二次根式练习题
完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案最简二次根式基础练一、填空题:1.把下列二次根式化成最简二次根式。
1) $\sqrt{120}=\sqrt{4\times30}=2\sqrt{30}$;2) $\sqrt{27}=\sqrt{9\times3}=3\sqrt{3}$;3)$\sqrt{\frac{1}{8}}=\sqrt{\frac{1}{2}\times\frac{1}{4}}=\frac{1 }{2}\sqrt{2}$;4)$\sqrt{\frac{1}{2}}=\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}$;5) $\sqrt{84}=\sqrt{4\times21}=2\sqrt{21}$;6) $\sqrt{250}=\sqrt{25\times10}=5\sqrt{10}$;7) $\sqrt{\frac{24}{8}}=\sqrt{3}$;8) $\sqrt{\frac{8}{32}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$。
2.若$\sqrt{3}\approx1.732$,则$\sqrt{227}\approx15.0$(保留三个有效数字)。
3.设$x<0$,则$\sqrt{-8x}=2i\sqrt{2}\sqrt{-x}$。
4.下列二次根式$45a$,$30$,$\frac{1}{2}$,$40b^2$,$\sqrt{54}$中是最简二次根式有$30$,$\frac{1}{2}$,$\sqrt{54}=3\sqrt{6}$。
二、选择题1.在二次根式$\sqrt{72}$,$5a\sqrt{3}$,$\sqrt{3}$,$9\sqrt{x^2}$中,最简二次根式的个数是(C)3个。
2.下列各式中是最简二次根式的是(A)$\sqrt{5}$。
3.下列各式中,不是最简二次根式的是(A)$\sqrt{6}$。
4.下列计算中正确的是(A)$\frac{1}{2}$。
二次根式练习题30道加答案过程

二次根式练习题30道加答案过程1.当a______时,a?2有意义;当x______时,2.当x______时,1有意义. x?315.计算:??11有意义;当x______时,的值为1. 2?22x?xab?11 xx3.直接写出下列各式的结果: 49=______;2=______;2=______;2=______; 2=______;[2]2=______.4.下列各式中正确的是. ??42??2?4?? 27?35.下列各式中,一定是二次根式的是. ?32 2?x6.已知2x?3是二次根式,则x应满足的条件是.x>0 x≤0 x≥-x>-3.当x为何值时,下列式子有意义? ?x; ?x2;x2?1; 7?x.8.计算下列各式:29.若?2?成立,则x,y必须满足条件______.10. ?112______;=______;4324?________.49?36=______;0.81?0.25=______;24a?a3=______.11.下列计算正确的是. 2?3? 2??6?42??312.化简5?2,结果是.?2-10 10 13.如果??,那么.x≥0 x≥ 0≤x≤ x为任意实数 14.当x=-3时,x2的值是.± - 93a6a2b?13a2?492?572x2y716.已知三角形一边长为,这条边上的高为cm,求该三角形的面积.17.把下列各式化成最简二次根式:=______;=______; 45=______; 48x=______;23=______;412=______;a5b3=______; 112?3=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式:如:32与2. 2与______; 32与______; a 与______; 8a与______;6a2与______.19.?x?xx?x成立的条件是. x<1且x≠0 x>0且x≠1 0<x≤1 0<x<10.下列计算不正确...的是. 3116?72y3x?13x6xy 2??209x?2x21.下列根式中,不是..最简二次根式的是 A.B.C.12D.22.1625= 279=243= 27=5=23=34.当a=______时,最简二次根式与?可以合并.35.若a=+2,b=-2,则a+b=______,ab=______. 36.合并二次根式:?5x1111? ?0.125222?=______;23.把下列二次根式,27,,445,2,,,化简后,与2的被开方数相同的有_________;与的被开a?4ax=______. xx?y23xy37.下列各式中是最简二次根式的是. ab2?3方数相同的有______;与的被开方数相同的有______.4. ?313=______;7?548=______.25.化简后,与的被开方数相同的二次根式是.141626.下列说法正确的是.被开方数相同的二次根式可以合并与可以合并只有根指数为2的根式才能合并2与不能合并27.可以与合并的二次根式是.2aa127a3a28、9?7?5.29.??.30.?3??31.?.32.27?13?.33.12?3438.下列计算正确的是.2??5ab?5a??6?5x?4x?x39.等于.6?6??221 ??2240.?112? 1..42..3..44.? 5.2.46.4?6?3?2.47...78.49.2ba?3a3bab?.参考答案1.a?2,x?3..2.x>0,x=1.3.7;7;7;7;0.7;49.4.D.5.B.6.D..x≤1;x=0;x 是任意实数;x≥-7..18;6;15;6.9.x≥0且y≥0.10.;24;16. 42;0.45;11.B.12.A.13.B. 14.Ba2.b; 15.2;6;24;2x;2ab; 49;12;6xy32y. 16..217.2;;;4;632302?;; abab;18.;;;;19.C.20.C.21.C.453; ; ; 22; ; 53222;2;4.23.,2,,,422.24.3;?6.25.B.26.A. 7.C.28.2?329.30.1123??434.6.35.2,3.36.2;?.31.?32.?33.37.B.38.D.39.B. 042. 6?41.36?7.19?6143.7?44.2.45.84?6.446.?8.47.2?5..?1..?2.? 二次根式1.表示二次根式的条件是______.2.使x有意义的x的取值范围是______..若?有意义,则m =______.4.已知??y?4,则xy的平方根为______..当x=5时,在实数范围内没有意义的是. 1?x| 7?x2?3x4x?206.若|x?5|?2?0,则x-y的值是.--7.计算下列各式: ?2?1)2328.已知△ABC的三边长a、b、c均为整数,且a和b 满足a?2?b2?6b?9?0.试求△ABC的c边的长.9.已知数a,b,c在数轴上的位置如图所示:化简:a2?|a?c|?2?|?b|的结果是:______. 10.已知矩形的长为2,宽为,则面积为______cm2.11.比较大小:3______2;5______4;?22______?6. 12.如果nm是二次根式,那么m,n应该满足条件. mn>0m>0,n≥0 m≥0,n>0 mn≥0且m≠013.把4234根号外的因式移进根号内,结果等于. ? ?44414.计算:5?=______;8a3b.122ab2=______; ?2213?2;=______;3?=______.15.先化简,再求值:?a,其中a?5?12. 16.把下列各式中根号外的因式移到根号里面: a?1 a;?1y?1?17.已知a,b为实数,且??0,求a2008-b2008的值. 18.化简二次根式:17=______;18=______;?413=______. 19.计算下列各式,使得结果的分母中不含有二次根式: 1=______; 132______;2x2=______;y=______.0.已知≈1.732,则13≈______;27≈______.1.计算b1a?ab?ab等于.1ab2ab 11a2bab bab bab22.下列各式中,最简二次根式是.1x?yab x2? 5a2b23.?? ?a?ba?b24.已知:△ABC中,AB=AC,∠A=120°,BC?8,求△ABC的面积.25.观察规律:12?1?2?1,1?2?3?,12??2?3求值.122?7=______;1?=______;1n?1?n=______.26.238ab3与6ba2b无法合并,这种说法是______的.27.一个等腰三角形的两边长分别是2和3,则这个等腰三角形的周长为.2?4362?262?42?4或62?28.?.29.0??12?|5?|?230.a?a133a?12aa.31.2aba1a?bb?aa3b?2bab3.32.化简求值:3x1?4y?x?y,其中x=4,y=1x9.33.已知四边形ABCD四条边的长分别为,,.5和3,求它的周长.4.探究下面问题判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①2?23?22;②3?38?338;③4?4?4;④5?524?5524.1515你判断完以上各题后,发现了什么规律?请用含有n的式子将规律表示出来,并写出n的取值范围.请你用所学的数学知识说明你在中所写式子的正确性.35.设a??b??,则a2007b2008的值是______.36.的运算结果是. 0abab2abab37.下列计算正确的是. 2?a?ba??aba2?b2?a?ba?1a?a8.1?2.1?2?.100101.40.2?2.41.已知x??,y??,求值:x2-xy+y2.42.已知x+y=5,xy=3,求x?y的值.yx43.若b<0,化简?ab3的结果是______.44.若菱形的两条对角线长分别为和则此菱形的面积为______.45.若x??2,则代数式x2-4x+3的值是______.6.当a<2时,式子a?2,2?a,a?2,2中,有意义的有. 1个 2个 3个7.若a,b两数满足b<0<a且|b|>|a|,则下列各式有意义的是.a?bb?a a?b ab48abab5??ab?9.?8x4.50.已知:如图,直角梯形ABCD中,AD∥BC,∠A =90°,△BCD为等边三角形,且AD=2,求梯形ABCD的周长.二次根式基础练习一、选择题1.若3?m为二次根式,则m的取值为A.m≤3B.m<3C.m≥D.m>32.下列式子中二次根式的个数有⑴1;⑵3?3;⑶?x2?1;⑷8;⑸12;⑹3?x;⑺x2?2x?3.A.2个 B.3个 C.4个 D.5个3.当a?2a?2有意义时,a的取值范围是A.a≥B.a>C.a≠ D.a≠-24.下列计算正确的是①??4??9?6;②?4?9?6;③52?42?5?4??4?1;④52?42?52?42?1;A.1个 B.2个 C.3个 D.4个5.化简二次根式2?3得A.?B.5C.?D.306.对于二次根式x2?9,以下说法不正确的是A.它是一个正数 B.是一个无理数C.是最简二次根式D.它的最小值是37.把3aab分母有理化后得A.4bB.C.1 bD.b28.ax?by的有理化因式是A.x?yB.x?yC.ax?by D.ax?by9.下列二次根式中,最简二次根式是A.3a B.13C.D.10.计算:a1b?ab?ab等于A.1ab2abB.1ababC.1bab D.bab二、填空题11.当x___________时,?3x是二次根式.12.当x___________时,3?4x在实数范围内有意义. 13.比较大小:?32______?23.14.2ba?a18b?____________;252?242?__________.15.计算:3a?2b?___________.16b216.计算:ca2=_________________.17.当a=3时,则15?a2?___________.18.若x?2x?23?x?3?x成立,则x满足_____________________.三、解答题19.把下列各式写成平方差的形式,再分解因式:)计算:⑴?3?;⑵2?13?6;⑶131?23?;⑷x?10?1y?z.221.计算:⑴?220;⑵0.01?81; 0.25?144⑶12123ab1?2?1;⑷?.352bab22.把下列各式化成最简二次根式: abc27132?122 ⑴;⑵?252723.已知:x?24.参考答案:一、选择题 c3.a4b120?4,求x2?2的值.x1.A;2.C;3.B;4.A;5.B;6.B;7.D;8.C;9.D;10.A.二、填空题11.≤1314b;12.≤;13.<;14.,7;15.302ab;16.;17.32;a34318.2≤x<3.三、解答题19.⑴;⑵;⑶;⑷;20.⑴?243;⑵2;⑶?43;⑷10xyz; 33c2321.⑴?;⑵;⑶1;⑷;22.⑴33;⑵ ?2bc;23.18.4a420二次根式检测题一、选择题有意义,那么x的取值范围是 A.x?B.x?3C.x? D.x≥3 2.下列二次根式中,是最简二次根式的是新- 课-标- 第-一 -网 1.A.2xyB.ab23.1?2a,那么A.a<≥11 B.错误!24.下列二次根式,5.a的值为6.m?n的值是C.1D..D.8. )A.x?1B.x??1C.x≥1D.x≤?19.n的最小值是A. B.C. D.210.k、m、n为三整数,若错误!未找到引用源。
二次根式练习题含答案

一、选择题
1.已知 =5﹣x,则x的取值范围是( )
A.为任意实数B.0≤x≤5C.x≥5D.x≤5
2.若 ,则 ( ).
A. B. C. D.
3.下列计算正确的是()
A. B.
C. D.
4.下列计算正确的是()
A. B. C. D.
5.下列算式:(1) ;(2) ;(3) = ;(4) ,其中正确的是()
请模仿小明的方法探索并解决下列问题:
(1)当 为正整数时,若 ,请用含有 的式子分别表示 ,得: , ;
(2)填空: = - ;
(3)若 ,且 为正整数,求 的值.
【答案】(1) , ;(2) ;(3) 或46.
【解析】
试题分析:
(1)把等式 右边展开,参考范例中的方法即可求得本题答案;
(2)由(1)中结论可得: ,结合 都为正整数可得:m=2,n=1,这样就可得到: ;
=-10.
【点睛】
此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.
25.先观察下列等式,再回答下列问题:
① ;
②
③
(1)请你根据上面三个等式提供的信息,猜想 的结果,并验证;
(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).
【答案】(1) (2) (n为正整数)
【详解】
=
=
= .
【点睛】
此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.
22.观察下列各式子,并回答下面问题.
第一个:
第二个:
第三个:
第四个: …
(1)试写出第 个式子(用含 的表达式表示),这个式子一定是二次根式吗?为什么?
二次根式 专题练习(含答案)

二次根式专题练习(含答案)一.选择题(共10小题)1.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.已知:m,n是两个连续自然数(m<n),且q=mn.设,则p()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数3.化简二次根式的结果是()A.B. C.D.4.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.95.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.A.0 B.1 C.2 D.36.若实数x,y满足x﹣y+1=0且1<y<2,化简得()A.7 B.2x+2y﹣7 C.11 D.9﹣4y7.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.158.下列计算中正确的是()A. B.C.D.9.若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2B.﹣3≤k≤3C.﹣1≤k≤1D.k≥﹣110.已知,,则的值为()A.3 B.4 C.5 D.6二.填空题(共8小题)11.二次根式中字母x的取值范围是.12.若y=++2,则x y=.13.若=3﹣x,则x的取值范围是.14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.15.已知xy=3,那么的值是.16.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=.17.若a、b、c三个数在数轴上对应点的位置如图所示,化简:=.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).三.解答题(共10小题)19.化简求值:,其中.20.已知:a=,b=.求代数式的值.21.已知:,求的值.22.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.23.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.24.已知y=+2,求+﹣2的值.25.已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.26.观察下列等式:①==﹣1②==﹣③==﹣…回答下列问题:(1)化简:=;(n为正整数)(2)利用上面所揭示的规律计算:+++…++.27.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.28.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=;(2)利用上面所提供的解法,请化简:的值.参考答案与试题解析一.选择题(共10小题)1.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.【点评】本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.2.已知:m,n是两个连续自然数(m<n),且q=mn.设,则p()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数【分析】m、n是两个连续自然数(m<n),则n=m+1,所以q=m(m+1),所以q+n=m(m+1)+m+1=(m+1)2,q﹣m=m(m+1)﹣m=m2,代入计算,再看结果的形式符合偶数还是奇数的形式.【解答】解:m、n是两个连续自然数(m<n),则n=m+1,∵q=mn,∴q=m(m+1),∴q+n=m(m+1)+m+1=(m+1)2,q﹣m=m(m+1)﹣m=m2,∴=m+1+m=2m+1,即p的值总是奇数.故选A.【点评】本题的关键是根据已知条件求出p的值,判断p的值.3.化简二次根式的结果是()A.B. C.D.【分析】根据二次根式找出隐含条件a+2≤0,即a≤﹣2,再化简.【解答】解:若二次根式有意义,则﹣≥0,﹣a﹣2≥0,解得a≤﹣2,∴原式==.故选B.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式,且不改变原式符号.4.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.9【分析】观察已知等式可知,两个括号里分别有m2﹣2m,n2﹣2n的结构,可由已知m、n的值移项,平方得出m2﹣2m,n2﹣2n的值,代入已知等式即可.【解答】解:由m=1+得m﹣1=,两边平方,得m2﹣2m+1=2即m2﹣2m=1,同理得n2﹣2n=1.又(7m2﹣14m+a)(3n2﹣6n﹣7)=8,所以(7+a)(3﹣7)=8,解得a=﹣9故选C.【点评】本题考查了二次根式的灵活运用,直接将m、n的值代入,可能使运算复杂,可以先求部分代数式的值.5.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.A.0 B.1 C.2 D.3【分析】对已知条件变形整理并平方,解方程即可得到a的值,求出后直接选取答案.【解答】解:根据二次根式有意义的条件,可得a≥1.原方程可以变形为:a﹣=,两边同平方得:a2+1﹣﹣2a=a﹣,a2+1﹣2=a.a2﹣a﹣2+1=0,解得=1,∴a2﹣a=1,a=(负值舍去).a≈1.618.所以[a]=1,故选B.【点评】此题首先能够根据二次根式有意义的条件求得a的取值范围,然后通过平方的方法去掉根号.灵活运用了完全平方公式.6.若实数x,y满足x﹣y+1=0且1<y<2,化简得()A.7 B.2x+2y﹣7 C.11 D.9﹣4y【分析】求出y=x+1,根据y的范围求出x的范围是0<x<1,把y=x+1代入得出+2,推出+2,根据二次根式的性质得出|2x+1|+2|x﹣3|,根据x的范围去掉绝对值符号求出即可.【解答】解:∵x﹣y+1=0,∴y=x+1,∵1<y<2,∴1<x+1<2,∴0<x<1,∴,=+2,=+2,=+2,=|2x+1|+2|x﹣3|,=2x+1+2(3﹣x),=7,故选A.【点评】本题考查了完全平方公式,二次根式的性质,绝对值等知识点的应用,主要考查学生综合运用性质进行化简和计算的能力,题目具有一定的代表性,但是一道比较容易出错的题目,有一定的难度.7.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【分析】由a﹣b=2+,b﹣c=2﹣可得,a﹣c=4然后整体代入.【解答】解:∵a﹣b=2+,b﹣c=2﹣,∴a﹣c=4,∴原式====15.故选D.【点评】此题的关键是把原式转化为的形式,再整体代入.8.下列计算中正确的是()A. B.C.D.【分析】根据二次根式的性质对各选项分析判断后利用排除法求解.【解答】解:A、+不能进行运算,故本选项错误;B、==×,负数没有算术平方根,故本选项错误;C、x﹣x=(﹣)x,故本选项正确;D、不能进行运算,=a+b,故本选项错误.故选C.【点评】本题考查了二次根式的性质与混合运算,是基础题,比较简单,但容易出错.9.若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2B.﹣3≤k≤3C.﹣1≤k≤1D.k≥﹣1【分析】依据二次根式有意义的条件即可求得k的范围.【解答】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.已知,,则的值为()A.3 B.4 C.5 D.6【分析】先分母有理化求出a、b的值,再求出a2+b2的值,代入求出即可.【解答】解:∵a===+2,b==﹣2,∴a2+b2=(a﹣b)2+2ab=42+2×(5﹣4)=18,∴==5,故选C.【点评】本题考查了分母有理化,二次根式的化简,关键是求出a、b和a2+b2的值,题目比较好,难度适中.二.填空题(共8小题)11.二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.若y=++2,则x y=9.【分析】根据二次根式有意义的条件得出x﹣3≥0,3﹣x≥0,求出x,代入求出y即可.【解答】解:y=有意义,必须x﹣3≥0,3﹣x≥0,解得:x=3,代入得:y=0+0+2=2,∴x y=32=9.故答案为:9.【点评】本题主要考查对二次根式有意义的条件的理解和掌握,能求出x y的值是解此题的关键.13.若=3﹣x,则x的取值范围是x≤3.【分析】根据二次根式的性质得出3﹣x≥0,求出即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.15.已知xy=3,那么的值是±2.【分析】先化简,再分同正或同负两种情况作答.【解答】解:因为xy=3,所以x、y同号,于是原式=x+y=+,当x>0,y>0时,原式=+=2;当x<0,y<0时,原式=﹣+(﹣)=﹣2.故原式=±2.【点评】此题比较复杂,解答此题时要注意x,y同正或同负两种情况讨论.16.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=4.【分析】根据x的取值范围确定m的取值范围,然后在其取值范围内求得最小的整数.【解答】解:∵﹣4≤x≤1,∴4+x≥0,1﹣x≥0,∴不等式两边平方得:m2>5+2∵当x=﹣1.5时,最大为2.5,∴m2>10∴满足条件的最小的整数为4.故答案为4.【点评】本题考查了二次根式有意义的条件,关键是确定m的取值范围.17.若a、b、c三个数在数轴上对应点的位置如图所示,化简:=3.【分析】先根据数轴判断出a、b、c的大小及符号,再根据有绝对值的性质及二次根式的定义解答.【解答】解:由数轴上各点的位置可知,a<b<0,c>0,|a|>|b|>c,∴=﹣a;|a﹣b|=b﹣a;|a+b|=﹣(a+b);|﹣3c|=3c;|a+c|=﹣(a+c);故原式====3.故答案是:3.【点评】解答此题的关键是根据数轴上字母的位置判断其大小,再根据绝对值的规律计算.绝对值的规律:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共10小题)19.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.20.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.21.已知:,求的值.【分析】首先化简a=2﹣,然后根据约分的方法和二次根式的性质进行化简,最后代入计算.【解答】解:∵a==2﹣<1,∴原式==a﹣3+=2﹣﹣3+2+=1.【点评】此题中注意:当a<1时,有=1﹣a.22.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.【分析】观察问题中的三个式子,不难发现规律:用平方差公式完成分母有理化.【解答】解:(1)原式==;(2)原式==;(3)原式==.【点评】要将中的根号去掉,要用平方差公式()()=a﹣b.23.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.24.已知y=+2,求+﹣2的值.【分析】由二次根式有意义的条件可知1﹣8x=0,从而可求得x、y的值,然后将x、y的值代入计算即可.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式的被开方数大于等于零是解题的关键.25.已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.【分析】首先化简x与y,可得:x=()2=2n+1﹣2,y=2n+1+2,所以x+y=4n+2,xy=1;将所得结果看作整体代入方程,化简即可求得.【解答】解:化简x与y得:x=,y=,∴x+y=4n+2,xy=1,∴将xy=1代入方程,化简得:x2+y2=98,∴(x+y)2=x2+y2+2xy=98+2×1=100,∴x+y=10.∴4n+2=10,解得n=2.【点评】此题考查了二次根式的分母有理化.解题的关键是整体代入思想的应用.26.观察下列等式:①==﹣1②==﹣③==﹣…回答下列问题:(1)化简:=;(n为正整数)(2)利用上面所揭示的规律计算:+++…++.【分析】(1)根据平方差公式,进行分母有理化,即可解答;(2)根据(1)中的规律化简,即可解答.【解答】解:(1)=;故答案为:.(2)+++…++=…+=﹣1.【点评】本题考查了分母有理化,解决本题的关键是发现分母有理化的规律.27.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.28.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=;(2)利用上面所提供的解法,请化简:的值.【分析】(1)通过观察题目中的解题过程可以看出:相邻的两个数算术平方根的和的倒数等于它们算术平方根的差;(2)根据规律,先化简成二次根式的加减运算,再进行计算就可以了.【解答】解:(1)=;(2)由题意可知:==.【点评】本题考查的是分式的加减运算,同时还考查了根据题目的已知来获取信息的能力,总结规律并运用规律是近年中考的热点之一.。
二次根式练习题及答案

二次根式练习题1.如果二次根式有意义,那么x应该满足的条件是.2.若两个最简二次根式与是同类二次根式,则a =.3.已知,则x2﹣4x+1的值为.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围.5.已知,.则(1)x2+y2=.(2)(x﹣y)2﹣xy=.6.若x=1+,则x3﹣3x2+2x﹣=.7.实数a、b满足,则a2+b2的最大值为.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b =m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=.(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)化简参考答案与试题解析1.如果二次根式有意义,那么x应该满足的条件是x≤,且x.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x+1≠0,且2﹣3x≥0,解得x≤,且x.故答案为:x≤,且x.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.若两个最简二次根式与是同类二次根式,则a=2.【分析】根据一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式列出方程求a即可.【解答】解:∵3a﹣1=11﹣3a,∴6a=12,∴a=2.故答案为:2.【点评】本题考查了同类二次根式,最简二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.3.已知,则x2﹣4x+1的值为2.【分析】先根据分母有理化求出x值,然后利用完全平方公式对代数式变形,再代入数据求解即可.【解答】解:===,x2﹣4x+1=x2﹣4x+4﹣4+1=(x﹣2)2﹣3,把代入上式中,原式===2,故答案为:2.【点评】本题主要考查了代数式求值,二次根式的运算,分母有理化等知识点,解题的关键在于能够利用完全平方公式对代数式进行变形求解.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围﹣1<a≤0.【分析】根据二次根式的被开方数是非负数求出x的取值范围,根据满足条件的所有整数x的和是9,得到x=4,3,2,从而1<a+2≤2,从而得出答案.【解答】解:∵4﹣x≥0,x﹣a﹣2≥0,∴a+2≤x≤4,∵满足条件的所有整数x的和是9,∴x=4,3,2,∴1<a+2≤2,∴﹣1<a≤0.故答案为:﹣1<a≤0.【点评】本题考查了二次根式有意义的条件,根据二次根式的被开方数是非负数求出x 的取值范围是解题的关键.5.已知,.则(1)x2+y2=14.(2)(x﹣y)2﹣xy=11.【分析】(1)先分母有理化求出x,再去求x﹣y和xy的值,根据完全平方公式进行变形,最后代入求出答案即可;(2)把x﹣y=﹣2,xy=1代入,即可求出答案.【解答】解:(1)∵x===2﹣,y=2+,∴x﹣y=(2﹣)﹣(2+)=﹣2,xy=(2﹣)×(2+)=4﹣3=1,∴x2+y2=(x﹣y)2+2xy=(﹣2)2+2×1=12+2=14,故答案为:14;(2)由(1)知:x﹣y=﹣2,xy=1,所以(x﹣y)2﹣xy=(﹣2)2﹣1=12﹣1=11,故答案为:11.【点评】本题考查了二次根式的化简求值,分母有理化和完全平方公式等知识点,能求出x﹣y和xy的值是解此题的关键,注意:(x﹣y)2=x2﹣2xy+y2.6.若x=1+,则x3﹣3x2+2x﹣=5.【分析】先将原式进行分组,然后进行因式分解,代入x的值,再根据二次根式混合运算顺序(先算乘方,然后算乘法,最后算加减)及计算法则进行计算.【解答】解:原式=(x3﹣3x2)+2x﹣=x2(x﹣3)+2x﹣,当x=1+时,原式=(1+)2(1+﹣3)+2(1+)﹣=(1+2+7)(﹣2)+2+2﹣=(8+2)(﹣2)+2+2﹣=8﹣16+14﹣4+2+2﹣=5.故答案为:5.【点评】本题考查二次根式的混合运算,理解二次根式的性质,掌握完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.7.实数a、b满足,则a2+b2的最大值为52.【分析】根据=|a|化简变形得:|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,a到2和6的距离之和=4,b到﹣4和2的距离之和是6,得到2≤a≤6,﹣4≤b≤2,根据|a|最大为6,|b|最大为4即可得出答案.【解答】解:原式变形为++|b+4|+|b﹣2|=10,∴|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,∴a到2和6的距离之和是4,b到﹣4和2的距离之和是6,∴2≤a≤6,﹣4≤b≤2,∴|a|最大为6,|b|最大为4,∴a2+b2=62+(﹣4)2=36+16=52.故答案为:52.【点评】本题考查了二次根式的性质与化简,根据绝对值的性质得到2≤a≤6,﹣4≤b ≤2是解题的关键.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为2.【分析】先将x,y分母有理化化简为含n的代数式,可得x+y=4n+2,xy=1,然后将xy =1代入19x2+123xy+19y2=1985,结果化简为x2+y2=98,进而求解.【解答】解:∵x===()2=2n+1﹣2,y=,=()2=2n+1+2,∴x+y=4n+2,xy=1,将xy=1代入19x2+123xy+19y2=1985得19x2+123+19y2=1985,化简得x2+y2=98,(x+y)2=x2+y2+2xy=98+2=100,∴x+y=10.∴4n+2=10,解得n=2.故答案为:2.【点评】本题考查二次根式的分母有理化,解题关键是利用整体思想求解.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.【分析】(1)原式逆用积的乘方运算法则计算即可求出值;(2)原式利用二次根式性质,分母有理化,以及零指数幂法则计算即可求出值.【解答】解:(1)原式=(﹣8×0.125)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=﹣0.125;(2)原式=2﹣﹣1=﹣1.【点评】此题考查了分母有理化,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则是解本题的关键.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).【分析】(1)利用平方差公式及完全平方公式进行求解较简便;(2)先化简,再算括号里的运算最后算除法即可.【解答】解:(1)(3+)(3﹣)﹣(﹣1)2=9﹣5﹣(3﹣2+1)=9﹣5﹣3+2﹣1=2;(2)(2﹣3)=(8)=﹣=.【点评】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握与运用.11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn.(2)利用所探索的结论,找一组正整数a、b、m、n填空:21+4=(1+ 2)2;(3)化简【分析】(1)将(m+n)2用完全平方公式展开,与原等式左边比较,即可得答案;(2)设a+b=,则=m2+2mn+5n2,比较完全平方式右边的值与a+b,可将a和b用m和n表示出来,再给m和n取特殊值,即可得答案;(3)利用题中描述的方法,将要化简的双重根号,先化为一重根号,再利用分母有理化化简,再合并同类二次根式和同类项即可.【解答】解:(1)∵,=m2+2mn+3n2∴a=m2+3n2,b=2mn故答案为:m2+3n2,2mn.(2)设a+b=则=m2+2mn+5n2∴a=m2+5n2,b=2mn若令m=1,n=2,则a=21,b=4故答案为:21,4,1,2.(3)=﹣=﹣=﹣=﹣=++﹣=+【点评】本题考查了利用分母有理化和利用完全平方公式对二次根式化简,以及对这种方法的拓展应用,本题具有一定的计算难度.。
二次根式全章同步练习(含答案)

同步练习 (2)二次根式 (2)第1课时21.1二次根式(1) (2)第2课时21.1二次根式(2) (3)第3课时21.1二次根式(3) (3)第4课时21.2二次根式的乘除(1) (4)第5课时21.2二次根式的乘除(2) (6)第6课时21.2二次根式的乘除(3) (7)第7课时21.3二次根式的加减(1) (8)第8课时21.3 二次根式的加减(2) (9)第9课时21.3 二次根式的加减(3) (10)第10课时第21章二次根式单元复习(1) (12)第11课时第21章二次根式单元复习(2) (13)第12课时二次根式全章练习 (14)第13课时21.3二次根式的加减 (17)答案: (19)二次根式的乘除 (22)第1课时课堂练习 (22)第1课时课堂练习答案 (24)第2课时课堂练习 (24)第2课时课堂练习答案 (25)第3课时课堂练习 (26)第3课时课堂练习答案 (28)二次根式的加减 (29)答案 (32)同步练习二次根式第1课时21.1二次根式(1)一、选择题1.下列式子中,是二次根式的是()D.x2.下列式子中,不是二次根式的是()D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,x+x2在实数范围内有意义?3.4.x有()个.A.0B.1C.2D.无数5.已知a、b,求a、b的值.第2课时 21.1二次根式(2)一、选择题1.、个数是( ).A.4B.3C.2D.12.数a 没有算术平方根,则a 的取值范围是( ).A.a>0B.a ≥0C.a<0D.a=0二、填空题1.()2=________.2.x+1是一个_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3.=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-5第3课时 21.1二次根式(3)一、选择题的值是().A.0B.23C.423D.以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是().二、填空题2.是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│。
二次根式的乘除专项练习60题(有答案过程)ok

1. ( 2. 3. (2 +4 )× +3) (3﹣ ) .
4. 5. .
6. 7. 8. .
9. (1)
; (2)
10.
11. (1)x(2x﹣1)﹣x (2﹣x) ; 2 3 2 3 (2) (2ab ﹣b ) ÷2b ; (3) (4) (5) (6) ; ; ; .
(2)
.
58.计算:2
×
.
59.
.
60.
.
二次根式的乘除法---
4
参考答案:
1. ( +3) (3﹣ )=3 ﹣( ) =9﹣6=3. 2 2 2. 原式=(3 ) ﹣(4 ) =54﹣32=22. 3.原式= 4.原式=( 5.原式= 6. 原式=(2 7.原式= ) ﹣3 =20﹣9=11. =2﹣9+2 = .
2
=﹣ =﹣
=﹣ ×10=﹣
.
÷ × × × ×4×
43.原式=﹣(9÷3× ) 44. 45. 46.原式=(2 47.原式=3 48.原式=27 49.原式=4 50.原式= 51.原式= ÷ ×3 = ) +2×2 ÷12= ÷ ×3 . × × =27
2
×3
×
×
=45
﹣2=24﹣2=22. = × ×3 = ×2a= . =9 . )] =[( ) ﹣( ) ] =(5﹣3) =4 +3)=(8﹣2 ) (8+2 )=64﹣60=4.
=2 . ×4
÷6
=
÷
2 2
= ÷3
×4 =
×
= ×4× × .
=1
)=a b
二次根式 练习题及答案

二次根式练习题一.填空题(共15小题)1.使代数式有意义的x的取值范围是.2.若代数式+有意义,则实数x的取值范围是.3.计算﹣的结果为.4.实数a,b在数轴上的位置如图所示,且|a|>|b|,则式子化简的结果为.5.已知y=++2022,则x2+y﹣3的值为.6.若实数x,y满足+(y﹣8)2=0,则=.7.如图,如果正方形ABCD的面积为12,正方形BEFG的面积为6,则△ADF的面积等于.8.化简:=.9.当x=﹣1时,代数式x2+2x+2022的值是.10.已知x=+3,则代数式x3﹣x2﹣26x+5的值为.11.若m=,则m5﹣2m4﹣2015m3=.12.若a=+3,b=3﹣,则的值为.13.若a=1+,b=1﹣,则代数式a2﹣ab+b2的值为.14.若m满足关系+=+,则m的值为.15.若a+6,当a,m,n均为正整数时,则的值为.16.计算:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0;(2)[a3•a5+(3a4)2]÷a2;(3)(﹣)×;(4)2(﹣)﹣(2﹣4).17.计算下列各题(1);(2);(3);(4).18.计算:.参考答案与试题解析1.使代数式有意义的x的取值范围是x≥﹣2且x≠﹣1.【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.【解答】解:∵x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1.故答案为:x≥﹣2且x≠﹣1.【点评】本题考查二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键.2.若代数式+有意义,则实数x的取值范围是 3.5≤x≤5.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:根据题意得:,解得:3.5≤x≤5.故答案为:3.5≤x≤5.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.计算﹣的结果为﹣.【分析】先化简每一个二次根式,然后再进行计算即可解答.【解答】解:﹣=﹣2=﹣,故答案为:﹣.【点评】本题考查了二次根式的混合运算,分母有理化,准确熟练地进行计算是解题的关键.4.实数a,b在数轴上的位置如图所示,且|a|>|b|,则式子化简的结果为2b﹣a.【分析】根据题意可得:|a|>|b|,a<0<b,从而可得a+b<0,a﹣b<0,然后利用二次根式的性质,绝对值的意义,进行化简计算,即可解答.【解答】解:∵|a|>|b|,a<0<b,∴a+b<0,a﹣b<0,∴=﹣a+(a+b)+(b﹣a)=﹣a+a+b+b﹣a=2b﹣a,故答案为:2b﹣a.【点评】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.5.已知y=++2022,则x2+y﹣3的值为2023.【分析】根据二次根式有意义的条件得到x2=4,进而求出y的值,代入代数式求值即可.【解答】解:根据题意得:x2﹣4≥0,4﹣x2≥0,∴x2=4,∴y=2022,∴原式=4+2022﹣3=2023.故答案为:2023.【点评】本题考查二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.若实数x,y满足+(y﹣8)2=0,则=6.【分析】先根据算术平方根和偶次方的非负性可得,x﹣32=0,y﹣8=0,从而求出x,y 的值,然后代入式子中,进行计算即可解答.【解答】解:∵+(y﹣8)2=0,∴x﹣32=0,y﹣8=0,∴x=32,y=8,∴=+=4+2=6,故答案为:6.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.7.如图,如果正方形ABCD的面积为12,正方形BEFG的面积为6,则△ADF的面积等于6﹣3.【分析】先求出正方形的边长,根据S△ADF=AD•AG计算即可.【解答】解:∵正方形ABCD的面积为12,正方形BEFG的面积为6,∴AB=AD=2,BG=,∴S△ADF=AD•AG=×2×(2﹣)=6﹣3.故答案为:6﹣3.【点评】本题考查二次根式的应用,正方形的性质,三角形的面积公式等知识,解题的关键是灵活掌握三角形的面积公式,属于中考常考题型.8.化简:=2x﹣3.【分析】先根据题意得出x的取值范围,再进行进行乘方和开方的运算.【解答】解:∵x﹣2>0,∴x>2,1﹣x<0,原式化简为:x﹣2+x﹣1=2x﹣3,故答案为:2x﹣3.【点评】本题考查了二次根式的基本运算,解题关键在于通过x的取值正确去括号进行计算.9.当x=﹣1时,代数式x2+2x+2022的值是2034.【分析】将已知变形,得到x2+2x=12,即可得到答案.【解答】解:∵x=﹣1,∴x+1=,∴(x+1)2=13,即x2+2x+1=13,∴x2+2x=12,∴x2+2x+2022=2034;故答案为:2034.【点评】本题考查与二次根式相关的代数式求值,解题的关键是将已知变形,得到x2+2x =12.10.已知x=+3,则代数式x3﹣x2﹣26x+5的值为﹣15.【分析】把所求的式子变形为(x﹣1)(x2﹣26)﹣21,然后再把x的值代入进行计算即可解答.【解答】解:∵x=+3,∴x3﹣x2﹣26x+5=x3﹣x2﹣26x+26﹣26+5=x2(x﹣1)﹣26(x﹣1)﹣21=(x﹣1)(x2﹣26)﹣21=(+3﹣1)[(+3)2﹣26]﹣21=(+2)(6﹣12)﹣21=6(+2)(﹣2)﹣21=6×1﹣21=﹣15,故答案为:﹣15.【点评】本题考查了二次根式的化简求值,把所求的式子变形为(x﹣1)(x2﹣26)﹣21是解题的关键.11.若m=,则m5﹣2m4﹣2015m3=0.【分析】将m化简可得m=+1,代入到原式=m3[(m﹣1)2﹣2016]即可得.【解答】解:∵m====+1,∴原式=m3(m2﹣2m﹣2015)=m3[(m﹣1)2﹣2016]=m3[(+1﹣1)2﹣2016]=0,故答案为:0.【点评】本题主要考查二次根式的化简和整式的运算,熟练掌握二次根式的性质和整式运算的法则是解题的关键.12.若a=+3,b=3﹣,则的值为5.【分析】先求出a+b=6,ab=2,再将所求式子变形后整体代入.【解答】解:∵a=+3,b=3﹣,∴a+b=6,ab=2,∴====5,故答案为:5.【点评】本题考查二次根式变形求值,解题的关键是观察已知和所求式子的特点,求出a+b=6,ab=2,再整体代入计算.13.若a=1+,b=1﹣,则代数式a2﹣ab+b2的值为1.【分析】根据完全平方公式把所求的式子变形为(a+b)2﹣3ab,然后进行计算即可解答.【解答】解:∵a=1+,b=1﹣,∴a2﹣ab+b2=(a+b)2﹣3ab=(1++1﹣)2﹣3×(1+)×(1﹣)=22﹣3×(﹣1)=4+3=7,故答案为:7.【点评】本题考查了二次根式的化简求值,熟练掌握完全平方公式是解题的关键.14.若m满足关系+=+,则m的值为21.【分析】由二次根式的定义可得x+y=19,则有+=0,从而可求解.【解答】解:由题意得:x﹣19+y≥0,19﹣x﹣y≥0,则x+y≥19,x+y≤19,∴x+y=19,∴+=0,则3x+5y﹣2﹣m=0①,2x+3y﹣m=0②,①﹣②得:x+2y﹣2=0,解得:y=﹣17,则x﹣17=19,解得:x=36,∴2×36+3×(﹣17)﹣m=0,解得:m=21.故答案为:21.【点评】本题主要考查二次根式的加减法,解答的关键是由二次根式的定义得出x+y=19.15.若a+6,当a,m,n均为正整数时,则的值为2或2.【分析】通过完全平方公式去掉括号求出a=m2+3n2,2mn=6,根据a,m,n均为整数,分两种情况求出m,n,进一步求出a,从而求解.【解答】解:∵a+6,∴a+6=m2+2nm+3n2(a,m,n均为整数),∴a=m2+3n2,2mn=6,∴mn=3,①m=1,n=3,a=28,②m=3,n=1,a=12,故的值为2或2.【点评】本题主要考查了二次根式的混合运算,完全平方式,熟练掌握完全平方式的应用是解题关键.二.解答题(共3小题)16.计算:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0;(2)[a3•a5+(3a4)2]÷a2;(3)(﹣)×;(4)2(﹣)﹣(2﹣4).【分析】(1)先根据负整数指数幂,零指数幂,有理数的乘方进行计算,再算加减即可;(2)先算括号内的乘方和乘方,再合并同类项,最后算除法即可;(3)先根据二次根式的性质进行计算,再根据二次根式的乘法法则进行计算即可;(4)先根据二次根式的乘法法则进行计算,再根据二次根式的加减法法则进行计算即可.【解答】解:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0=4﹣(﹣1)+1=4+1+1=6;(2)[a3•a5+(3a4)2]÷a2=(a8+9a8)÷a2=10a8÷a2=10a6;(3)(﹣)×=(3﹣)×2=2×2=4×6=24;(4)2(﹣)﹣(2﹣4)=2﹣3﹣+2=4﹣4.【点评】本题考查了整式的混合运算,零指数幂,负整数指数幂,二次根式的混合运算等知识点,能正确根据整式的运算法则和二次根式的运算法则进行化简是解此题的关键,注意运算顺序.17.计算下列各题(1);(2);(3);(4).【分析】(1)类比多项式乘多项式的计算方法计算;(2)类比多项式除以单项式的方法计算;(3)利用平方差公式计算;(4)利用完全平方公式计算.【解答】解:(1)()×=4;(2)(4)÷2=2;(3)()()=5﹣3=2;(4)=18+6+5=23.【点评】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.18.计算:.【分析】先根据二次根式的性质,二次根式的乘法法则和完全平方公式进行计算,再根据二次根式的加减法则进行计算即可.【解答】解:=3﹣2+1﹣2﹣=3﹣2+1﹣2﹣4=﹣4.【点评】本题考查了二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1二次根式练习题
一、选择题.
1.下列二次根式,无论x 取什么值都有意义的是( )
A .
B .
C .
D .
2.下列判断正确的是( )
A. 带根号的式子一定是二次根式
B. √m 2+1一定是二次根式
C. √a −1一定是二次根式
D. 二次根式的值必定是无理数
3.若√x +y −1+(y +3)2=0,则x-y 的值为( )
A. 1
B. −1
C. 7
D. −7 4.要使+有意义,则x 应满足( )
A .<x ≤3
B .x ≤3且x ≠
C .<x <3
D .≤x ≤3 5.代数式
在实数范围内有意义,则x 的值可能为( ) A .0
B .﹣2
C .﹣1
D .1 6.使式子1x−3+√5−x 在实数范围内有意义的正整数x 有( )
A.3个
B.4个
C.5个
D.无数个 7.若(x-2)2
+√y +3=0,则xy 的值为( ) A.6 B.-6 C.1 D.-1
8.下列计算正确的是( )
A .=±3
B .±=5
C .=﹣3
D .()2
=3 9.代数式
在实数范围内有意义,则x 的值可能为( ) A .0 B .﹣2 C .﹣1 D .1
10.若x <2,化简()x x -+-322的正确结果是( )
A.-1
B.1
C.52-x
D.x 25-
11.下列各式中,是二次根式有( )
①;②;③;④
(x ≤3);⑤;⑥;⑦(ab ≥0). A .2个
B .3个
C .4个
D .5个 二、填空题
1.二次根式
是一个整数,那么正整数a 最小值是 . 3.若代数式有意义,则x 的取值范围是 .4.计算:= . 5.在y =中,x 的取值范围为 .6.化简2441x x -+-(23x -)2= 。
7.代数式(x +1)2 +(x -3)2 的最小值是 ; 2-a +9 的最 值是 。
8.代数式√3−x 有意义时,x 应满足的条件是______.9.已知|a −1|+√7+b =0,则a +b =_______________.
三、解答题
1.当x 是怎样的实数时,下列各式在实数范围内有意义? ⑴√5−3x ⑵√x 3
−1 ⑶√x 2+1 ⑷√
x+8x−4
2.已知x ,y 为实数,且√x +y −3与√x −y +5互为相反数,求x ²-y 2的值.
3.已知a ,b 为实数,且
+2=b+4,求a+b 的值.
4.当a=2-3时,求1-2a+a 2a -1 - a 2-2a+1 a 2-a
的值。
5.已知
+3=n ﹣6.(1)求m 的值;(2)求m 2﹣n 2的平方根.
6.计算:
(1)已知实数a ,b ,c 在数轴上的对应点如图所示,化简+|c ﹣a|+; (2)已知x 、y 满足y =,求5x+6y 的值.
7.已知实数n 满足等式m =.
(1)当m =6时,求n 的值;(2)若m ,n 都是正整数,求n 的最小值.。