15最简二次根式课堂用卷
完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案最简二次根式基础练一、填空题:1.把下列二次根式化成最简二次根式。
1) $\sqrt{120}=\sqrt{4\times30}=2\sqrt{30}$;2) $\sqrt{27}=\sqrt{9\times3}=3\sqrt{3}$;3)$\sqrt{\frac{1}{8}}=\sqrt{\frac{1}{2}\times\frac{1}{4}}=\frac{1 }{2}\sqrt{2}$;4)$\sqrt{\frac{1}{2}}=\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}$;5) $\sqrt{84}=\sqrt{4\times21}=2\sqrt{21}$;6) $\sqrt{250}=\sqrt{25\times10}=5\sqrt{10}$;7) $\sqrt{\frac{24}{8}}=\sqrt{3}$;8) $\sqrt{\frac{8}{32}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$。
2.若$\sqrt{3}\approx1.732$,则$\sqrt{227}\approx15.0$(保留三个有效数字)。
3.设$x<0$,则$\sqrt{-8x}=2i\sqrt{2}\sqrt{-x}$。
4.下列二次根式$45a$,$30$,$\frac{1}{2}$,$40b^2$,$\sqrt{54}$中是最简二次根式有$30$,$\frac{1}{2}$,$\sqrt{54}=3\sqrt{6}$。
二、选择题1.在二次根式$\sqrt{72}$,$5a\sqrt{3}$,$\sqrt{3}$,$9\sqrt{x^2}$中,最简二次根式的个数是(C)3个。
2.下列各式中是最简二次根式的是(A)$\sqrt{5}$。
3.下列各式中,不是最简二次根式的是(A)$\sqrt{6}$。
4.下列计算中正确的是(A)$\frac{1}{2}$。
中考数学复习练习: 15最简二次根式(无答案)

最简二次根式课堂用卷
定义:
它要求满足以下两条:
⑴被开方数中的因数是整数,因式是整式.
⑵被开方数中不含能开得尽方的因式或因数.
我们把符合这两个条件的二次根式,叫做最简二次根式.
1.判断下列各式是否为最简二次根式?
⑴;⑵;⑶;⑷;
⑸;⑹;⑺
2.把下列各式化成最简二次根式:
3.把下列各式化成最简二次根式:
⑴⑵
4.把下列各式化成最简二次根式:
⑴⑵⑶⑷
5.判断下列各等式是否成立,若不成立请说出正确的解法和答案.
⑴;⑵;
⑶;⑷
6.化简:
⑴;⑵
⑶;⑷
7.把下列二次根式化为最简二次根式
⑴⑵
8.把下列二次根式化为最简二次根式
⑴⑵
9.在式子中,为最简二次根式的是.
10.当时,把中的移进根号内,.
11.下列根式,为最简根式的是()
A. B. C. D.12.化简的结果是()
A. B. C. D.。
二次根式中考汇编(经典考题)真题训练,综合测试卷(带答案)

故选A.
点评:本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.
4.(2011四川凉山,5,4分)已知 ,则 的值为()
A. B. C. D.
考点:二次根式有意义的条件.
分析:首先根据分式有意义的条件求出x的值,然后根据题干式子求出y的值,最后求出2xy的值.
【专题解读】涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.
例1当x取何值时, 的值最小?最小值是多少?
分析由二次根式的非负性可知 的最小值为0,因为3是常数,所以 的最小值为3.
解:∵
∴ ,
∴当9x+1=0,即 时, 有最小值,最小值为3.
例18函数y= 中,自变量x的取值范围是.
分析本题比较容易,主要考查函数自变量的取值范围的求法,本题中 是二次根式,所以被开方数2x-4≥0,所以x≥2.故填x≥2.
例19如图21-9所示的是一个简单的数值运算程序,若输入x的值为 ,则输出的数值为.
图21-9
分析本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为 ,代入可知( )2-1=2.故填2.
【解题策略】本题中所求字母x的取值必须使原代数式有意义.
例5化简
【解题策略】本题应根据条件直接进行化简,主要应用性质
例6已知实数,a,b,c在数轴上的位置如图21-8所示,化简
解:由a,b,c在数轴上的位置可知:
【解题策略】利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.
(3)二次根式具有非负性. (a≥0)是一个非负数.
备战中考数学(冀教版)巩固复习第十五章二次根式(含解析)-文档资料

2019备战中考数学(冀教版)巩固复习-第十五章二次根式(含解析)一、单选题1.下列计算:① ;② ;③ ;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个2.计算的结果是()A. 12B. 2C. 2D. 43.化简=()A. ﹣7B. 7C. ±7D. 494.下列计算正确的是()A. 2 +3 =5B. =2C. 5 5 =5D. =﹣65.设a>0,b>0,则下列运算错误的是()A. B. C.D.6.若x=2+,y=,则x与y关系是()A. x>yB. x=yC. x<yD. xy=17.已知x是实数,则的值是()A. B. C. D. 无法确定的8.化简结果正确的是()A. 3+2B. 3-C. 17+12D. 17﹣129.若是正整数,最小的整数n是()A. 6B. 3C. 48D. 210.下列计算正确的是()A. 2×3=6×25=150B. 2×3=6×5=30C. 2×3=6D. 2×3=511.化简a<0 得()A. B. - C. - D.二、填空题12.若二次根式有意义,则x的取值范围是________.13.已知x= +2,代数x2﹣4x+11的值为________.14.计算的结果是________15.相邻两边长分别是2+与2﹣的平行四边形的周长是________16.计算:________。
17.使等式成立的条件是________ 。
18.当x________时,式子有意义19.把﹣m根号外的因式移到根号内,则得________ .三、计算题20.计算(1)﹣+ .(2)(﹣)÷ .21.计算:× ﹣× .四、解答题22.23.如果最简二次根式与是同类二次根式,那么要使式有意义,x的取值范围是什么?五、综合题24.阅读下面问题:= = ﹣1;= = ﹣;= = ﹣2.(1)求的值;(2)计算:+ + +…+ + .25.如果最简二次根式与是同类二次根式.(1)求出的值;(2)若≤x≤ ,化简:.答案解析部分一、单选题1.【答案】D【考点】二次根式的性质与化简,二次根式的混合运算【解析】【解答】解:()2=2,所以①正确;=2,所以②正确;(﹣2 )2=12,所以③正确;()()=2﹣3=﹣1,所以④正确.故答案为:D.【分析】一个正数的算数根的平方等于它本身;一个负数的平方的算数根等于它的相反数;积的乘方等于把积中的每一个因式都乘方,再把所得的幂相乘;两个数的和与差的积,等于这两个数的平方差;根据性质一一计算即可。
二次根式培优试卷

第一章二次根式好题精选一.选择题1.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8 B.=4a(a>0)C.=3+4=7 D.=2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确3.设a,b≠0,式子有意义,则该式等于()A.B.C.D.4.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a5.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥36.已知,则的值为()A.1 B.C.D.7.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x8.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间9.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠010.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.二.填空题(共10小题) 11.已知:x =,计算x 2﹣x +1的值是 .12.化简:()()23352325-+-+的结果为____________________13.在正方形ABCD 中,E 是边BC 上一点,如果这个正方形的面积为m ,△ABE 的面积等于正方形面积的四分之一,那么BE 的长用含m 的代数式表示为 . 14.化简:2<x <4时,﹣= .15.已知a ,b 均为正整数,如果0<﹣b <1,我们称b 是的“主要值”,那么的主要值是 .三.解答题(共15小题) 16.计算(1)﹣+(2)()()﹣(﹣)217..18.先化简,再求值 (1)(﹣),其中a =17﹣12,b =3+2(2)(a +)(a ﹣)﹣(﹣a )2,其中a =2﹣1.(3)+,其中x=19.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:;(3)利用上述规律计算:(仿照上式写出过程)20.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).21.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.22.已知a=,b=,求a2+3ab+b2﹣a+b的值23.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.参考答案与试题解析一.选择题(共15小题)1.下列计算正确的是()A.=±4 B.2×32=62=36C.(﹣5)÷(﹣2)×(﹣)=﹣5 D.﹣2×+2×(3+)+4=10【分析】根据实数与二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.=4,此选项错误;B.2×32=2×9=18,此选项错误;C.(﹣5)÷(﹣2)×(﹣)=×(﹣)=﹣,此选项错误;D.﹣2×+2×(3+)+4=﹣2+6+2+4=10,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.2.化简(x≠y,且x、y都大于0),甲的解法;==﹣;乙的解法:==﹣,下列判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确【分析】分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式,或者运用因式分解和约分.【解答】解:甲的解法:==﹣,利用平方差公式进行分母有理化,正确;乙的解法:==﹣,利用因式分解进行分母有理化,正确;故选:C.【点评】本题主要考查了分母有理化以及二次根式的混合运算,分母有理化是指把分母中的根号化去.3.下列计算正确的是()A.=±15 B.=﹣3 C.=D.=【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=15,故此选项错误;B、=3,故此选项错误;C、=,故此选项错误;D、=,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.设a,b≠0,式子有意义,则该式等于()A.B.C.D.【分析】先根据二次根式的被开方数是非负数列出不等式﹣a3≥0,再根据公式=|a|及有理数的乘法法则得出a、b的取值范围,然后化简即可.【解答】解:由题意,得﹣a3≥0,又∵=b2≥0,b为任意数,∴﹣a3≥0,∴a≤0,∴==•=.故选:D.【点评】本题主要考查了二次根式的性质及二次根式的化简.用到的知识点有:①二次根式的被开方数是非负数;②两个公式:=(a≥0,b≥0),=|a|.5.下列各式中计算正确的是()A.=×=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.=【分析】根据二次根式的意义、性质逐一判断即可得.【解答】解:A.、没有意义,此选项错误;B.=2a(a>0),此选项错误;C.==5,此选项错误;D.=,此选项正确;故选:D.【点评】本题主要考查二次根式的性质与化简,解题的关键是二次根式的定义和性质.6.在△ABC中,a、b、c为三角形的三边,化简﹣2|c﹣a﹣b|的结果为()A.3a+b﹣c B.﹣a﹣3b+3c C.a+3b﹣c D.2a【分析】首先根据三角形的三边关系得到根号内或绝对值内的式子的符号,再根据二次根式或绝对值的性质化简.【解答】解:∵a、b、c为三角形的三边,∴a+c>b,a+b>c,即a﹣b+c>0,c﹣a﹣b<0;∴﹣2|c﹣a﹣b|=(a﹣b+c)+2(c﹣a﹣b)=﹣a﹣3b+3c.故选:B.【点评】本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0.绝对值的性质:负数的绝对值等于它的相反数;正数的绝对值等于它本身;0的绝对值是0.7.如果f(x)=并且f()表示当x=时的值,即f()==,表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+【分析】认真观察题中式子的特点,找出其中的规律,代入计算即可.【解答】解:代入计算可得,f()+f()=1,f()+f()=1…f()+f()=1,所以,原式=+(n﹣1)=n﹣.故选:A.【点评】解答此类题目的关键是认真观察题中式子的特点,找出其中的规律.8.若=3﹣a,则a与3的大小关系是()A.a<3 B.a≤3 C.a>3 D.a≥3【分析】等式左边为算术平方根,其结果3﹣a应该为非负数.【解答】解:∵=3﹣a∴3﹣a≥0∴a≤3故选:B.【点评】注意:算术平方根是非负数,这是解答此题的关键.9.已知,则的值为()A.1 B.C.D.【分析】根据,可以求得a、b的值,从而可以求得所求式子的值,本题得以解决.【解答】解:∵,∴a﹣3=0,2﹣b=0,解得,a=3,b=2,∴===,故选:D.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确题意,求出a、b的值.10.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.【点评】根据完全平方公式、绝对值的运算解答此题.11.的整数部分是()A.3 B.4 C.5 D.6【分析】由于=﹣1,=﹣,…,=﹣+,于是可得原式=﹣1+﹣+…﹣+,计算即可.【解答】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=9.【点评】本题考查了二次根式的加减法.解题的关键是对每一个分式分母有理化.12.估计代数式+的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间【分析】先化成最简二次根式,再合并,最后求出的范围即可.【解答】解:+=+=2=,∵2<<3,∴代数式+的运算结果在2到3之间,故选:B.【点评】本题考查了二次根式的加减法,估算无理数大小的应用,主要考查学生的计算能力.13.已知方程+3=,则此方程的正整数解的组数是()A.1 B.2 C.3 D.4【分析】先把化为最简二次根式,由+3=可知,化为最简根式应与为同类根式,即可得到此方程的正整数解的组数有三组.【解答】解:∵=10,x,y为正整数,∴,化为最简根式应与为同类根式,只能有以下三种情况:+3=+9=4+6=7+3=10.∴,,,共有三组解.故选:C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.14.若=﹣,则()A.a<0,b>0 B.a>0,b<0 C.ab≤0 D.ab≤0且b≠0【分析】先判断结果的情况,再判断ab积的情况.【解答】解:∵=≥0又∵=﹣,∴﹣≥0∴ab≤0且b≠0故选:D.【点评】本题考查了二次根式的性质,解决本题需着眼于整体.本题易忽略b≠0而出错.15.设S 1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=++••+,其中n为正整数,用含n的代数式表示S为()A.n B.C.n2D.【分析】求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可.【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=++••+,=+++…+=1+2+3+…+n=,故选:D.【点评】本题考查了二次根式的性质的应用,注意:1+2+3+…n=.二.填空题(共10小题)16.计算()=.【分析】先计算括号内的加法,再计算除法即可得.【解答】解:原式=÷(+)=÷=×=,故答案为:【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.17.如果(a,b为有理数),则a=6,b=4.【分析】先计算出(2+)2,再根据可得答案.【解答】解:∵(2+)2=4+4+2=6+4,∴a=6、b=4.故答案为:6、4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.18.计算:(3+1)(3﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3)2﹣12=18﹣1=17故答案为:17.【点评】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.19.已知:x=,计算x2﹣x+1的值是+4.【分析】先将x的值分母有理化得出x=+1,再代入原式,根据二次根式的混合运算顺序和运算法则计算可得.【解答】解:∵x====+1,∴x2﹣x+1=(+1)2﹣(+1)+1=4+2﹣﹣1+1=+4.故答案为:+4.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及分母有理化.20.当x=1﹣时,x2﹣2x+2028=2030.【分析】将x的值代入x2﹣2x+2028=(x﹣1)2+2027,根据二次根式的运算法则计算可得.【解答】解:当x=1﹣时,x2﹣2x+2028=(x﹣1)2+2027=(1﹣﹣1)2+2027=(﹣)2+2027,=3+2027=2030,故答案为:2030.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和运算法则及完全平方公式.21.若x=﹣1,则=2.【分析】将x的值代入原式=,计算可得.【解答】解:当x=﹣1时,原式====2,故答案为:2.【点评】本题主要考查二次根式的性质与化简,解题的关键是熟练掌握完全平方公式和二次根式的性质.22.已知:m+n=10,mn=9,则=±.【分析】先求所求的代数式的完全平方形式,然后直接开平方即可求得的值.【解答】解:∵m+n=10,mn=9,∴()2====,∴=±.故答案是:.【点评】考查了二次根式的化简求值,需要掌握完全平方公式,属于基础计算题.23.在正方形ABCD中,E是边BC上一点,如果这个正方形的面积为m,△ABE的面积等于正方形面积的四分之一,那么BE的长用含m的代数式表示为.【分析】首先根据正方形的面积,表示出△ABE的面积,然后利用三角形的面积的公式表示出线段BE的长即可.【解答】解:∵正方形的面积为m,△ABE的面积等于正方形面积的四分之一,∴正方形的边长AB=,△ABE的面积为,∵S△ABE=AB•BE=BE=,∴BE=,故答案为:.【点评】本题考查了二次根式的应用,解题的关键是表示出正方形的边长及直角三角形的面积.24.化简:2<x<4时,﹣=2x﹣6.【分析】首先根据x的范围确定x﹣2与x﹣4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【解答】解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.【点评】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.25.已知a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,那么的主要值是4.【分析】根据a,b均为正整数,如果0<﹣b<1,我们称b是的“主要值”,可以求得的主要值.【解答】解:∵0<﹣4<1,∴的主要值是4,故答案为:4.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,可以估算出处于哪两个整数之间.三.解答题(共15小题)26.计算(1)﹣+(2)()()﹣(﹣)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=﹣2+10=;(2)原式=2﹣6﹣(2﹣2+)=﹣4﹣=﹣4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.27.当t=2时,求二次根式的值.【分析】将t的值代入==|3﹣t|计算可得.【解答】解:当t=2时,==|3﹣t|=|3﹣2|=3﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的基本性质.28.已知a,b,c为△ABC三边,化简+|b﹣a﹣c|.【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定a﹣b﹣c以及绝对值里的式子的正负值,然后去绝对值进行计算即可.【解答】解∵a,b,c为△ABC三边,∴原式=|a﹣b﹣c|+|b﹣a﹣c|=b+c﹣a+a+c﹣b=2c.【点评】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.29..【分析】根据二次根式的定义得出x﹣8≥0,8﹣x≥0,求出x,代入求出y,把所求代数式化简后代入求出即可.【解答】解:要使y=++9有意义,必须x﹣8≥0,且8﹣x≥0,解得:x=8,把x=8代入得:y=0+0+9=9,∴=,=+,=+,=.【点评】本题考查了对二次根式有意义的条件,二次根式的化简,分母有理化等知识点的应用,解此题的关键是求出x、y的值,通过做此题培养了学生灵活运用性质进行求值的能力,题目比较典型.30.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.31.化简求值:已知:x=,y=,求(x+3)(y+3)的值.【分析】将x和y的值分母有理化,再代入到原式xy+3x+3y+9=xy+3(x+y)+9计算可得.【解答】解:当x===,y===时,原式=xy+3x+3y+9=xy+3(x+y)+9=×+3×(+)+9=+3×+9=+3+9=+3.【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.32.先化简,再求值:(﹣),其中a=17﹣12,b=3+2【分析】将原式利用二次根式的性质和运算法则化简为,由a=17﹣12=(3﹣2)2、b=3+2=(+1)2,代入计算可得.【解答】解:原式=(﹣)•=[﹣]•=•=,∵a=17﹣12=32﹣2××(2)2=(3﹣2)2,b=3+2=()2+2+1=(+1)2,∴原式====.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质和运算法则.33.先化简,再求值:(a+)(a﹣)﹣(﹣a)2,其中a=2﹣1.【分析】先利用平方差公式和完全平方公式展开,再合并同类项即可化简二次根式,最后将a的值代入计算可得.【解答】解:原式=a2﹣5﹣3﹣a2+2a=2a﹣8.∵a=2﹣1,∴原式=2×(2﹣1)﹣8=4﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和二次根式的性质.34.先化简,再求值:已知x=,求+的值.【分析】先将x的值分母有理化,再根据二次根式的性质和运算法则化简原式,从而得出答案.【解答】解:∵x==3﹣2,∴x﹣2=1﹣2<0,则原式=x﹣1+=x﹣1﹣1=x﹣2=1﹣2.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握分母有理化与分式的混合运算顺序与运算法则、二次根式的性质.35.观察下列各式:=1+﹣=1=1+﹣=1=1+﹣=1请你根据上面三个等式提供的信息,猜想:(1)=1(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:=1+;(3)利用上述规律计算:(仿照上式写出过程)【分析】(1)根据提供的信息,即可解答;(2)根据规律,写出等式;(3)根据(2)的规律,即可解答.【解答】解:(1)=1=1;故答案为:1;(2)=1+=1+;故答案为:=1+;(3).【点评】本题考查了二次根式的性质与化简,解决本题的关键是关键信息,找到规律.36.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【解答】解:(1)∵5+2=3+2+2=()2+()2+2××=(+)2,∴==+;(2)∵7﹣4=4+3﹣4=22+()2﹣2×2×=(2﹣)2,∴==2﹣.【点评】此题主要考查了二次根式的性质与化简,正确应用完全平方公式是解题关键.37.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与3+互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.【分析】(1)根据题意可以得到所求式子的分母有理化因式,并将题目中的二次根式化简;(2)根据分母有理化的方法可以化简题目中的式子;(3)根据题意,对所求式子变形即可求得a、b的值.【解答】解:(1)3﹣与3+互为有理化因式,=,故答案为:3,;(2)=﹣2=2﹣;(3)∵,∴a(﹣1)+b=﹣1+2,∴﹣a+(a+)=﹣1+2,∴﹣a=﹣1,a+=2,解得,a=1,b=2.【点评】本题考查二次根式的混合运算,分母有理化,解答本题的关键是明确二次根式的混合运算的计算方法.38.已知a=,b=,求a2+3ab+b2﹣a+b的值【分析】先由a、b的值计算出a+b、a﹣b、ab的值,再代入到原式=a2+3ab+b2﹣a+b=(a+b)2﹣(a﹣b)+ab.【解答】解:∵a=,b=,∴a+b=2,a﹣b=﹣2,ab=1,∴原式=a2+3ab+b2﹣a+b=a2+2ab+b2﹣a+b+ab,=(a+b)2﹣(a﹣b)+ab=(2)2﹣(﹣2)+1=13+2.【点评】本题考查的是二次根式的化简求值,在解答此题类目时要根据各题的特点灵活解答.39.(利用解决本题)已知△ABC的三边分别为a、b、c,化简:++.【分析】根据两边之和大于第三边可将各二次根式求出,从而可得出化简后的答案.【解答】解:由三边关系得:a+b+c>0,a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴原式=a+b+c+b+c﹣a+a+c﹣b﹣a﹣b+c=4c.【点评】本题考查二次根式的化简及三角形的三边关系,掌握三角形两边之和大于第三边是关键.40.现有一组有规律的数:1,﹣1,,﹣,,﹣,1,﹣1,,﹣,,﹣…其中1,﹣1,,﹣,,﹣这六个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加起来,如果和为520,那么一共是多少个数的平方相加?【分析】(1)首先根据这列数的排列规律,可得每6个数一个循环:1,﹣1,,﹣,,﹣,然后用50除以6,根据余数的情况判断出第50个数是什么数即可;(2)首先用2017除以6,求出一共有多少个循环,以及剩下的数是多少;然后用循环的个数乘以1+(﹣1)++(﹣)++(﹣)=0,再加上剩下的数,求出把从第1个数开始的前2015个数相加,结果是多少即可;(3)首先求出1,﹣1,,﹣,,﹣六个数的平方和是多少;然后用520除以六个数的平方和,根据商和余数的情况,判断出一共有多少个数的平方相加即可.【解答】解:(1)这列数每6个数一个循环:1,﹣1,,﹣,,﹣,∴50÷6=8…2,∴第50个数是﹣1.(2)∵2017÷6=336…1,且1+(﹣1)++(﹣)++(﹣)=0,∴从第1个数开始的前2017个数的和是:336×0+1=1.(3)∵12+(﹣1)2+()2+(﹣)2+()2+(﹣)2=12,520÷12=43…4,而且12+(﹣1)2+()2=4,∴43×6+3=261,即共有261个数的平方相加.【点评】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数每6个数一个循环:1,﹣1,,﹣,,﹣,而且每个循环的6个数的和是0.。
冀教版八年级数学 15.3 二次根式的加减运算(学习、上课课件)

2=13 2
2 .
感悟新知
知识点 2 二次根式的加减
知2-讲
1. 二次根式的加减法法则 二次根式加减时,先将每个二次 根式化成最简二次根式,再将被开方数相同的最简二次根 式的项进行合并 .
感悟新知
知2-讲
2. 二次根式加减运算的步骤 (1)“化”: 将每个二次根式都化成最简二次根式; (2)“找”: 找出被开方数相同的最简二次根式; (3)“并”: 将被开方数相同的最简二次根式合并成一项 .
感悟新知
解: A. 4=2,和 2不能合并; B. 6和 2 不能合并; C. 8=2 2,和 2能合并; D. 12 =2 3 ,和 2 不能合并. 答案:C
知1-练
感悟新知
知1-练
方法点拨:判定两个二次根式能否合并的方法: 先把二次根式化为最简二次根式,然后判断被开 方数是否相同,相同的就能合并,否则不能合并 .
(2)
1 2
3-2
3 +5
3
将带分数 312化为假分数72 .
1 2
3-2
3 +5
3 =(12 - 2+5)
3
=
7 2
3.
感悟新知
2-1.计算下列各式: (1) 2
3-
1 3
;
解:原式=2
3- 33=2-13
3=5
3
3 .
知1-练
(2) 8 + 32 + 22. 原式=2 2+4
2+ 22=2+4+12
能合并,但是不能丢弃,它们也是结果的一部分.
2. 根号外的因数就是这个二次根式的系数,二次根式
的系数是带分数的要化为假分数的形式.
3. 整式加减运算中的交换律、结合律、去括号法则、
北师大版八年级数学上册--第二单元 二次根式的乘除运算 练习题(含答案)

冀教版初中数学八年级上册第十五章二次根式15.2《二次根式的乘除》教学设计说明在设计本课时教案时,引导学生通过计算发现规律,从而由特殊到一般地给出二次根式的乘法法则、除法法则.注意引导学生类比积的算术平方根的性质,让学生把握两者的关系.通过例题的讲解,及时对解题方法和规律进行概括,有利于发展学生的思维能力.重视课本例题,适当地对立体进行引申,引发学生自主探寻与思考,突出例题在巩固强化中的作用,有利于学生对知识的串联、积累、加工,从而起到举一反三的效果.在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极性和兴趣.(1)教材分析《二次根式的乘除》是是初中数学的重要内容之一,是《课程标准》“数与代数”的重要内容,是对“实数”、“代数式”等内容的延伸和补充.(2)学情分析本节课的内容是在理解二次根式的定义及相关概念的基础上,进一步研究二次根式的运算,是对二次根式的简便运算.二次根式的乘除这一节的知识构造较为简单,并且是在学生学习了平方根,立方根等内容的基础上进行的.由于学生对算术平方根等概念已经有了初步认识,这为学生学习打下了基础,在和学生一起学习的过程中,我们要创造条件和机会,让学生发表自己的见解,发挥学生学习的主动性和积极性.一、教学目标(1a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简.(2)理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)及利用它们进行计算和化简.(3a b ab a≥0,b≥0)ababa≥0,b>0)并运用它们进行计算;•利用逆向思维,ab a b a≥0,b≥0),a baba≥0,b>0)并运用它们进行解题和化简.(4)培养学生对于事物规律的观察,发现能力,激发学生的学习激情.二、教学重点、难点a b ab a≥0,b≥0)ab a b a≥0,b≥0)abab(a≥0,b>0)ababa≥0,b>0)及运用,最简二次根式的概念.难点:二次根式的乘除法法则的逆用ab=a·b(a≥0,b≥0),a bab(0,0)a b≥>.课时设计两课时教学策略由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此,要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要注意逐步有序的展开,在讲解二次根式的乘除时可以结合积的算术平方根的性质,让学生把握两者的关系.积的算术平方根的性质及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算具体的例子,引导他们做出一般的结论.由于归纳法是通过一些个别的,特殊的例子的研究,从表象到本质,进而猜想出一般的结论.因此,本文采用从特殊到一般总结归纳的方法,类比的方法,讲授与练习相结合的方法.这种思维过程,对于初中生认识,研究和发现事物的规律有着重要作用,对于培养思维品质也有重要意义.三、教学过程情境导入,这个长方形的面积是多少?2.【问题探究】这个结果能否化简?如何化简?【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受二次根式的乘除.探索新知探究一1.填空=______;(1(2(3.(4,2.利用计算器计算填空,(2(1(32.(1)=,(2)=,(3)=,(4)=.师:提出问题:观察上面的结果,你发现他们有什么特点吗?小组讨论、抢答.生:(1)被开方数都是正数;(2)两个二次根式相乘等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.【归纳总结】反过来【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例1.计算;(2(3(4.(1解析:(1(2=(3(4a≥0,b≥0)计算即可.点评:例2.化简(2(3;(1(4(5×4=12;解析:(1(2(3(4=3xy;(5.(a ≥0,b ≥0)直接化简即可.例3.计算解析:⨯⨯==点评:在(1)中要注意,在被开方数相乘的时候可以考虑因数分解或因式分解,在(2)中0,0)a b =≥≥,即根号外的系数与系数相乘,积为结果的系数;在(3)中要注意x ,y 的符号.【设计意图】通过例题的讲解,让学生体会二次根式的乘法法则.探究二(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(2=________.(13.利用计算器计算填空:(1答案:1.反过来2.3344(1),;(2),;==.规律:,44663.(1)=(2)=.;【归纳总结】【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例4.计算:(1(2(3(4).解析:(1=2 ;(2==(3==2;(4.点评:上面4a≥0,b>0)便可直接得出答案.例5.化简:(1(2(3(4解析:(1=;(283ba =;(38y =;(413y .a ≥0,b >0)就可以达到化简之目的. 【设计意图】通过例题的讲解,让学生体会二次根式的除法法则.例6.计算:(1;(2;(3. 解析:(15;(2=3;(3=a . 观察上面例6的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.现在我们来看本章引言中的问题:如果两个电视塔的高分别是12km,km h h ,那么它们的传播半径的比是_________..那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.(学生分组讨论,到黑板上板书).2==.【设计意图】巩固二次根式的除法法则,通过观察总结归纳出最简二次根式的特点.例7.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.AC解:因为222AB AC BC=+所以AB=132====6.5(cm),因此AB的长为6.5cm.点评:学生掌握最简二次根式概念之后,通过两个例题让学生先尝试的去应用所学的知识,初步体验成功,树立学习的自信心.【设计意图】学生掌握最简二次根式概念之后,通过实际问题的例题讲解,激发学生的兴趣,引导学生体会数学来源于生活,又应用于生活.巩固练习教材对应习题.【设计意图】为学生提供演练机会,加强对二次根式加减运算的理解及掌握.应用拓展1.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6;(2)不正确.4.a、b的取值范围分别是a≥0,b>0.带分数作为被开放数化简时必须先把带分数化成假分数再化简.2=,且x为偶数,求(1+)x解析:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩.∴6<x≤9.∵x为偶数,∴x=8.∴原式=(1+)x(1+)x=(1+)x 4(1)x x -+=(1)(4)x x +-. ∴当x =8时,原式的值=49⨯=6.点评:式子a b =a b,只有a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: 121+=1(21)2121(21)(21)⨯--=-+-=2-1,132+=1(32)3232(32)(32)⨯--=-+-=3-2, 同理可得:143+=4-3,……从计算结果中找出规律,并利用这一规律计算(121++132++143++……120122013+)()的值.解析:原式=(2-1+3-2+4-3+…+2013-2012)×(20131+) =(20131+)()=2013-1=2012.点评:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.四、课堂小结(学生小组总结展示,师补充)1a≥0,b≥0)a≥0,b≥0)及其运用.2.二次根式的除法法则a≥0,b>0(a≥0,b>0)及其运用.3.最简二次根式的概念及其运用.【设计意图】梳理本节课的主要知识点,让学生明确重难点.课后作业一、选择题1(y>0)是二次根式,那么它化为最简二次根式是()A(y>0) By>0) C(y>0) D.以上都不对2.把(a-1a-1)移入根号内得()A..3.在下列各式中,化简正确的是()A=±12C 2D .4的结果是( )A .-3 B ..-3 D .5.阅读下列运算过程:3==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”) A .2 B .6 C .13 D二、填空题6.(x ≥0)7._________. 三、综合提高题8,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房梁的最大截面积是多少?9.已知a为实数,-阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:-a·1a=(a-110.若x、y为实数,且y答案:一、1.C 2.D 3.C 4.C 5.C二、6.7.三、8.设:矩形房梁的宽为x(cm)cm,依题意,得:2222);)x x cm x cm+==⋅=.9.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,aa=(1-a10.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴4====.教学反思本节内容是在前一节二次根式的学习基础上,要求学生能熟练运用乘法法则和除法法则进行化简和计算.在教学过程中,通过一些特殊的例子让学生归纳出乘法法则和除法法则,学生比较容易接受.但是在具体进行化简和计算的过程中,学生对二次根式乘法法则和除法法则理解上问题不大,但常常忘记计算结果需要化简,此外被开方数是多项式的乘除法运算上容易出现错误,对分母有理化还不够熟练.因此还要加强训练,否则,在下一节二次根式的加减和混合运算时出现的错误会更多.总之,二次根式的乘除运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.。
新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最简二次根式课堂用卷
定义:
它要求满足以下两条:
⑴ 被开方数中的因数是整数,因式是整式.
⑵ 被开方数中不含能开得尽方的因式或因数.
我们把符合这两个条件的二次根式,叫做最简二次根式.
1. 判断下列各式是否为最简二次根式?
⑴ ⑵ ⑶ ⑷
⑸ ⑹ 5 ⑺
2. 把下列各式化成最简二次根式:
3. 把下列各式化成最简二次根式:
⑴ ⑵ 4. 把下列各式化成最简二次根式:
⑴ ⑵ ⑶ ⑷ x 5. 判断下列各等式是否成立,若不成立请说出正确的解法和答案.
⑴ 43=+; ⑵
⑶ ⑷ 6. 化简:
⑴ ⑵
⑶ ⑷ ()1a >
7. 把下列二次根式化为最简二次根式
⑴ ()1x < ⑵ 8. 把下列二次根式化为最简二次根式
⑴ ()x y > ⑵ ()00a b >>,
9. 中,为最简二次根式的是 .
10.当0x <时,把x 移进根号内, .
11.下列根式,为最简根式的是( )
A B C D
12.化简x)
A.-B.C.D.-。