个因变量的相关关系多个自变量和多个因变量之间的相关关系是统计学和数据分析中的一个重要研究领域。
在许多实际问题中,我们需要了解多个自变量如何同时影响多个因变量,以及它们之间的相互作用关系。
本文将对这个问题进行全面、详细、完整且深入地探讨。
一、相关概念1.1 自变量和因变量自变量是研究者在研究中操纵和观察的变量,也称为解释变量。
因变量是根据自变量的变化而变化的变量,也称为被解释变量或响应变量。
1.2 相关关系相关关系是指自变量和因变量之间的关联程度。
当两个变量之间存在连续或离散的关联关系时,我们称它们存在相关关系。
相关关系可以用于描述变量之间的相互依赖性和联系,可以是正相关、负相关或无相关。
二、多个自变量和多个因变量之间的关系2.1 多重线性回归分析多重线性回归分析是一种用于研究多个自变量对多个因变量的影响的统计方法。
它可以帮助我们确定各个自变量对因变量的相对重要性和影响程度,并解释它们之间的相互关系。
2.2 多元方差分析多元方差分析是一种用于比较多个自变量对多个因变量产生的差异的统计方法。
它可以帮助我们确定哪些自变量在解释因变量方面具有显著差异,并检验自变量之间的交互效应。
2.3 多元协方差分析多元协方差分析是一种用于比较多个自变量对多个因变量方差的影响的统计方法。
它可以帮助我们确定哪些自变量在解释因变量方差的方面具有显著差异,并检验自变量之间的交互效应。
三、多个自变量和多个因变量的建模方法3.1 多元回归模型多元回归模型是一种用于描述多个自变量对多个因变量的关系的数学模型。
它可以通过最小二乘法或最大似然估计等方法来确定自变量和因变量之间的参数估计。
3.2 结构方程模型结构方程模型是一种用于建立多个自变量和多个因变量之间关系的统计模型。
它可以通过路径系数和误差项来描述自变量和因变量之间的关系,并检验模型的拟合优度和参数显著性。
四、实例分析4.1 数据收集我们收集了一组与学生学习成绩相关的数据,包括自变量如学习时间、家庭背景、学生特质等,以及因变量如数学成绩、语文成绩、英语成绩等。
变量之间的相关关系(必修优秀课件)_图文

x
年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
距离之和:
越小越好 年龄
y
脂肪含量
设回归方程为
40
35
30
25
A
20
15
B
10
5
0 20 25 30 35 40 45 50 55 60 65
x
点到直线距离的平方和:
年龄
求出回归直线的方程为:
Y^ =-2.352x+147.767
(4)当x=2时,y=143.063,因此,这天大约可以卖出143 杯热饮。
练习:
实验测得四组(x,y)的值如下表所示:
x
1
2
3
4
y
2
3
4
5
则y与x之间的回归直线方程为(海南理)对变量x,y观测数据(xi,yi)(i=1,2,...,10),得 散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,...,10),得散点图2,
2112 2110.6
3、求和
解:1、设回归方程 2、求平均数
3、求和 4、代入公式求
的值
5、写出回归直线的回归方程
用“最小二乘法”求回归直线方程的步骤
1、设回归方程 2、求平均数 3、求和
4、代入公式求
的值
5、写出回归直线的方程
三、利用线性回归方程对总体进行估计
例:有一个同学家开了一个小卖部,他为了研究气 温对热饮销售的影响,经过统计,得到一个卖出的 热饮杯数与当天气温的对比表:
数学七年级下册知识点总结之变量之间的关系

数学七年级下册知识点总结之变量之间的关系变量之间的关系知识点:一理论理解1、若Y随X的变化而变化,则X是自变量 Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
2、能确定变量之间的关系式:相关公式①路程=速度时间②长方形周长=2(长+宽)③梯形面积=(上底+下底)高2 ④本息和=本金+利率本金时间。
⑤总价=单价总量。
⑥平均速度=总路程总时间3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2. 随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算) 对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.拓展:数学学习技巧一、课内重视听讲,课后及时复习。
变量之间的相关关系PPT课件

(A)
(
省
• 今年又是海南水果的丰收年,某芒果园的果 树上挂满了成熟的芒果,一阵微风吹过,一 个熟透的芒果从树上掉了下来.下面四个图 象中,能表示芒果下落过程中速度与时间变 化关系的图象只可能是(C ).
(A)
(B)
(C)
(D)
如图是某蓄水池的横断面示意图,分深水区和 浅水区,如果这个蓄水池以固定的流量注水, 下面哪个图象能大致表示水的最大深度h和时 间t之间的关系?( C ).
(A)
(B)
(C)
(D)
山东省烟台市2003年
• .开发区某消毒液生产厂家自2003年初以来,在库 存为m(m>0)的情况下,日销售量与产量持平, 自4月底抗“非典”以来,消毒液需求量猛增,在 生产能力不变的情况下,消毒液一度脱销,以下表 示2003年初至脱销期间,时间t与库存量y之间函数 关系的图像是( D )
(2)4月5日早上电表的读数是35千瓦时。 解:(1)这个表格反映日期与电表读数这两个量之间的关系,日期 是自变量,电表读数是因变量。 (3)39 - 21=18,即这个月的前5天共用电18千瓦时。
3. 用总长为 60cm 的铁丝围成长方形,如果长方形 的一边长为 a(cm),面积为 S (cm2)。 (1)说出这个变化中的自变量、因变量、常量。 (2)写出反映 S与a 之间的关系式。 (3)利用所写的关系式计算当 a=12时,S 的值是 多少? 解:(2) S= a(30-a) a (30-a) (3)当a=12时,S=12(30-12)
(5)下面哪个图像能够反映此变化过程中Q与 t 的关系: ( A
Q Q Q
)
t (A) (B)
t (C)
t
观察与思考
1、下列各情景分别可以用哪一幅图来近似的刻画
2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关

2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关1.理解两个变量的相关关系的概念.(难点)2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点) 3.会求回归直线方程.(重点)4.相关关系与函数关系.(易混点)[基础·初探]教材整理1变量之间的相关关系阅读教材P84~P86的内容,完成下列问题.1.相关关系:不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.2.散点图:将样本中几个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形.3.正相关与负相关:散点图中的点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,称它为正相关.若散点图中的点分布在从左上角到右下角的区域内,对于两个变量的这种相关关系,称它为负相关.4.相关关系与函数关系的辨析相关关系与函数关系均是指两个变量间的关系,它们的不同点如下: (1)函数关系是一种确定的关系;相关关系是一种非确定的关系,即不能用一个函数关系式来严格地表示变量之间的关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,脚的大小与阅读能力有很强的相关关系,然而学会更多的新词并不能使脚变大,而是涉及第三个因素——年龄,当儿童长大一些以后,他们的阅读能力会提高,而且脚也会变大.如图2-3-1所示的两个变量不具有相关关系的有________.图2-3-1【解析】 ①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.【答案】 ①④教材整理2 回归直线方程阅读教材P 87~P 89的内容,完成下列问题.1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. 3.最小二乘法:求回归直线时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.求回归方程:若两个具有线性相关关系的变量的一组数据为:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则所求的回归方程为y ^=b ^x +a ^,其中a ^,b ^为待定的参数,由最小二乘法得:⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x -y -∑i =1nx 2i-n x -2,a ^=y -b^x .b ^是回归直线斜率,a ^是回归直线在y 轴上的截距.1.判断(正确的打“√”,错误的打“×”)(1)回归方程中,由x 的值得出的y 值是准确值.( ) (2)回归方程一定过样本点的中心.( ) (3)回归方程一定过样本中的某一个点.( )(4)选取一组数据中的部分点得到的回归方程与由整组数据得到的回归方程是同一个方程.( )【答案】 (1)× (2)√ (3)× (4) ×2.过(3,10),(7,20),(11,24)三点的回归直线方程是( ) A.y ^=1.75+5.75x B.y ^=-1.75+5.75x C.y ^=5.75+1.75xD.y ^=5.75-1.75x【解析】 求过三点的回归直线方程,目的在于训练求解回归系数的方法,这样既可以训练计算,又可以体会解题思路,关键是能套用公式.代入系数公式得b ^=1.75,a ^=5.75.代入直线方程,求得y ^=5.75+1.75x .故选C.【答案】 C3.已知x 与y 之间的一组数据:则y 与x 的线性回归方程y =bx +a 必过点( ) A .(1,2) B .(5,2) C .(2,5)D .(2.5,5)【解析】线性回归方程一定过样本中心(x,y).由x=0+1+2+3+45=2,y=1+3+5+7+95=5.故必过点(2,5).【答案】 C[小组合作型](1))A.正方体的棱长和体积B.圆半径和圆的面积C.正n边形的边数和内角度数之和D.人的年龄和身高(2)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断()图2-3-2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关【精彩点拨】结合相关关系,函数关系的定义及正负相关的定义分别对四个选项作出判断.【尝试解答】(1)A、B、C都是函数关系,对于A,V=a3;对于B,S=πr2;对于C,g(n)=(n-2)π.而对于D,年龄确定的不同的人可以有不同的身高,∴选D.(2)由图象知,变量x与y呈负相关关系;u与v呈正相关关系.【答案】(1)D(2)C判断两个变量x和y间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[再练一题]1.某公司2011~2016年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:A.B.利润中位数是18,x与y有负线性相关关系C.利润中位数是17,x与y有正线性相关关系D.利润中位数是17,x与y有负线性相关关系【解析】由表知,利润中位数是12(16+18)=17,且y随x的增大而增大,故选C.【答案】 C一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 【精彩点拨】 画散点图→确定相关关系→求回归直线系数 →写回归直线方程【尝试解答】 (1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算:b ^=∑i =110x i y i -10x y ∑i =110x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668,a ^=y -b ^x =91.7-0.668×55=54.96. 即所求的回归直线方程为:y ^=0.668x +54.96.用公式求回归方程的一般步骤:(1)列表x i ,y i ,x i y i ;(2)计算x ,y,∑i =1nx 2i ,∑i =1n x i y i ;(3)代入公式计算a ^,a ^的值;(4)写出回归方程.[再练一题]2.已知变量x ,y 有如下对应数据:(1)(2)用最小二乘法求关于x ,y 的回归直线方程. 【解】 (1)散点图如图所示:(2)x =1+2+3+44=52,y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39,∑i =14x 2i =1+4+9+16=30,b ^=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求回归直线方程.x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(2)请根据上表提供的数据,用最小二乘法求出回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【精彩点拨】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ^,a ^的值;(3)实际上就是求当x =100时,对应的v 的值.【尝试解答】 (1)散点图,如图所示:(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86,∴b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35, 故线性回归方程为y ^=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨)标准煤.回归分析的三个步骤:(1)判断两个变量是否线性相关:可以利用经验,也可以画散点图;(2)求线性回归方程,注意运算的正确性;(3)根据回归直线进行预测估计:估计值不是实际值,两者会有一定的误差.[再练一题]3.某种产品的广告费支出y (百万元)与销售额x (百万元)之间的关系如下表所示.(1)假定y (2)若广告费支出不少于60百万元,则实际销售额应不少于多少?【解】 (1)设回归直线方程为y ^=b ^x +a ^,则b ^=(8×5+12×8+14×9+16×11)-4×8+12+14+164×5+8+9+114(82+122+142+162)-4×⎝⎛⎭⎪⎫8+12+14+1642=438-412.5660-625=25.535=5170,a ^=y -b ^x =5+8+9+114-5170×8+12+14+164=334-5170×252=-67,则所求回归直线方程为y ^=5170x -67.(2)由y ^=5170x -67≥60,得x ≥4 26051≈84,所以实际销售额不少于84百万元.[探究共研型]探究1 变量之间的关系?【提示】 任意两个统计数据均可以作出散点图,对于作出的散点图,如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.特别地,若所有的样本点都落在某一直线附近,变量之间就具有线性相关关系;如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系;如果散点图中的点的分布几乎没有什么规则,则这两个变量之间不具有相关关系.探究2 【提示】 (1)建立直角坐标系,两轴的长度单位可以不一致. (2)将n 个数据点描在平面直角坐标系中.(3)画回归直线时,一定要画在多数点经过的区域,可以先观察有哪两个点在直线上.探究3 回归系数b ^的含义是什么?【提示】 (1)b ^代表x 每增加一个单位,y 的平均增加单位数,而不是增加单位数.(2)当b ^>0时,两个变量呈正相关关系,含义为:x 每增加一个单位,y 平均增加b ^个单位数;当b ^<0时,两个变量呈负相关关系,含义为:x 每增加一个单位,y 平均减少b ^个单位数.探究4 回归直线方程与直线方程的区别是什么?【提示】 线性回归直线方程中y 的上方加记号“^ ”是与实际值y 相区别,因为线性回归方程中的“y ^”的值是通过统计大量数据所得到的一个预测值,它具有随机性,因而对于每一个具体的实际值而言,y ^的值只是比较接近,但存在一定的误差,即y =y ^+e (其中e 为随机变量),预测值y ^与实际值y 的接近程度由随机变量e 的标准差决定.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′【精彩点拨】 先由已知条件分别求出b ′,a ′的值,再由b ^,a ^的计算公式分别求解b ^,a ^的值,即可作出比较.【尝试解答】 根据所给数据求出直线方程y =b ′x +a ′和回归直线方程的系数,并比较大小.由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2, a ′=0-2×1=-2. 求b ^,a ^时,i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57,a ^=136-57×3.5=136-52=-13, ∴b ^<b ′,a ^>a ′. 【答案】 C [再练一题]4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系.根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 【解析】 b ^为正数,所以两变量具有正的线性相关关系,故A 正确;B ,C 显然正确;若该大学某女生身高为170 cm ,则可估计其体重为58.79 kg.【答案】D1.设一个回归方程y ^=3+1.2x ,则变量x 增加一个单位时( ) A .y 平均增加1.2个单位 B .y 平均增加3个单位 C .y 平均减少1.2个单位 D .y 平均减少3个单位【解析】 由b =1.2>0,故选A. 【答案】 A2.下列有关线性回归的说法,不正确的是( )A .变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C .回归方程最能代表观测值x 、y 之间的线性关系D .任何一组观测值都能得到具有代表意义的回归直线【解析】 只有数据点整体上分布在一条直线附近时,才能得到具有代表意义的回归直线.【答案】 D3.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4【解析】 因为变量x 和y 正相关,则回归直线的斜率为正,故可以排除选项C 和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A 和B 中的直线方程进行检验,可以排除B ,故选A.【答案】 A4.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.【解析】 由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50),设回归直线方程为y ^=6.5x +b ^, ∵回归直线过样本中心(5,50), ∴50=6.5×5+b ^,即b ^=17.5,∴回归直线方程为y ^=6.5x +17.5. 【答案】 y ^=6.5x +17.5学业分层测评(十四) 变量间的相关关系(建议用时:45分钟)[学业达标]一、选择题 1.有几组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程; ②平均日学习时间和平均学习成绩; ③立方体的棱长和体积. 其中两个变量成正相关的是( ) A .①③ B .②③ C .②D .③【解析】 ①是负相关;②是正相关;③是函数关系,不是相关关系. 【答案】 C2.对于给定的两个变量的统计数据,下列说法正确的是( ) A .都可以分析出两个变量的关系B .都可以用一条直线近似地表示两者的关系C .都可以作出散点图D .都可以用确定的表达式表示两者的关系【解析】 由两个变量的数据统计,不能分析出两个变量的关系,A 错;不具有线性相关的两个变量不能用一条直线近似地表示他们的关系,更不能用确定的表达式表示他们的关系,B ,D 错.【答案】 C3.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0【解析】当b^=0时,r=0,这时不具有线性相关关系,但b^能大于0,也能小于0.【答案】 C4.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x+5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578.其中一定不正确...的结论的序号是()A.①②B.②③C.③④D.①④【解析】由正负相关性的定义知①④一定不正确.【答案】 D5.某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时,销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【解析】x=14(4+2+3+5)=3.5,y=14(49+26+39+54)=42,所以a^=y-b^x=42-9.4×3.5=9.1,所以回归方程为y^=9.4x+9.1,令x=6,得y^=9.4×6+9.1=65.5(万元).故选B.【答案】 B二、填空题6.若施化肥量x(千克/亩)与水稻产量y(千克/亩)的回归方程为y^=5x+250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.【解析】当x=80时,y^=400+250=650.【答案】6507.已知一个回归直线方程为y^=1.5x+45,x∈{1,7,5,13,19},则y=________.【解析】因为x=15(1+7+5+13+19)=9,且回归直线过样本中心点(x,y),所以y=1.5×9+45=58.5.【答案】58.58.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y 对x的回归直线方程:y^=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】由于y^=0.254x+0.321知,当x增加1万元时,年饮食支出y增加0.254万元.【答案】0.254三、解答题9.某工厂对某产品的产量与成本的资料分析后有如下数据:(1)(2)求成本y与产量x之间的线性回归方程.(结果保留两位小数)【解】(1)散点图如图所示.(2)设y与产量x的线性回归方程为y^=b^x+a^,x =2+3+5+64=4,y =7+8+9+124=9, b^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=(x 1y 1+x 2y 2+x 3y 3+x 4y 4)-4x yx 21+x 22+x 23+x 24-4x2=1110=1.10,a ^=y -b ^x -=9-1.10×4=4.60. ∴回归方程为:y ^=1.10x +4.60.[能力提升]1.根据如下样本数据:得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0D .a <0,b <0【解析】 作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0,当x =0时,y ^=a >0.故a >0,b <0.【答案】 B2.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y 对总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若两个同学的总成绩相差50分,则他们的数学成绩大约相差________分.【解析】 令两人的总成绩分别为x 1,x 2. 则对应的数学成绩估计为 y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20. 【答案】 203.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =1100x2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y =bx +a 中,b =∑i =1nx i y i -n x y ∑i =1nx 2i -n x 2,a =y -b x ,其中x ,y 为样本平均值,线性回归方程也可写为y ^=b^x +a ^.【解】 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b=l xyl xx=2480=0.3,a=y-b x=2-0.3×8=-0.4.故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).。
两个变量间的相关关系

2023年高考数学(文科)一轮复习讲义——变量间的相关关系与统计案例
第4节 变量间的相关关系与统计案例考试要求 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用.1.相关关系与回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^__,则b ^=, a ^=y --b ^x -.其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.回归直线一定过样本点的中心(x -,y -). 3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心:对于一组具有线性相关关系的数据(x 1, y 1)(x 2, y 2),…,(x n, y n ), 其中(x -,y -)称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(4)相关指数:R 2=.其中是残差平方和,其值越小,则R 2越大(接近1),模型的拟合效果越好. 4.独立性检验(1)利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)为y 1 y 2 总计 x 1 a b a +b x 2 c dc +d总计a +cb +d a +b +c +d则随机变量K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )n =a +b +c +d 为样本容量.1.求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本点的中心(x -,y -).2.根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.3.根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.1.思考辨析(在括号内打“√”或“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )(2)通过回归直线方程y ^=b ^x +a ^可以估计预报变量的取值和变化趋势.( ) (3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( ) (4)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) 答案 (1)√ (2)√ (3)√ (4)√2.(易错题)(2022·兰州模拟)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,n ∈N *,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( ) A.-1 B.0C.12D.1答案 D解析 由题设知,所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,可知这组样本数据完全正相关,故其相关系数为1,故选D.3.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R 2为0.98 B.模型2的相关指数R 2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A解析在两个变量y与x的回归模型中,它们的相关指数R2越近于1,拟合效果越好,在四个选项中A的相关指数最大,所以拟合效果最好的是模型1.4.(2020·全国Ⅰ卷)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+b e xD.y=a+b ln x答案 D解析由散点图可以看出,这些点大致分布在对数型函数的图象附近.故选D. 5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.答案 5%解析 K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.6.(2022·银川模拟)某车间为了提高工作效率,需要测试加工零件所花费的时间,为此进行了5次试验,这5次试验的数据如下表:零件数x (个) 10 20 30 40 50 加工时间y (min)62a758189若用最小二乘法求得回归直线方程为y ^=0.67x +54.9,则a 的值为________. 答案 68解析 x -=10+20+30+40+505=30,y -=62+a +75+81+895=61+2+a 5,所以61+2+a5=0.67×30+54.9, 解得a =68.考点一 相关关系的判断1.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份 1 2 3 4 5 6 人均销售额 6 5 8 3 4 7 利润率(%)12.610.418.53.08.116.3根据表中数据,下列说法正确的是( ) A.利润率与人均销售额成正相关关系 B.利润率与人均销售额成负相关关系 C.利润率与人均销售额成正比例函数关系D.利润率与人均销售额成反比例函数关系 答案 A解析 由统计表可得利润率与人均销售额不是正比例关系,也不是反比例关系,排除C 和D ;其属于正相关关系,A 正确,B 错误.2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r 2<r 4<0<r 3<r 1B.r 4<r 2<0<r 1<r 3C.r 4<r 2<0<r 3<r 1D.r 2<r 4<0<r 1<r 3 答案 A解析 由散点图知图①与图③是正相关,故r 1>0,r 3>0, 图②与图④是负相关,故r 2<0,r 4<0,且图①与图②的样本点集中在一条直线附近,因此r 2<r 4<0<r 3<r 1,故选A. 3.(2022·合肥模拟)根据如下样本数据,得到回归直线方程y ^=b ^x +a ^,则( )x 3 4 5 6 7 8 y-3.0 -2.00.5-0.52.54.0A.a ^>0,b ^>0 B.a ^>0,b ^<0 C.a ^<0,b ^>0D.a ^<0,b ^<0答案 C解析 作出散点图(图略),由散点图可知,a ^<0,b ^>0. 感悟提升 判断相关关系的两种方法:(1)散点图法:如果样本点的分布从整体上看大致在某一曲线附近,变量之间就有相关关系;如果样本点的分布从整体上看大致在某一直线附近,变量之间就有线性相关关系.(2)相关系数法:利用相关系数判定,|r |越趋近于1,相关性越强. 考点二 回归分析 角度1 线性回归方程及应用例1 (2021·成都诊断)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x (单位:年)与失效费y (单位:万元)的统计数据如下表所示:使用年限x (单位:年) 1234567失效费y (单位:万元)2.903.30 3.604.40 4.805.20 5.90(1)由上表数据可知,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(精确到0.01)(2)求出y 关于x 的线性回归方程,并估算该种机械设备使用10年的失效费. 参考公式:相关系数r =∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2∑ni =1(y i -y -)2.线性回归方程y ^=b ^x +a ^中斜率和截距最小二乘估计计算公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -. 参考数据:∑7i =1(x i -x -)(y i -y -)=14.00, ∑7i =1(y i -y -)2=7.08,198.24≈14.10.解 (1)由题意,知x -=1+2+3+4+5+6+77=4,y -=2.90+3.30+3.60+4.40+4.80+5.20+5.907=4.30,∑7i =1(x i -x -)2=(1-4)2+(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2+(7-4)2=28, ∴r =14.0028×7.08=14.00198.24≈14.0014.10≈0.99.因为y 与x 的相关系数近似为0.99,所以y 与x 的线性相关程度相当大,从而可以用线性回归模型拟合y 与x 的关系. (2)∵b ^=∑7i =1 (x i -x -)(y i -y -)∑7i =1 (x i -x -)2=1428=0.5, ∴a ^=y --b ^x -=4.3-0.5×4=2.3.∴y 关于x 的线性回归方程为y ^=0.5x +2.3.将x =10代入线性回归方程,得y ^=0.5×10+2.3=7.3, ∴估算该种机械设备使用10年的失效费为7.3万元. 角度2 非线性回归方程及应用例2 (2022·郑州调研)人类已经进入大数据时代.目前,数据量级已经从TB(1 TB =1 024 GB)级别跃升到PB(1 PB =1 024 TB),EB(1 EB =1 024 PB)乃至ZB(1 ZB =1 024 EB)级别.国际数据公司(IDC)研究结果表明,2008年全球产生的数据量为0.49 ZB ,2009年数据量为0.8 ZB ,2010年增长到1.2 ZB ,2011年数据量更是高达1.82 ZB.下表是国际数据公司(IDC)研究的全球近6年每年产生的数据量(单位:ZB)及相关统计量的值:表中z i =ln y i ,z -=16∑6i =1z i . (1)根据上表数据信息判断,方程y =c 1·e c 2x (e 是自然对数的底数)更适宜作为该公司统计的年数据量y 关于年份序号x 的回归方程类型,试求此回归方程(c 2精确到0.01);(2)有人预计2022年全世界产生的数据规模将超过2011年的50倍.根据(1)中的回归方程,说明这种判断是否准确,并说明理由. 参数数据:e4.56≈95.58,e4.58≈97.51,回归方程y ^=a ^+b ^x 中,b ^=∑n i =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i -nx -2, a ^=y --b ^x -.解 (1)由y =c 1·e c 2x 得ln y =c 2x +ln c 1, 即z =c 2x +ln c 1,∴c 2=∑6i =1(x i -x -)(z i -z -)∑6i =1(x i -x -)2=6.7317.5≈0.38.又∵z -=c 2x -+ln c 1,0.38×3.5+ln c 1=2.85,ln c 1=1.52. ∴ln y =0.38x +1.52,即y =e 0.38x +1.52为所求的回归方程. (2)根据(1)知回归方程为y =e 0.38x +1.52.当x =9时,y =e 0.38×9+1.52=e 4.94>e 4.56≈95.58,95.581.82≈52.52.据此可以判断2022年全球产生的数据量超过2011年的50倍,因此,这种判断是准确的.感悟提升 回归分析问题的类型及解题方法 (1)求回归方程①根据散点图判断两变量是否线性相关,如不是,应通过换元构造线性相关. ②利用公式,求出回归系数b ^.③待定系数法:利用回归直线过样本点的中心求系数a ^.(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值. (3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数b ^.(4)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强.训练1 下面给出了根据我国2015~2021年水果人均占有量y (单位:kg)和年份代码x 绘制的散点图和线性回归方程的残差图.(2015年~2021年的年份代码x 分别为1~7)(1)根据散点图分析y 与x 之间的相关关系;(2)根据散点图相应数据计算得∑7i =1y i =1 074,∑7i =1x i y i =4 517,求y 关于x 的线性回归方程;(精确到0.01)(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果. 附:回归方程y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为 b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2, a ^=y --b ^x -.解 (1)从散点图可以看出,这些点的分布整体上在一条直线附近,且当x 由小变大时,y 也由小变大,所以y 与x 之间具有线性相关关系,且是正相关. (2)由题意可知,x -=1+2+3+4+5+6+77=4,y -=17∑7i =1y i=1 0747, ∑7i =1x 2i =12+22+32+42+52+62+72=140, ∴b ^=∑7i =1x i y i-7x - y -∑7i =1x 2i -7x -2=4 517-7×4×1 0747140-7×42=22128≈7.89,∴a ^=y --b ^x -=1 0747-7.89×4≈121.87,∴y 关于x 的线性回归方程为y ^=7.89x +121.87.(3)由残差图可以看出历年数据的残差均分布在-2~2之间,且图中各点比较均匀地分布在数值0所在直线附近,带状区域很窄,说明对应的回归直线拟合效果较好.考点三 独立性检验例3 (2021·武汉质检)有关研究表明,正确佩戴安全头盔,规范使用安全带能够将交通事故死亡风险大幅降低,对保护群众生命安全具有重要作用.2020年4月,“一盔一带”安全守护行动在全国各地开展,行动期间,公安交管部门将加强执法管理,依法查纠摩托车和电动自行车骑乘人员不佩戴安全头盔,汽车驾乘人员不使用安全带的行为,助推养成安全习惯,该行动开展一段时间后,某市针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1 000名骑行人员中,记录其年龄和是否佩戴头盔情况,得到统计图如图所示.(1)估算该市电动自行车骑乘人员的平均年龄; (2)根据所给的数据,完成列联表:是否佩戴头盔是否(3)根据(2)中的列联表,判断是否有99%的把握认为佩戴安全头盔与年龄有关. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)该市电动自行车骑乘人员平均年龄为25×0.25+35×0.35+45×0.2+55×0.15+65×0.05=39(周岁). (2)完成2×2列联表如下:(3)K 2的观测值k =1 000×(60×540-60×340)2600×400×880×120=12522≈5.682<6.635.故没有99%的把握认为佩戴安全头盔与年龄有关.感悟提升 1.在2×2列联表中,如果两个变量没有关系,则应满足ad -bc ≈0. |ad -bc |越小,说明两个变量之间关系越弱;|ad -bc |越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表:(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值k;(3)通过比较观测值k与临界值的大小关系来作统计推断.训练2 (2022·南宁模拟)第五代移动通信技术(5G技术)是最新一代蜂窝移动通信技术,也是继4G、3G和2G系统之后的延伸.5G的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接.某大学为了解学生对“5G”相关知识的了解程度,随机抽取100名学生参与测试,并根据得分划分成“不太了解”或“比较了解”两类后整理得到如下列联表:(1)补全列联表,并判断是否有99.9%的把握认为“学生对5G的了解程度与性别有关”;(2)从“不太了解”的学生中按性别分层抽取6人,再从这6人中随机选取2人参加“5G”知识讲座,求抽到的2人中恰有1名女生的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(n=a+b+c+d). 临界值表:解(1)补全的列联表如下:不太了解 比较了解 总计 男生 25 33 58 女生 5 37 42 总计3070100所以K 2的观测值k =100×(25×37-33×5)258×42×30×70≈11.291>10.828,故有99.9%的把握认为“学生对5G 的了解程度与性别有关”. (2)“不太了解”的男生有25人,女生有5人,按性别分层抽样从中抽取6人,则男生应抽取5人,记为a ,b ,c ,d ,e ,女生应抽取1人,记为x ,再从这6人中随机抽取2人共有15种情况:xa ,xb ,xc ,xd ,xe ,ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,抽到恰有1名女生有5种情况:xa ,xb ,xc ,xd ,xe , 所以所求的概率为515=13.1.为调查中学生近视情况,测得某校在150名男生中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( ) A.回归分析 B.均值与方差 C.独立性检验 D.概率答案 C解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断. 2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v ,有观测数据(u i ,v i )(i =1,2,…,10),得散点图(2),由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关 答案 C解析 由题图(1)可知,y 随x 的增大而减小,各点整体呈下降趋势,x 与y 负相关,由题图(2)可知,u 随v 的增大而增大,各点整体呈上升趋势,u 与v 正相关. 3.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( ) A.①② B.②③ C.①③ D.①②③答案 D4.(2022·昆明诊断)下表是关于某设备的使用年限x (单位:年)和所支出的维修费用y (单位:万元)的统计表:x 2 3 4 5 6 y3.44.25.15.56.8由表可得线性回归方程y ^=0.81x +a ^,若规定:维修费用y 不超过10万元,一旦大于10万元时,该设备必须报废.据此模型预测,该设备使用年限的最大值约为( ) A.7B.8C.9D.10答案 D解析 由已知表格,得x -=15×(2+3+4+5+6)=4, y -=15×(3.4+4.2+5.1+5.5+6.8)=5,因为回归直线恒过样本点的中心(x -,y -), 所以5=0.81×4+a ^,解得a ^=1.76, 所以回归直线的方程为y ^=0.81x +1.76,由y ≤10,得0.81x +1.76≤10,解得x ≤82481≈10.17,由于x ∈N *,所以据此模型预测,该设备使用年限的最大值为10.故选D. 5.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:附表:参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参照附表,得到的正确结论是( )A.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关B.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别无关C.有99.99%以上的把握认为喜欢“应用统计”课程与性别有关D.有99.99%以上的把握认为喜欢“应用统计”课程与性别无关 答案 A解析 ∵K 2的观测值k =55×(20×20-5×10)225×30×30×25≈11.978>10.828,所以有99.9%的把握认为喜欢“应用统计”课程与性别有关,即在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关. 6.下列说法:①残差可用来判断模型拟合的效果;②设有一个回归方程:y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线:y ^=b ^x +a ^必过点(x -,y -);④在一个2×2列联表中,由计算得K 2的观测值k =6.665,则有99%的把握确认这两个变量间有关系(其中P (K 2≥6.635)=0.010), 其中错误的个数是( ) A.0 B.1 C.2 D.3答案 B解析 对于①,残差可用来判断模型拟合的效果,残差越小,拟合效果越好,∴①正确;对于②,回归方程y ^=3-5x 中,变量x 增加一个单位时,y 平均减少5个单位,∴②错误;对于③,线性回归直线y ^=b ^x +a ^必过样本点的中心(x -,y -),∴③正确; 对于④,在2×2列联表中,由计算得k =6.665,对照临界值得,有99%的把握确认这两个变量间有关系,∴④正确. 综上,其中错误的命题是②,共1个,故选B.7.已知x 和y 的散点图如图所示,在相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21,R 22中较大的是________.答案 R 21解析 由散点图知,用y =c 1e c 2x 拟合的效果比y ^=b ^x +a ^拟合的效果要好,所以R 21>R 22,故较大者为R 21.8.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2的观测值k ≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是________. ①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%. 答案 ①解析 k ≈3.918≥3.841,而P (K 2≥3.814)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.9.在一次对人体脂肪含量和年龄的关系的研究中,研究人员获得了一组样本数据,并制成如图所示的人体脂肪含量与年龄的关系的散点图,下列结论中正确的是________(填序号).①人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%; ②人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%;③人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%; ④人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%. 答案 ②解析 观察图形,可知人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%.10.(2022·河南名校联考)某学校食堂统计了最近5天到餐厅就餐的人数x (单位:百人)与食堂向食材公司购买所需食材(原材料)的数量y (单位:袋),得到如下统计表:(1)根据所给的5组数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(2)已知购买食材的费用C (单位:元)与数量y (单位:袋)的关系为C =⎩⎨⎧400y -20,0<y <36(y ∈N ),380y ,y ≥36(y ∈N ),投入使用的每袋食材相应的销售单价为700元,多余的食材必须无偿退还食材公司,据悉下周一大约有1 500人到食堂餐厅就餐,根据(1)中求出的线性回归方程,预测食堂应购买多少袋食材,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用)参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2,a ^=y --b ^x -. 参考数据:∑5i =1x i y i =1 343,∑5i =1x 2i =558,∑5i =1y 2i=3 237. 解 (1)由所给数据可得x -=13+9+8+10+125=10.4,y -=32+23+18+24+285=25,所以b ^=∑5i =1x i y i -5x - y -∑5i =1x 2i-5x -2=1 343-5×10.4×25558-5×10.42=2.5,又a ^=y --b ^x -=25-2.5×10.4=-1, 所以y 关于x 的线性回归方程为y ^=2.5x -1. (2)由(1)中求出的线性回归方程知,当x =15时,y =36.5,即预计需要购买食材36.5袋. 因为C =⎩⎪⎨⎪⎧400y -20,0<y <36(y ∈N ),380y ,y ≥36(y ∈N ),所以当y <36时,利润L =700y -(400y -20)=300y +20,y ∈N , 此时当y =35时,利润L max =300×35+20=10 520(元);当y ≥36时,根据线性回归方程预测需要购买食材36.5袋,并且剩余的食材只能无偿退还,此时当y =36时,利润L =700×36-380×36=11 520(元), 当y =37时,利润L =700×36.5-380×37=11 490(元).综上,食堂应购买36袋食材,才能获得最大利润,最大利润为11 520元. 11.(2022·“四省八校”开学考试)据我国一项专题调查显示,某市高级职称的中年知识分子中竟有高达75.3%的人处于亚健康状态,更令人担忧的是85%以上的企业管理者处于慢性疲劳状态或亚健康状态,这是由他们所处的特殊工作及生活的环境和行为模式所决定的.亚健康是指非病非健康的一种临界状态.如果这种状态不能及时得到纠正,非常容易引起身心疾病.某高科技公司为了了解亚健康与性别的关系,对本公司部分员工进行了不记名问卷调查,该公司处于正常工作状态的员工(包括管理人员)共有8 000人,其中男性员工有6 000人,女性员工有2 000人,从8 000人中用分层抽样的方法随机抽取了400人作为样本进行健康状况的调查.(1)求男性员工、女性员工各抽取多少人?(2)通过调查得到如图所示的统计图,其中a=0.2,b=0.1.根据统计图,完成下面2×2列联表,健康亚健康总计男员工女员工总计400问是否有97.5%的把握认为人处于亚健康状态与性别有关?参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d. 参考数据:P(K≥k0)0.050.0250.0100.005k0 3.841 5.024 6.6357.879解(1)由题意知样本容量与总体的比值为4008 000=120,∴男性员工抽取了6 000×120=300(人),女性员工抽取了2 000×120=100(人).(2)由统计图可知,样本中男员工处于亚健康状态的人数为300×0.2=60,样本中女员工处于亚健康状态的人数为100×0.1=10,2×2列联表为健康 亚健康 总计 男员工 240 60 300 女员工 90 10 100 总计33070400则K 2的观测值k =400×(240×10-60×90)2300×100×330×70≈5.195>5.024,∴有97.5%的把握认为人处于亚健康状态与性别有关.12.已知某次考试之后,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学、物理成绩(单位:分)对应如下表:学生编号 1 2 3 4 5 6 7 8 数学成绩 60 65 70 75 80 85 90 95 物理成绩7277808488909395给出散点图如下:根据以上信息,判断下列结论:①根据散点图,可以判断数学成绩与物理成绩具有线性相关关系; ②根据散点图,可以判断数学成绩与物理成绩具有一次函数关系;③从全班随机抽取甲、乙两名同学,若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩一定比乙同学的物理成绩高. 其中正确的为________(填序号). 答案 ①解析 由散点图知,各点大致分布在一条直线附近,故可以判断数学成绩与物理成绩具有线性相关关系,但不能判断数学成绩与物理成绩具有一次函数关系,故①正确,②错误;若甲同学数学成绩为80分,乙同学数学成绩为60分,则甲同学的物理成绩可能比乙同学的物理成绩高,故③错误.13.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-12附近波动.经计算∑6i =1x i =12,∑6i =1y i =14,∑6i =1x 2i =23,则实数b 的值为________. 答案 1723解析 令t =x 2,则曲线的回归方程变为线性的回归方程,即y =bt -12, 此时t -=∑6i =1x 2i 6=236,y -=∑6i =1yi 6=73,代入y =bt -12,得73=b ×236-12,解得b =1723.14.近年来,国资委、党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:(1)求y 关于x 的线性回归方程(计算结果保留两位小数);(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -,K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .临界值表:解 (1)依题意得,x -=1+2+3+4+55=3,y -=8+10+13+25+245=16,故∑5i =1(x i -x -)(y i -y -)=(-2)×(-8)+(-1)×(-6)+1×9+2×8=47, ∑5i =1(x i -x -)2=4+1+1+4=10,则b ^=∑5i =1(x i -x -)(y i -y -)∑5i =1 (x i -x -)2=4710=4.7,a ^=y --b ^x -=16-4.7×3=1.9.所以y 关于x 的线性回归方程为y ^=4.7x +1.9. (2)依题意,女性不愿意参与管理的人数为50, 计算得K 2的观测值为k =300×(150×50-50×50)2200×100×200×100=300×5 000×5 000200×100×200×100=18.75>10.828, 故有99.9%的把握认为村民的性别与参与管理的意愿具有相关性.。
解释变量间高度相关
变量间高度相关是指在两个或多个变量之间存在一种强烈的线性关系。
这意味着当一个变量发生变化时,另一个变量也会相应地发生变化。
这种关系可能是正相关,也可能是负相关。
正相关意味着当一个变量增加时,另一个变量也增加;而负相关则意味着当一个变量增加时,另一个变量减少。
高度相关的变量通常具有很高的皮尔逊相关系数,该值通常在0.75以上。
这表明变量之间存在强烈的线性关系,即一个变量的值可以很好地预测另一个变量的值。
然而,高度相关并不一定意味着因果关系,也就是说,一个变量的变化可能只是与另一个变量的变化相关联,而不是导致另一个变量的变化。
在解释高度相关时,我们需要考虑一些因素。
首先,我们需要确定这些变量是否真正具有因果关系。
如果它们之间确实存在因果关系,那么我们应该进一步研究这种关系的影响和结果。
其次,我们需要考虑这些变量之间的相关性是否具有可预测性。
如果我们可以预测一个变量的变化,那么我们就可以利用这种关系来做出决策或解决问题。
最后,我们需要考虑这种高度相关关系是否具有稳定性和可靠性。
如果这种关系只是在特定条件下存在,那么我们需要在不同的情境下重新评估这种关系。
总之,解释变量间高度相关需要我们深入分析这些变量之间的关系及其影响和结果。
同时,我们也需要了解这种关系的可靠性和稳定性,以便更好地利用这种关系来做出决策或解决问题。
2.3 变量间的相关关系
配人教版 数学 必修3
【示例】PM2.5是指空气中直径小于或等于2.5微米的颗粒 物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否 相关,现采集到某城市周一至周五某一时间段车流量与PM2.5 的数据如表:
时间
周一 周二 周三 周四 周五
车流量x/万辆
50 51 54 57 58
PM2.5的浓度y/ (微克·立方米-1) 69 70 74 78 79
配人教版 数学 必修3
2.3 变量间的相关关系
配人教版 数学 必修3
目标定位
重点难点
1.理解两个变量的相 重点:通过收集现实问题中两个有关联 关关系的概念. 变 量 的 数 据 直 观 认 识 变 量 间 的 相 关 关
2.会作散点图,并 系;利用散点图直观认识两个变量之间 利用散点图判断两 的线性关系;根据给出的线性回归方程
配人教版 数学 必修3
【分析】(1)利用描点法可得数据的散点图; (2)根据公式求出b^,a^,可写出线性回归方程; (3)根据(2)的线性回归方程,将 x=25 代入,求出 PM2.5 的浓度.
配人教版 数学 必修3 【解析】(1)散点图如图所示.
配人教版 数学 必修3
(2) x =50+51+554+57+58=54, -y =69+70+754+78+79=74,
A.①②
B.②③
C.③④
D.①④
配人教版 数学 必修3
【答案】D 【解析】y^=b^x+a^表示y^与 x 之间的函数关系,而不是 y 与 x 之间的函数关系.但它所反映的关系最接近 y 与 x 之间的真 实关系.故选 D.
配人教版 数学 必修3
4.如果在一次试验中,测得(x,y)的四组数值分别是 x 16 17 18 19 y 50 34 41 31
变量间的相关关系(全)
上述直线称为回归直线。
三.回归直线
3、如何求回归直线的方程
实际上,求回归直线的关键是如何用数学的方 法来刻画”从整体上看,各点到此直线的距离最 小”.
这样的方法叫做最小二乘法.
问题归结为:a,b取什么值时Q最小,即总体和最 小.下面是计算回归方程的斜率和截距的一般 公式.
根据最小二乘法和上述公式可以求回归方程.
回归直线方程: yˆ bx a
小结
1.变量之间除了函数关系外,还有相关关系,相关 关系是一种非确定关系.
2.散点图:表示具有相关关系的两个变量的一组数据 的图形,叫做散点图.
3.正相关与负相关.
4.回归直线:如果散点图中点的分布从总体上看大致在 一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线就叫回归直线。
(2)粮食产量与施肥量之间的关系 (3)人体内脂肪含量与年龄之间的关系
相关关系与函数关系的异同点: 相同点:均是指两个变量的关系. 不同点:函数关系是一种确定的关系;而 相关关系是一种非确定关系.
2、两个变量之间产生相关关系的原因是受许多不确 定的随机因素的影响。 3、需要通过样本来判断变量之间是否存在相关关系
__5_2____.
2.3.1变量之间的相关关系
在学校里,老师对学生经常这样说:”如果你的数 学成绩好,那么你的物理学习就不会有什么大问 题.”按照这种说法,似乎学生的物理成绩与数学 成绩之间存在着一种相关关系,这种说法有没有根 据呢?
1、变量之间除了函数关系外,还有相关关系。 例:(1)商品销售收入与广告支出经费之间的关系
根据上述数据,人体的脂肪含量与年龄之间 有怎样的关系?
1、散点图
表示具有相关关系的两个变量的一组数据的图 形,叫做散点图.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识概述
1、相关关系的概念
当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系.
相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系(有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下:
相同点:均是指两个变量的关系.
不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.
2、回归分析
对具有相关关系的两个变量进行统计分析的方法叫做回归分析.通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性.
3、散点图
表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度.粗略地看,散点分布具有一定的规律.
4、正相关、负相关
从散点图可以看到点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.
反之,如果两个变量的散点图中的点的散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.
5、回归直线
设所求的直线方程为其中a、b是待定系数.
则.于是得到各个偏差
.
显见,偏差的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和.
表示n个点与相应直线在整体上的接近程度.
上述式子展开后,是一个关于a、b的二次多项式,应用配方法,可求出使Q为最小值时的a、b的值.即
相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析.
特别指出:
1、对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.
2、求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.
3、求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.
4、回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.
二、例题讲解
例1、对变量x, y 有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断.
图1 图2
A.变量x 与y 正相关,u 与v 正相关
B.变量x 与y 正相关,u 与v 负相关
C.变量x 与y 负相关,u 与v 正相关
D.变量x 与y 负相关,u 与v 负相关
解析:
由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C.
例2、已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为()
A.=1.23x+4 B.=1.23x+5
C.=1.23x+0.08 D.=0.08x+1.23
解析:
回归直线必过点(4,5),故其方程为-5=1.23(x-4),即=1.23x+0.08.答案:C
例3、已知10只狗的血球体积及红血球的测量值如下
x(血球体积,mm),y(血红球数,百万).
(1)画出上表的散点图;
(2)求出回归直线并且画出图形.
解:
(1)见视频
(2).
.设回归直线为=bx+a,
计算得
所以所求回归直线的方程为.
例4、已知x、y之间的一组数据如下表:
对于表中数据,甲、乙两同学给出的拟合直线分别为与,试利用最小二乘法判断哪条直线拟合程度更好?
解:
用作为拟合直线时,所得y值与y的实际值的差的平方和为
用作为拟合直线时,所得y值与y的实际值的差的平方和为
∵Q2<Q1,故用直线拟合程度更好.。