与平面向量相关的最值问题

合集下载

平面向量的最值问题

平面向量的最值问题

平面向量的最值问题
平面向量的最值问题指的是求平面向量的最大值和最小值的问题。

在求解平面向量的最值问题时,一般可以通过以下几种常用的方法进行求解:
1. 向量的模的最大值和最小值:对于平面向量a=(x,y),其模的最大值和最小值分别为:
最大值:|a| = √(x^2 + y^2)
最小值:|a| = 0
2. 向量的投影的最大值和最小值:对于平面向量a=(x,y),其在某个方向上的投影的最大值和最小值分别为:
最大值:|proj_u a| = |a|·cosθ,其中θ为a与u的夹角
最小值:|proj_u a| = 0
3. 向量的点乘的最大值和最小值:对于平面向量a=(x1,y1)和b=(x2,y2),其点乘的最大值和最小值分别为:
最大值:a·b = |a|·|b|·cosθ,其中θ为a与b的夹角
最小值:a·b = |a|·|b|·cosθmin,其中θmin为a与b的夹角的最小值,即θmin=0时
需要注意的是,以上方法中的最大值和最小值都是相对于给定的条件和向量范围的。

具体在实际问题中求解向量的最值时,需要根据具体的条件和向量的性质进行分析和计算。

平面向量中的最值或范围问题

平面向量中的最值或范围问题
b- b+ = b+ 。
2
2 2
2
所以 c
o
sa - b,
a =
(
·a
a-b)
=
|
a-b|
|
a|
3 2 9
b+
2
2 1
3
3

= |
b|+

6
|
b|
4
4
|
b| 2
因为 0≤ a-b,
所 以 0≤ a-b
a ≤π,

π
π
,
故 a-b 与a 的夹角的最大值为 。
6
6

2
=9
b +a -2×3
b·a≤4,所 以 a·b≥2+
2
3
|
b|
2+
3
|
b|
a·b
2
。所以 c
o
sa,
b =

2
|
a|·b
4
|
b|
2
2
1
3
|
b|
,因 为|
=
+
b|≤1,所 以 当|
b|=1
2
|
b|
8
时,
c
o
sa,
b取得最小值为
[
C.
4,
1
2]
7

8

其中 0≤λ≤1,则 B→
C ·BP

一般情况 下,如 果 遇 到 的 问 题 适 合 建 立
2
+
3 s
i
n
π
2

解答平面向量最值问题的三种路径

解答平面向量最值问题的三种路径

平面向量最值问题主要考查平面向量的公式、定理的应用,对同学们的计算能力与综合分析能力都有较高的要求.此类问题的常见命题形式有:(1)求某个向量的模的最值;(2)求某两个向量数量积的最值;(3)求某个代数式的最值.本文以几个题目为例,详细介绍解答平面向量最值问题的几个路径.一、运用坐标系法若平面向量最值问题中涉及的图形为规则图形,就可以根据图形的特征,寻找相互垂直的两条直线,将其视为x 轴与y 轴,建立平面直角坐标系.求得各个点的坐标与线段的方向向量,并将其代入目标式,即可将问题转化为求某个代数式的最值.运用坐标系法解题比较直观、便捷.例1.如图所示, OA , OB 的模长均为1,其夹角为120°,C 点在以O 为圆心的弧AB 上运动,若OC =x OA +yOB ,求x +y 的最大值.解:以O 为圆心,以OA 为x 轴的正方向,建立平面直角坐标系,设∠AOC =α,可得A (1,0),B (-12,,C (cos α,sin α),因为 OC =x OA +y OB ,所以(cos α,sin α)=x (1,0)+y (-12,,则ìíîïïïïx =cos αα,y =α,所以x +y =cos α+αα=2sin (α+π6),由于0≤α≤23π,所以π6≤α+π6≤56π,可知sin (α+π6)≤1,所以当α=π3时,x +y 取得最大值,其最大值为2.运用坐标系法解题的关键在于建立合适的平面直角坐标系,这里以O 为原点,以OA 为x 轴的正方向,垂直于OA 的直线为y 轴,建立平面直角坐标系.设∠AOC =α,便能根据题意快速求得A 、B 、C 三点的坐标以及x +y 的表达式,最后根据正弦函数的有界性就能求出最值.二、采用基底法基底法是求解平面向量最值问题的重要方法.我们知道,平面内的任意一个向量都可以用一组基底来表示.那么在求解平面向量最值问题时,可将目标向量用一组合适的基底表示出来,通过基底之间的数乘、加减运算以及数量积公式求得最值.例2.已知点A ,B ,C 在圆x 2+y 2=1上,P (2,0),AB ⊥BC ,求|| PA + PB +PC 的最大值.解:因为AB ⊥BC ,所以AC 是圆x 2+y 2=1的直径,又因为 PB = PO + OB , PB + PC =2 PO ,所以|| PA + PB + PC =||3 PO + OB ≤3|| PO +|| OB=7,当且仅当 PO 和OB 同向时等号成立.故|| PA + PB + PC 的最大值为7.解答该题,需注意将数形结合,根据图形明确各个点的位置关系,选取合适的基底 PO 和 OB ,并用基底来表示出|| PA + PB + PC ,最后利用绝对值不等式的性质求得最值.三、利用函数性质法有些平面向量最值问题中的目标式较为复杂,很难快速求得最值,此时不妨选取合适的变量,根据目标式的特征构造函数模型,将平面向量最值问题转变成函数最值问题,利用函数的图象与性质求最值.例3.已知扇形AOB 的半径为2,∠AOB =120°,如果点C 为扇形圆弧上的一动点,OC 与AB 相交于点P ,求 OP ∙ AP 的最小值.解:由题意可得:AB =23,设 AP =tAB ,0≤t ≤1,则 OP = OA +t AB ,所以 OP ∙ AP =t 2 AB 2+t OA ∙ AB =12t 2-6t =12(t -14)2-34≥-34,所以当t =14时,12(t -14)2-34取得最小值-34,所以 OP ∙ AP 的最小值为-34.解答本题,要先根据平面向量的共线定理,引入参数t ,求得 OP ∙AP 的表达式;然后将其视为关于t 的函数式,对其配方,根据二次函数的性质求得最小值.求解平面向量最值问题的路径很多,在遇到不同题目时,可以从多个方面进行考虑,根据题意和解题经验选择最合适的、最简单的路径求解,有时也需综合运用多个路径来解题.(作者单位:南京大学附属中学)张子超备考指南52。

如何解答平面向量最值问题

如何解答平面向量最值问题
x y
4x 4y
4
解题宝典
性运算法则、数量积公式来求向量模的表达式,再求
该表达式的最值,即可求得向量的模的最值.还可以根
据向量的几何意义构造出几何图形,将所求向量的模
y
≥ 1 (5 + 2 ∙4x ) = 9 ,
x y
4
4
看作三角形、四边形的一条边长,确定向量的模取最
当且仅当
∠ADC = 90°,
例3.已知直角梯形 ABCD 中,AD//BC,

1
= AM +
AN,
4x
4y
图1
有些平面向量最值问题中含有参数,要求参数的
最值或取值范围,需根据题意建立关于参数的关系
式,将问题转化为求代数式的最值问题,利用基本不
等式、函数的性质来求最值.还可以根据题意和向量加
减法的几何意义:三角形法则和平行四边形法则,画

a
(1)数列的通项公式 n ;
解:
(1)要使 C
{
-A
2m - 2
11 - 3m
2
数学篇
40
76
77
77
77
因 为 77 - 15 =(76 + 1) - 15 = 76 + C177·76 + ⋯
+C - 15 = 76(76 + C ·76 + ⋯ + C ) + 1 - 15 = 4 × 19

因为 BM = x BA + y BD = 2x BE + y BD ,






y

所以 λBN = 2x BE + y BD ,

微重点04 平面向量数量积的最值与范围问题((习题版))

微重点04 平面向量数量积的最值与范围问题((习题版))

微重点04平面向量数量积的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.知识导图考点分类讲解考点一:求参数的最值(范围)规律方法利用共线向量定理及推论(1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.【例1】(2023·漳州模拟)已知△ABC ,点D 满足BC →=34BD →,点E 为线段CD 上异于C ,D 的动点,若AE →=λAB→+μAC →,则λ2+μ2的取值范围是________.【变式1】设非零向量a ,b 的夹角为θ,若|a |=2|b |=2,且不等式|2a +b |≥|a +λb |对任意的θ恒成立,则实数λ的取值范围为()A.[-1,3]B.[-1,5]C.[-7,3]D.[5,7]【变式2】(23-24高三上·黑龙江佳木斯·阶段练习)在ABC 中,点D 在线段AC 上,且满足12AD AC = ,点Q 为线段BD 上任意一点,若实数,x y 满足AQ x AB y AC =+,则24x y +的最小值为.【变式2】.(2023高三·全国·专题练习)已知向量,a b 满足||1,a b == ,且)0R (a b λλ+∈=,则函数()3(1)1f x x x xλ=+>-+的最小值为.【变式4】(2023·深圳模拟)过△ABC 的重心G 的直线l 分别交线段AB ,AC 于点E ,F ,若AE →=λAB →,AF →=μAC →,则λ+μ的最小值为()A.23+2 B.2+223C.43D.1考点二:求向量模、夹角的最值(范围)易错提醒找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π].若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线;若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.【例1】(2024·吉林长春·模拟预测)已知向量a ,b 为单位向量,且12a b ⋅=-r r ,向量c 与3a b +r r 共线,则||b c +的最小值为.【例2】(1)已知e 为单位向量,向量a 满足(a -e )·(a -5e )=0,则|a +e |的最大值为()A.4B.5C.6D.7(2)平面向量a ,b 满足|a |=3|b |,且|a -b |=4,则a 与a -b 夹角的余弦值的最小值为________.【变式1】(2023·安庆模拟)已知非零向量a ,b 的夹角为θ,|a +b |=2,且|a ||b |≥43,则夹角θ的最小值为()A.π6B.π4C.π3D.π2【变式2】(2023·杭州模拟)已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围为____________.【变式3】(2024·吉林长春·模拟预测)已知向量a ,b 为单位向量,且12a b ⋅=-r r ,向量c 与3a b +rr 共线,则||b c +的最小值为.考点三:求向量数量积的最值(范围)规律方法向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集或方程有解等问题,然后利用函数、不等式或方程的有关知识来解决.【例3】(1)(2023·开封模拟)等腰直角三角形ABC 的直角顶点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,点C 在第一象限,且AB =1,O 为坐标原点,则OC →·OA →的取值范围是()0,2-240,1+22,1,1(2)(2023·全国乙卷)已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA →·PD →的最大值为()A.1+22B.1+222C.1+2D.2+2【变式1】(2023·台州模拟)已知P 是边长为2的正六边形ABCDEF 内(含边界)一点,M 为边BC 的中点,则AP →·AM →的取值范围是()A.[-2,6]B.[-1,9]C.[-2,4]D.[-1,6]【变式2】(2023·邵阳模拟)已知四边形ABCD 是边长为1的正方形,P 为对角线AC 上一点,则PA →·(PB →+PD →)的最小值是()A.0B.-14C.-12D.-2【变式3】(2024高三·江苏·专题练习)已知点M 为直角ABC 外接圆O 上的任意一点,90,1,ABC AB BC ∠=︒=()OA OB BM -⋅的最大值为.强化训练单选题1.(2023·陕西咸阳·模拟预测)已知向量a ,b,且5a b == ,6a b += ,则()ta b t +∈R 的最小值为()A.245B.4C.165D.1252.(23-24高三上·江西吉安·期中)ABC 中,D 为AC 上一点且满足34CD CA = ,若P 为BD 上一点,且满足AP AB AC λμ=+,,λμ为正实数,则下列结论正确的是()A.λμ的最小值为116B.λμ的最大值为1C.114λμ+的最大值为16D.114λμ+的最小值为43.(2024·内蒙古呼和浩特·一模)在ABC 中,D 为线段AC 的一个三等分点,2AD DC =.连接BD ,在线段BD 上任取一点E ,连接AE ,若AE aAC bAB =+,则22a b +的最小值为()A.134B.52C.413D.254.(2023·安徽安庆·二模)已知非零向量a ,b的夹角为θ,2a b += ,且43a b ≥ ,则夹角θ的最小值为()A.π6B.π4C.π3D.π25.(2024·全国·模拟预测)已知非零且不垂直的平面向量,a b满足||||6a b += ,若a 在b 方向上的投影与b 在a 方向上的投影之和等于()2a b ⋅ ,则,a b夹角的余弦值的最小值为()A.227B.127C.13D.236.(23-24高三下·北京海淀·开学考试)已知AB 是圆O :221x y +=的直径,C 、D 是圆O 上两点,且60COD ∠=,则()OC OD AB +⋅的最小值为()A.0B.C.3-D.-7.在ABC 中,点D 为AC 边上的中点,点E 满足3EC BE =,点P 是直线BD ,AE 的交点,过点P 做一条直线交线段AC 于点M ,交线段BC 于点N (其中点M ,N 均不与端点重合)设CM mCA = ,CN nCB =,则m n +的最小值为()C.75D.1658.(23-24高三上·陕西安康·阶段练习)已知O 是ABC 所在平面内一点,若0,,,,,OA OB OC AM xAB AN y AC MO ON x y λ++==== 均为正数,则xy 的最小值为()A.12B.49C.1D.43二、多选题1.(2024·河南·模拟预测)已知O 是坐标原点,平面向量a OA = ,b OB = ,c OC = ,且a是单位向量,2a b ⋅= ,12a c ⋅= ,则下列结论正确的是()A.c a c=- B.若A ,B ,C 三点共线,则2133a b =+C.若向量b a - 与c a -垂直,则2b c a +- 的最小值为1D.向量b a - 与b 的夹角正切值的最大值为42.(2024·广东·模拟预测)如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则下列说法正确的有()A.1233BD BA BC=+ B.132BD BO ⋅=C.BP BC ⋅存在最大值D.x y +1+3.(2023·全国·模拟预测)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,60BAD ∠=︒,12AB AD AA ===,P 为1CC 的中点,点Q 满足[][]()10,1,0,1DQ DC DD λμλμ=+∈∈,则下列结论中正确的是()A.若13λμ+=,则四面体1A BPQ 的体积为定值B.若1A BQ △的外心为O ,则11A B AO ⋅为定值2C.若1AQ =,则点Q 的轨迹长度为4D.若1λ=且12μ=,则存在点1E A B ∈,使得AE EQ +三、填空题1.(2024·湖北·模拟预测)已知向量a ,b 满足2a =r ,1= b ,且a ,b的夹角为π3,则()a b λλ-∈R 的最小值是.2.(23-24高三上·山西太原·期末)已知非零向量a ,b 夹角为2π3,则|2|||a b b +的最小值为.3.(2024高三·全国·专题练习)在四边形ABCD 中,AB AC AD ===AB AD ⊥,则CB CD ⋅的最小值为.四、解答题1.如图,在△ABC 中,2AB =,AC =,cos BAC ∠=D 为BC 的中点,E 为AB 边上的动点(不含端点),AD 与CE 交于点O ,AE xAB =.(1)若14x =,求CO OE 的值;(2)求AO CE ⋅的最小值,并指出取到最小值时x 的值.2.(22-23高三·北京·阶段练习)已知非零平面向量a ,b 的夹角为23π,1a a b =+= .(1)证明:a b -= ;(2)设t ∈R ,求a tb +的最小值.3.(22-23高三上·河南安阳·阶段练习)已知()1sin cos ,2cos ,2sin ,sin 2.2a x x b x θθ⎛⎫=+= ⎪⎝⎭(1)若),4(3c =- 且()π,0,π4x θ=∈时,a 与c 的夹角为钝角,求cos θ的取值范围;(2)若π3θ=函数()f x a b =⋅ ,求()f x 的最小值.4.(2023·四川成都·模拟预测)如图,A ,B 是单位圆(圆心为O )上两动点,C 是劣弧 AB (含端点)上的动点.记OC OA OB λμ=+(λ,μ均为实数).(1)若O 到弦AB 的距离是12,求λμ+的取值范围;(2)若532OA OB -≤ ,向量2OA OB +和向量OA OB + 的夹角为θ,求2cos θ的最小值.5.(2022高三·全国·专题练习)如图,已知点G 是边长为1的正三角形ABC 的中心,线段DE 经过点G ,并绕点G 转动,分别交边,AB AC 于点,D E ,设,AD m AB AE n AC ==,其中01,01m n <≤<≤.(1)求11m n的值;(2)求ADEV面积的最小值,并指出相应的,m n的值.。

第11讲 平面向量中的最值范围问题(教师版)

第11讲  平面向量中的最值范围问题(教师版)

第11讲 平面向量中的最值范围问题题型一 利用平面向量基本定理确定参数的值、取值范围问题平面向量基本定理是向量坐标的理论基础,通过建立平面直角坐标系,将点用坐标表示,利用坐标相等列方程,寻找变量的等量关系,进而表示目标函数,转化为函数的最值问题. 【例1】已知1,60,OA OB AOB OC OA OB λμ==∠=︒=+,其中实数,λμ满足12λμ≤+≤,0,0λμ≥≥,则点C 所形成的平面区域的面积为( )A B C .D 【答案】B 【解析】 由题:1,60,OA OB AOB OC OA OB λμ==∠=︒=+,作2,2OP OA OQ OB ==,OC 与线段AB 交于D ,设OCxOD =,如图:OC OA OB λμ=+,0,0λμ≥≥,所以点C 在图形QOP ∠内部区域,根据平面向量共线定理有,1ODmOA nOB m n =++=,,1OC xOD xmOA xnOB m n ==++=,OC OA OB λμ=+,所以,xm u xn λ==,12λμ≤+≤,即12xm xn ≤+≤,即12x ≤≤,OC xOD =,所以点C 所在区域为梯形APQB 区域,其面积1122sin 6011sin 6022APQB OPQ OAB S S S ︒︒∆∆=-=⨯⨯⨯-⨯⨯⨯=,故选:B 【玩转跟踪】1.已知RtABC ,3AB =,4BC =,5CA =,P 为ABC △外接圆上的一动点,且AP xAB y AC =+,则x y+的最大值是( )A .54B .43C .D .53【答案】B 【解析】解:以AC 的中点为原点,以AC 为x 轴,建立如图所示的平面直角坐标系,则ABC △外接圆的方程为2225()2xy +=,设P 的坐标为55cos ,sin 22θθ⎛⎫⎪⎝⎭,过点B 作BD 垂直x 轴,∵4sin 5A =,3AB = ∴12sin 5BD AB A ==,39cos 355AD AB A =⋅=⨯=,∴5972510OD AO AD =-=-=,∴712,105B ⎛⎫-⎪⎝⎭,∵5,02A ⎛⎫- ⎪⎝⎭,5,02C ⎛⎫⎪⎝⎭∴912,55AB ⎛⎫= ⎪⎝⎭,()5,0AC =,555cos ,sin 222AP θθ⎛⎫=+ ⎪⎝⎭∵AP xAB y AC =+∴555912cos ,sin ,22255x θθ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭ ()9125,05,55y x y x ⎛⎫+=+ ⎪⎝⎭∴559cos 5225x y θ+=+,512sin 25x θ=,∴131cos sin 282y θθ=-+,25sin 24x θ=, ∴()12151cos sin sin 23262x y θθθϕ+=++=++,其中3sin 5ϕ=,4cos 5ϕ=,当()sin 1θϕ+=时,x y +有最大值,最大值为514623+=,故选:B .2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .2CD .2【答案】A【解析】,如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r=,即圆C 的方程是()22425x y -+=, ()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x zy =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,点C 是半径为1的扇形圆弧AB 上一点,0OA OB ⋅=,1OA OB ==,若OC OA OB x y =+,则2x y+的最小值是( )A.B .1 C .2D【答案】B 【解析】 由题:OC OA OB x y =+,点C 是半径为1的扇形圆弧AB 上一点,则0,0x y >>,则()22OC xOA yOB=+,即()()2222OC xOA yOBxyOA OB =++⋅,0OA OB ⋅=,1OA OB ==化简得:221xy +=,令cos ,sin ,[0,]2x y θθθπ==∈,2sin 2cos ),sin [0,]2x y θθθϕϕϕϕπ+=+=+==∈因为[0,]2πθ∈,[0,]2πϕ∈,2πϕθϕϕ≤+≤+,sin()θϕ+先增大后减小,所以sin()θϕ+的最小值为sin ,sin()2πϕϕ+较小值,sin()cos 2πϕϕ+==即sin()θϕ+,所以2)x y θϕ+=+的最小值为1.故选:B题型二 平面向量数量积的范围问题已知两个非零向量a 和b ,它们的夹角为θ,把数量cos a b θ⋅⋅叫做a 和b 的数量积(或内积),记作a b ⋅.即a b ⋅=cos a b θ⋅⋅,规定00a ⋅=,数量积的表示一般有三种方法:(1)当已知向量的模和夹角时,可利用定义法求解,即a b ⋅=cos a b θ⋅⋅;(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2;(3)运用平面向量基本定理,将数量积的两个向量用基底表示后,再运算.【例2】【2018年天津理科08】如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E为边CD 上的动点,则的最小值为( )A .B .C .D .3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=AB cos60°,BN=AB sin60°,∴DN=1,∴BM,∴CM=MB tan30°,∴DC=DM+MC,∴A(1,0),B(,),C(0,),设E(0,m),∴(﹣1,m),(,m),0≤m,∴m2m=(m)2(m)2,当m时,取得最小值为.故选:A.【玩转跟踪】1.【2017年新课标2理科12】已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•()的最小值是()A.﹣2 B.C.D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P (x ,y ),则(﹣x ,y ),(﹣1﹣x ,﹣y ),(1﹣x ,﹣y ),则•()=2x 2﹣2y +2y 2=2[x 2+(y )2]∴当x =0,y 时,取得最小值2×(),故选:B .2.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24-B .24+C .48-D .48+【答案】C【解析】以,CA CB 为,x y 轴建立平面直角坐标系,则(0,0),(2,0),(0,2),(1,1)C A B M ,设(,)P x y ,则(2,),(,2)PA x y PB x y =--=--,(,),(1,1)PC x y PM x y =--=--,(2)(2)PA PB x x y y ⋅=----2222x x y y =-+-,PC PM ⋅=22(1)(1)x x y y x x y y ----=-+-,∵2PC =,∴224x y +=,设2cos ,2sin xy θθ==,则2cos 2sin )4x y πθθθ+=+=+,∴x y -≤+≤()()4PA PB PC PM ⋅+⋅⋅2(4224)(4)2(4)x y x y x y =--+--=+-,∴x y +=()()4PA PB PC PM ⋅+⋅⋅取得最小值24)48=-故选:C 。

最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)

最全归纳平面向量中的范围与最值问题 (十大题型)(学生版)

最全归纳平面向量中的范围与最值问题目录题型一:三角不等式题型二:定义法题型三:基底法题型四:几何意义法题型五:坐标法题型六:极化恒等式题型七:矩形大法题型八:等和线题型九:平行四边形大法题型十:向量对角线定理方法技巧总结技巧一.平面向量范围与最值问题常用方法:(1)定义法第一步:利用向量的概念及其基本运算将所求问题转化为相应的等式关系第二步:运用基木不等式求其最值问题第三步:得出结论(2)坐标法第一步:根据题意建立适当的直角坐标系并写出相应点的坐标第二步:将平面向量的运算坐标化第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等求解(3)基底法第一步:利用其底转化向量第二步:根据向量运算律化简目标第三步:运用适当的数学方法如二次函数的思想、基本不等式的思想、三角函数思想等得出结论(4)几何意义法第一步:先确定向量所表达的点的轨迹第二步:根据直线与曲线位置关系列式第三步:解得结果技巧二.极化恒等式(1)平行四边形平行四边形对角线的平方和等于四边的平方和:|a +b |2+|a -b |2=2(|a|2+|b |2)证明:不妨设AB =a ,AD =b ,则AC =a +b ,DB =a -bAC 2=AC 2=a +b 2=a 2+2a ⋅b +b 2①DB 2=DB 2=a -b 2=a 2-2a ⋅b +b 2②①②两式相加得:AC 2+DB 2=2a 2+b 2 =2AB 2+AD 2 (2)极化恒等式:上面两式相减,得:14a +b 2-a -b 2 ----极化恒等式①平行四边形模式:a ⋅b =14AC 2-DB 2几何意义:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14.②三角形模式:a ⋅b =AM 2-14DB 2(M 为BD 的中点)技巧三.矩形大法矩形所在平面内任一点到其对角线端点距离的平方和相等已知点O 是矩形ABCD 与所在平面内任一点,证明:OA 2+OC 2=OB 2+OD 2.【证明】(坐标法)设AB =a ,AD =b ,以AB 所在直线为轴建立平面直角坐标系xoy ,则B (a ,0),D (0,b ),C (a ,b ),设O (x ,y ),则OA 2+OC 2=(x 2+y 2)+[(x -a )2+(y -b )2]OB 2+OD 2=[(x -a )2+y 2]+[x 2+(y -b )2]∴OA 2+OC 2=OB 2+OD 2技巧四.等和线(1)平面向量共线定理已知OA =λOB +μOC ,若λ+μ=1,则A ,B ,C 三点共线;反之亦然.(2)等和线平面内一组基底OA ,OB 及任一向量OP ,OP =λOA +μOB(λ,μ∈R ),若点P 在直线AB 上或者在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.①当等和线恰为直线AB 时,k =1;②当等和线在O 点和直线AB 之间时,k ∈(0,1);③当直线AB 在点O 和等和线之间时,k ∈(1,+∞);④当等和线过O 点时,k =0;⑤若两等和线关于O 点对称,则定值k 互为相反数;技巧五.平行四边形大法1.中线长定理2AO 2=AB 2+AD 2-12DB 22.P 为空间中任意一点,由中线长定理得:2PO 2=PA 2+PC 2-12AC 22PO 2=PD 2+PB 2-12DB 2两式相减:PA 2+PC 2-PD 2+PB 2=AC2-BD 22=2AB ⋅AD技巧六.向量对角线定理AC ⋅BD =(AD 2+BC 2)-(AB 2+CD2)2必考题型归纳题型一:三角不等式1(2023·全国·高三专题练习)已知向量a ,b ,c 满足|a |=2,|b |=1,|c -a -b |=1,若对任意c ,(c -a )2+(c-b )2≤11恒成立,则a ⋅b 的取值范围是.2(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:|a|=1,b ⋅a =-1,若对满足条件的任意向量b ,|c -b |≥|c -a |恒成立,则cos c +a ,a 的最小值是.3已知向量a ,b ,c 满足a =b =c =2,a ⋅b =0,若关于t 的方程ta +b2-c=12有解,记向量a ,c 的夹角为θ,则sin θ的取值范围是.1.已知e 1 ,e 2 ,e 3 是平面向量,且e 1 ,e 2 是互相垂直的单位向量,若对任意λ∈R 均有e 3 +λe 1的最小值为e 3 -e 2 ,则e 1 +3e 2 -e 3 +e 3 -e 2的最小值为.2.已知平面向量e 1 ,e 2 满足2e 2 -e 1 =2,设a =e 1 +4e 2 ,b =e 1 +e 2 ,若1≤a ⋅b ≤2,则|a|的取值范围为.3.(2023·浙江金华·统考一模)已知平面向量a ,b ,c 满足a ⋅b =74,|a -b |=3,(a -c )(b -c)=-2,则c的取值范围是.1已知向量a ,b 的夹角为π3,且a ⋅b =3,向量c 满足c =λa +1-λ b 0<λ<1 ,且a ⋅c =b ⋅c ,记x =c ⋅a a ,y =c ⋅b b,则x 2+y 2-xy 的最大值为.2(2023·四川成都·高二校联考期中)已知向量a ,b ,c 满足a =1,b=2,a ⋅b =-1,向量c -a与向量c -b 的夹角为π4,则c 的最大值为.3(2023·浙江绍兴·高二校考学业考试)已知向量a ,b 满足a =1,b=3,且a ⊥b ,若向量c满足c -a -b =2a -b ,则c的最大值是.1.已知向量a ,b 满足a =1,b =3,且a ⋅b =-32,若向量a -c 与b -c 的夹角为30°,则|c |的最大值是.2.已知向量a ,b ,满足a =2b =3c =6,若以向量a ,b 为基底,将向量c 表示成c =λa+μb (λ,μ为实数),都有λ+μ ≤1,则a ⋅b的最小值为3.已知向量a 、b 满足:a -b =4,a =2b .设a -b 与a +b的夹角为θ,则sin θ的最大值为.1.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分在边BC ,CD 上,BE =λBC ,DF=μDC .若λ+μ=23,则AE ⋅AF 的最小值为.2.(2023·天津·高三校联考阶段练习)已知菱形ABCD 的边长为2,∠BAD =120°,点E 、F 分别在边BC ,CD 上,BE =λBC ,DF =μDC ,若2λ+μ=52,则AE ⋅AF 的最小值.3.如图,菱形ABCD 的边长为4,∠BAD =30°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.4.菱形ABCD 的边长为4,∠BAD =30°,若N 为菱形内任意一点(含边界),则AB ⋅AN的最大值为.5.如图,菱形ABCD 的边长为4,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ⋅AN的最大值为.6.平面四边形ABCD 是边长为2的菱形,且∠A =120°,点N 是DC 边上的点,且DN =3NC,点M 是四边形ABCD 内或边界上的一个动点,则AM ⋅AN的最大值为.7.(2023·全国·高三专题练习)已知向量a ,b 满足a +b =3,a ⋅b =0.若c =λa+1-λ b ,且c ⋅a =c ⋅b ,则c 的最大值为.8.已知平面向量a ,b ,c 满足a =2,b =1,a ⋅b =-1,且a -c 与b -c 的夹角为π4,则c 的最大值为.9.已知平面向量a 、b 、c 满足a =4,b =3,c =2,b ⋅c =3,则a -b 2a -c 2-a -b ⋅a -c 2最大值为.10.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,且满足AN =λAB +μAC,则λ2+μ2的最小值为.题型四:几何意义法1(2023·全国·模拟预测)已知a ,b ,c 是平面向量,满足a -b =a +b ,a =2b =2,c +a -b=5,则向量c 在向量a上的投影的数量的最小值是.2(2023·上海浦东新·上海市建平中学校考三模)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π4,c -a与c -b 的夹角为3π4,a -b=2,c -b =1,则b ⋅c 的取值范围是.3(2023·全国·高三专题练习)已知平面向量a ,b 夹角为π3,且平面向量c 满足c -a =c -b =1,c -a ⋅c -b =-12,记m 为f t =ta +1-t b (t ∈R )的最小值,则m 的最大值是.1.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足a ⋅b =-3,a -b =4,c -a 与c -b 的夹角为π3,则c -a -b 的最大值为.2.(2023·四川内江·高二四川省内江市第六中学校考开学考试)已知非零平面向量a ,b ,c 满足:a ,b 的夹角为π3,c -a 与c -b 的夹角为2π3,a -b=23,c -b =2,则b ⋅c 的取值范围是.3.已知非零平面向量a ,b ,c 满足a -b =2,且(c -a )⋅(c -b )=0,若a 与b 的夹角为θ,且θ∈π6,π3,则|c |的最大值是.4.(2023·全国·高三专题练习)平面向量a ,b ,c 满足:a ,b 的夹角为π3,|a -b|=|b -c |=|a -c |=23,则b ⋅c的最大值为.5.(2023·广东阳江·高二统考期中)已知非零平面向量a ,b ,c 满足a -b =4,且a -c⋅b -c =-1,若a 与b 的夹角为θ,且θ∈π3,π2,则c 的模取值范围是. 6.(2023·浙江·高三专题练习)已知平面向量a ,b ,c ,若a =b =a -b =1,且2a -c+2b +c =23,则a -c的取值范围是.7.(2023·安徽阜阳·高三安徽省临泉第一中学校考期末)已知向量a ,b 满足a =b =1,且a ⋅b=0,若向量c 满足c +a +b =1,则c的最大值为.8.(2023·浙江·模拟预测)已知向量a ,b ,c 满足a -b +c =2b =2,b -a 与a的夹角为3π4,则c 的最大值为.9.(2023·全国·高三专题练习)已知平面向量a ,b ,c 满足:a -b =5,向量a与向量b 的夹角为π3,a -c =23,向量a -c 与向量b -c 的夹角为2π3,则a 2+c 2的最大值为.题型五:坐标法1(2023·全国·高三专题练习)已知向量a ,b 满足2a +b =3,b =1,则a +2a +b的最大值为.2(2023·江苏常州·高三统考期中)已知平面向量a ,b ,c 满足|a |=2,|b |=4,a ,b 的夹角为π3,且(a -c )⋅(b -c )=2,则|c |的最大值是.3设平面向量a ,b ,c 满足a =b =2,a 与b 的夹角为2π3,a -c ⋅b -c =0则c 的最大值为.1.(2023·安徽滁州·校考三模)已知平面向量a ,b ,c 满足|a |=1,|b |=3,a ⋅b =0,c -a 与c-b 的夹角是π6,则c ⋅b -a 的最大值为.2.(2023·河北·统考模拟预测)如图,在边长为2的正方形ABCD 中.以C 为圆心,1为半径的圆分别交CD ,BC 于点E ,F .当点P 在劣弧EF 上运动时,BP ⋅DP的最小值为.3.(2023·山东·山东省实验中学校考一模)若平面向量a ,b ,c 满足a =1,b ⋅c =0,a ⋅b =1,a⋅c=-1,则b +c 的最小值为.4.(2023·四川眉山·仁寿一中校考一模)如图,在平面四边形ABCD 中,∠CDA =∠CBA =90°,∠BAD =120°,AB =AD =1,若点E 为CD 边上的动点,则AE ⋅BE的最小值为.5.(2023·安徽滁州·校考模拟预测)已知a=1,b +a +b -a =4,则b -14a 的最小值是.6.(2023·浙江·模拟预测)已知向量a ,b 满足a =3,且b -λa的最小值为1(λ为实数),记a ,b =α,a ,a-b=β,则b ⋅b -a cos α+β最大值为.7.在矩形ABCD 中,AB =4,AD =3,M ,N 分别是AB ,AD 上的动点,且满足2AM +AN =1,设AC =xAM +yAN ,则2x +3y 的最小值为()A.48B.49C.50D.51题型六:极化恒等式1(2023·山东师范大学附中模拟预测)边长为1的正方形内有一内切圆,MN 是内切圆的一条弦,点P 为正方形四条边上的动点,当弦MN 的长度最大时,PM ⋅PN的取值范围是.2(2023·湖北省仙桃中学模拟预测)如图直角梯形ABCD 中,EF 是CD 边上长为6的可移动的线段,AD =4,AB =83,BC =12,则BE ⋅BF的取值范围为.3(2023·陕西榆林·三模)四边形ABCD 为菱形,∠BAC =30°,AB =6,P 是菱形ABCD 所在平面的任意一点,则PA ⋅PC的最小值为.1.(2023·福建莆田·模拟预测)已知P 是边长为4的正三角形ABC 所在平面内一点,且AP=λAB +(2-2λ)AC (λ∈R ),则PA ⋅PC 的最小值为()A.16B.12C.5D.42.(2023·重庆八中模拟预测)△ABC 中,AB =3,BC =4,AC =5,PQ 为△ABC 内切圆的一条直径,M 为△ABC 边上的动点,则MP ⋅MQ的取值范围为()A.0,4B.1,4C.0,9D.1,9题型七:矩形大法1已知圆C 1:x 2+y 2=9与C 2:x 2+y 2=36,定点P (2,0),A 、B 分别在圆C 1和圆C 2上,满足PA ⊥PB ,则线段AB 的取值范围是.2在平面内,已知AB 1 ⊥AB 2 ,OB 1 =OB 2 =1,AP =AB 1 +AB 2 ,若|OP |<12,则|OA |的取值范围是()A.0,52B.52,72C.52,2D.72,23(2023·全国·高三专题练习)已知圆Q :x 2+y 2=16,点P 1,2 ,M 、N 为圆O 上两个不同的点,且PM⋅PN =0若PQ =PM +PN ,则PQ 的最小值为.1.设向量a ,b ,c 满足|a |=|b |=1,a ⋅b =12,(a -c )⋅(b -c )=0,则|c|的最小值是()A.3+12B.3-12C.3D.1题型八:等和线1如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP =xAB +yAC,则2x +2y 的最大值为()A.83B.2C.43D.12在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN =λAB +μAC(λ,μ∈R ),则λ+μ的取值范围是()A.0,13B.13,12C.[0,1]D.[1,2]3(2023·全国·高三专题练习)如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的区域内(不含边界)运动,且OP =xOA +yOB .当x =-12时,y 的取值范围是()A.0,+∞B.12,32C.12,+∞ D.-12,321.(2023·全国·高三专题练习)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC=xOA +yOB ,则3x +y 的取值范围是.2.(2023·江西上饶·统考三模)在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC=xOA +yOB ,则2x +y 的取值范围是.3.(2023·全国·高三专题练习)在扇形OAB 中,OA =1,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB ,则x +3y 的取值范围是.4.(2023·福建三明·高二三明一中校考开学考试)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC =xOA +yOB,则x +4y 的取值范围是.5.(2023·全国·高三专题练习)如图,OM ⎳AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP =xOA +yOB,则实数对x ,y 可以是()A.-14,34B.-15,75C.14,-12D.-23,236.如图,B 是AC 的中点,BE =2OB ,P 是平行四边形BCDE 内(含边界)的一点,且OP=xOA +yOBx ,y ∈R ,则下列结论正确的个数为()①当x =0时,y ∈2,3②当P 是线段CE 的中点时,x =-12,y =52③若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段④x -y 的最大值为-1A.1B.2C.3D.47.(2023·全国·高三专题练习)在△ABC 中,AB =AC=AB ⋅AC=2,点Q 在线段BC (含端点)上运动,点P 是以Q 为圆心,1为半径的圆及内部一动点,若AP =λAB +μAC,则λ+μ的最大值为()A.1B.33C.3+33D.328.在△ABC 中,AD 为BC 上的中线,G 为AD 的中点,M ,N 分别为线段AB ,AC 上的动点(不包括端点A ,B ,C ),且M ,N ,G 三点共线,若AM =λAB ,AN =μAC,则λ+4μ的最小值为()A.32 B.52C.2D.949.(2023·全国·高三专题练习)在ΔABC 中,AC =2,AB =2,∠BAC =120°,AE =λAB ,AF=μAC ,M 为线段EF 的中点,若AM =1,则λ+μ的最大值为()A.73B.273C.2D.21310.在扇形OAB 中,∠AOB =60o ,OA =1,C 为弧AB 上的一个动点,且OC =xOA +yOB.则x +4y 的取值范围为()A.[1,4)B.[1,4]C.[2,3)D.[2,3]11.(2023·全国·高三专题练习)如图,在扇形OAB 中,∠AOB =600,C 为弧AB 上且与A ,B 不重合的一个动点,且OC =xOA +yOB,若u =x +λy (λ>0)存在最大值,则λ的取值范围为()A.(1,3)B.13,3C.12,1D.12,2题型九:平行四边形大法1如图,圆O 是半径为1的圆,OA =12,设B ,C 为圆上的任意2个点,则AC ⋅BC 的取值范围是.2如图,C ,D 在半径为1的⊙O 上,线段AB 是⊙O 的直径,则AC ⋅BD的取值范围是.3(2023·浙江·模拟预测)已知e 为单位向量,平面向量a ,b 满足|a +e |=|b -e |=1,a ⋅b的取值范围是.1.(2023·江西宜春·校联考模拟预测)半径为1的两圆M 和圆O 外切于点P ,点C 是圆M 上一点,点B 是圆O 上一点,则PC ⋅PB的取值范围为.2.(2023·福建·高三福建师大附中校考阶段练习)设圆M ,圆N 的半径分别为1,2,且两圆外切于点P ,点A ,B 分别是圆M ,圆N 上的两动点,则PA ⋅PB的取值范围是()A.-8,12B.-16,34C.-8,1D.-16,1题型十:向量对角线定理1已知平行四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,若记a =OA⋅OB ,b =OB ⋅OC ,c =OC ⋅OD ,则()A.a <b <cB .a <c <bC .c <a <bD .b <a <c2如图,在圆O 中,若弦AB =3,弦AC =5,则AO ⋅BC的值是()A.-8B .-1C .1D .83如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥BC 若,AB =a ,AD =b ,则AC ⋅BD 等于()A.b 2-a 2B.a 2-b 2C.a 2+b 2D.a 2⋅b 2。

数学-平面向量中的最值与范围问题

数学-平面向量中的最值与范围问题

平面向量中的最值与范围问题高中数学 会利用向量的定义及运算求解最值与范围问题.导语 平面向量中的范围、最值问题是热点问题,也是难点问题,此类问题综合性强,体现了知识的交汇组合,其基本题型是根据已知条件求某个变量的范围、最值,比如向量的模、数量积、向量的夹角、系数的范围等等,解题思路是建立目标函数的函数解析式,转化为求函数的最值,同时向量兼顾“数”与“形”的双重身份,所以解决平面向量的范围、最值问题的另外一种思路是数形结合.一、向量线性运算中的最值与范围问题例1 如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足=m +n (m ,n 均为正实数),求+的最小值.AP → AB → AD→ 1m 1n解 因为在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,所以=+=-,AD → AC → CD → AC → 14AB → 所以=m +n AP → AB → AD → =m +n AB→ (AC → -14AB →)=+n ,(m -14n )AB → AC → 由P ,B ,C 三点共线得,m -n +n =m +n =1(m ,n >0),1434所以+=1m 1n (1m +1n )(m +34n )=++≥+2743n4m mn 743n 4m ·mn=+=(当且仅当3n 2=4m 2时取等号),7437+434即+的最小值为.1m 1n 7+434反思感悟 利用向量的概念及基本运算,将所求问题转化为相应的等式关系,然后用基本不等式求最值.跟踪训练1 如图所示,A ,B ,C 是圆O 上的三点,CO 的延长线与BA 的延长线交于圆O 外一点D .若=m +n ,则m +n 的取值范围是________.OC → OA → OB→答案 (-1,0)解析 由点D 是圆O 外一点,可设=λ(λ>1),BD → BA→ 则=+λ=λ+(1-λ).OD → OB → BA → OA → OB → 又因为C ,O ,D 三点共线,令=-μ(μ>1),OD → OC→ 则=--(λ>1,μ>1),所以m =-,n =-,OC → λμOA → 1-λμOB→ λμ1-λμ则m +n =--=-∈(-1,0).λμ1-λμ1μ二、向量数量积的最值与范围问题例2 在边长为1的正方形ABCD 中,M 为边BC 的中点,点E 在线段AB 上运动,则·EC→ 的取值范围是( )EM→ A. B.[12,2][0,32]C.D .[0,1][12,32]答案 C解析 将正方形放入如图所示的平面直角坐标系中,设E (x ,0),0≤x ≤1.则M,C (1,1),(1,12)所以=,=(1-x ,1),EM → (1-x ,12)EC → 所以·=·(1-x ,1)=(1-x )2+.EM → EC → (1-x ,12)12因为0≤x ≤1,所以≤(1-x )2+≤,121232即·的取值范围是.EC → EM → [12,32]反思感悟 建立适当的坐标系,将平面向量数量积的运算坐标化,然后利用二次函数,基本不等式等求最值或范围.跟踪训练2 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.动点E 和F 分别在线段BC 和DC 上,且=λ,=,则·的最小值为________.BE → BC → DF → 19λDC → AE→ AF → 答案 2918解析 根据题意,可知DC =1,·=(+)·(+)=(+λ)·=AE → AF → AB → BE → AD → DF → AB → BC→ (AD → +19λDC → )·+·+λ·+·=1++-≥1+2-=,当且仅当λ=时,AB → AD → 19λAB → DC → BC → AD → 19BC → DC→ 29λλ211819118291823等号成立.三、向量模的最值问题例3 向量a ,b 满足|a |=1,a 与b 的夹角为,则|a -b |的最小值为________.π3答案 32解析 |a -b|2=(a -b )2=a 2-2a·b +b 2=1-2×1×|b|cos +|b|2π3=|b|2-|b|+1=2+≥,(|b |-12)3434所以|a -b|≥,当|b|=时取得最小值.3212跟踪训练3 已知|a +b |=2,向量a ,b 的夹角为,则|a |+|b |的最大值为________.π3答案 433解析 将|a +b |=2两边平方并化简得(|a |+|b |)2-|a ||b |=4,由基本不等式得|a ||b |≤2=(|a |+|b |2),故(|a |+|b |)2≤4,即(|a |+|b |)2≤,即|a |+|b |≤,当且仅当|a |=|b |=时,(|a |+|b |)2434163433233等号成立,所以|a |+|b |的最大值为.433四、向量夹角的最值问题例4 已知|a |=1,向量b 满足2|b -a |=b ·a ,设a 与b 的夹角为θ,则cos θ的最小值为________.答案 255解析 ∵|a |=1,∴设a =(1,0),b =(x ,y ),∴b -a =(x -1,y ),由2|b -a |=b ·a 得,2=x ,则x >0,(x -1)2+y 2∴4(x -1)2+4y 2=x 2,∴y 2=-x 2+2x -1,34∴cos θ=====a ·b|a ||b |xx 2+y 2xx 2-34x 2+2x -1x14x 2+2x -11-(1x )2+2x +14=,1-(1x -1)2+54∴当=1即x =1时,cos θ取最小值.1x 255反思感悟 将向量夹角的大小问题转化为夹角余弦值的大小,利用函数求最值或范围.跟踪训练4 已知向量a ,b 满足a =(t ,2-t ),|b |=1,且(a -b )⊥b ,则a ,b 的夹角的最2小值为( )A.B.π6π4C. D.π3π2答案 C解析 因为(a -b )⊥b ,所以(a -b )·b =0,a ·b =b 2,cos 〈a ,b 〉====a ·b |a ||b ||b |2|a ||b ||b ||a |1|a |=,12t 2-42t +8又因为2t 2-4t +8=2[(t -)2+2]≥2[(-)2+2]=4,2222所以0<cos 〈a ,b 〉≤,所以a ,b 的夹角的最小值为.12π3课时对点练1.已知向量m =(a -1,1),n =(2-b ,2)(a >0,b >0),若m ∥n ,则m ·n 的取值范围是( )A .[2,+∞) B .(0,+∞)C .[2,4) D .(2,4)答案 C解析 因为m ∥n ,所以2a -2=2-b ,所以2a +b =4,所以b =4-2a >0,所以0<a <2,所以m ·n =2a +b -ab =4-ab =4-a (4-2a )=2a 2-4a +4=2(a -1)2+2∈[2,4).2.如图,在△ABC 中,点D 是线段BC 上的动点,且=x+y ,则+的最小值为( )AD → AB → AC→ 1x 4y A .3 B .4 C .5 D .9答案 D解析 由图可知x ,y 均为正,且x +y =1,∴+=(x +y )=5++1x 4y (1x +4y )y x 4xy≥5+2=9,当且仅当=,y x ·4x y y x 4x y 即x =,y =时等号成立,1323则+的最小值为9.1x 4y3.在△ABC 中,AB =,BC =2,∠B =150°,点D 是AC 边上的一点(包括端点),点M 3是AC 的中点,则·的取值范围是( )BM→ BD → A. B. C. D .[0,1](0,12)[0,12][12,1]答案 B解析 因为点M 是AC 的中点,所以=+,BM → 12BA → 12BC → 因为点D 是AC 边上的一点(包括端点),所以=λ,λ∈[0,1],CD → CA→ -=λ-λ,=λ+(1-λ),BD → BC → BA → BC → BD → BA → BC → 则·=·[λ+(1-λ)]BM → BD → (12BA → +12BC →)BA → BC → =λ2+·+(1-λ)2.12BA → 12BA → BC → 12BC → 因为AB =,BC =2,∠B =150°,3所以2=3,·=-3,2=4,BA → BA → BC → BC → 所以·=-λ.BM → BD→ 1212因为0≤λ≤1,则0≤-λ≤.121212故·的取值范围是.BM → BD→ [0,12]4.设O (0,0),A (1,0),B (0,1),点P 是线段AB 上的一个动点,=λ,AP → AB→ 若·≥·,则实数λ的取值范围是( )OP→ AB → PA → PB → A.≤λ≤1 B .1-≤λ≤11222C.≤λ≤1+ D .1-≤λ≤1+12222222答案 B解析 ∵=λ,=(1-λ)+λ=(1-λ,λ),=λ=(-λ,λ),·≥·AP → AB → OP → OA → OB → AP → AB → OP→ AB → PA → ,PB →∴(1-λ,λ)·(-1,1)≥(λ,-λ)·(λ-1,1-λ),∴2λ2-4λ+1≤0,解得1-≤λ≤1+,因为点P 是线段AB 上的一个动点,所以22220≤λ≤1,即满足条件的实数λ的取值范围是1-≤λ≤1.225.如图,在平行四边形ABCD 中,∠BAD =,AB =2,AD =1,若M ,N 分别是边AD ,CD π3上的点,且满足==λ,其中λ∈[0,1],则·的取值范围是( )MDAD NCDC AN→ BM→ A .[-3,-1] B .[-3,1]C .[-1,1] D .[1,3]答案 A解析 以A 为原点,AB ,垂直于AB 所在的直线分别为x ,y 轴建立平面直角坐标系(图略),则B (2,0),A (0,0),D .(12,32)∵满足==λ,λ∈[0,1],MDAD NCDC ∴=+=+(1-λ)=+(1-λ)=+(1-λ)(2,0)=,AN → AD → DN → AD → DC → AD → AB → (12,32)(52-2λ,32)=+=-+(1-λ)=(-2,0)+(1-λ)=,BM → BA → AM → AB → AD → (12,32)(-32-12λ,32(1-λ))·=·AN → BM → (52-2λ,32)(-32-12λ,32(1-λ))=+×(1-λ)(52-2λ)(-32-12λ)3232=λ2+λ-3=2-.(λ+12)134∵λ∈[0,1],二次函数的对称轴为λ=-,12则函数在[0,1]上单调递增,故当λ∈[0,1]时,λ2+λ-3∈[-3,-1].6.设0≤θ<2π,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量OP 1→ OP2→长度的最大值是( )P 1P 2——→ A. B. C .3 D .22323答案 C解析 ∵=-=(2+sin θ-cos θ,2-cos θ-sin θ),P 1P 2——→ OP2→ OP 1→ ∴||==≤3.P 1P 2——→ (2+sin θ-cos θ)2+(2-cos θ-sin θ)210-8cos θ2当cos θ=-1时,||有最大值3.P 1P 2——→ 27.已知△ABC 的三边长AC =3,BC =4,AB =5,P 为AB 边上任意一点,则·(-)CP→ BA → BC → 的最大值为________.答案 9解析 根据题意,建立直角坐标系,如图,∴A (0,3),B (4,0),C (0,0),∴=(4,-3),AB→ =+=+λ=(0,3)+(4λ,-3λ)=(4λ,3-3λ),λ∈[0,1],CP → CA → AP → CA → AB→ ∴·(-)=·=(4λ,3-3λ)·(0,3)=9-9λ∈[0,9],CP→ BA → BC → CP → CA → ∴·(-)的最大值为9.CP→ BA → BC → 8.若a =(2,2),|b |=1,则|a +b |的最大值为________.答案 2+12解析 因为|b |=1,设b =(cos θ,sin θ),则a +b =(2+cos θ,2+sin θ),则|a +b|===(2+cos θ)2+(2+sin θ)24(cos θ+sin θ)+9≤==2+1,当且仅当sin=1时取等号.42sin (θ+π4)+99+42(22+1)22(θ+π4)9.已知向量a ,b 满足|a |=1,|b |=2,a ·(a +b )=2.求|a -λb |的最小值.解 由|a |=1,a ·(a +b )=2,可知a ·b =1,根据向量求模公式得|a -λb |=,4λ2-2λ+1易知,当λ=时,|a -λb |取得最小值为.143210.△ABC 中,AB =2,AC =2,∠BAC =45°,P 为线段AC 上任意一点,求·的取2PB→ PC → 值范围.解 设=t (0≤t ≤1),PC→ AC → 则=(1-t ),AP → AC → 因为=-=-(1-t ),PB → AB → AP → AB → AC → 所以·=[-(1-t )]·t PB → PC → AB → AC → AC → =t ·-t (1-t )2AB → AC → AC → =2×2t ·cos 45°-t (1-t )×(2)222=8t 2-4t =82-.(t -14)12因为0≤t ≤1,所以-≤·≤4,12PB→ PC → 所以·的取值范围为.PB → PC→ [-12,4]11.如图,在△ABC 中,已知AB =2,AC =3,∠BAC =θ,点D 为BC 的三等分点.则·AD→ 的取值范围为( )BC→A. B.(-113,133)(13,73)C.D.(-53,73)(-53,553)答案 C解析 ∵=+=+AD → AB → BD → AB → 13BC→=+(-)=+,AB → 13AC → AB → 23AB → 13AC → ∴·=·(-)AD → BC → (23AB → +13AC →)AC → AB → =-||2+||2+·23AB → 13AC → 13AB → AC →=-×4+×9+×2×3cos θ=2cos θ+.23131313∵-1<cos θ<1,∴-<2cos θ+<.531373∴·∈.AD → BC → (-53,73)12.如图,延长线段AB 到点C ,使得=2,D 点在线段BC 上运动,点O ∉直线AB ,满AB → BC→ 足=λ+μ,则λμ的取值范围是( )OD → OA → OB→A.B.[-32,0][-2,23]C.D .[-1,1][-34,0]答案 C解析 不妨设AB =2BC =2,BD =x ,x ∈[0,1],由平面向量三点共线可知,= + ,OB → 22+x OD → x2+x OA→ ∴=-,OD → 2+x 2OB → x 2OA → ∴λ=-,μ=,x ∈[0,1],x22+x2则λμ=-=-(x 2+2x ),(2+x )x414∴λμ∈.[-34,0]13.已知平面向量a ,b ,c 满足|a |=|b |=|c |=1,若a ·b =,则(a +b )·(2b -c )的取值范围是( )12A .[1,2+]B .[1,3+]33C .[3-,2+]D .[3-,3+]3333答案 D解析 因为a ·b =,设a 与b 的夹角为θ,12则a·b =|a|·|b|cos θ=,解得θ=,而|a|=|b|=|c|=1,则可设a =(1,0),由θ=可得b =12π3π3.(12,32)由|c |=1,设c =(sin α,cos α),则(a +b )·(2b -c )=2a·b +2b 2-a·c -b·c=1+2-sin α-(12sin α+32cos α)=3-=3-sin.(32sin α+32cos α)3(α+π6)所以当α=时取得最大值为3+,当α=时取得最小值为3-,所以(a +b )·(2b -c )的4π33π33取值范围为[3-,3+].3314.已知|a |=|b |=a ·b =2,c =(2-4λ)a +λb ,则(c -a )·(c -b )的最小值为________.答案 -4952解析 ∵c -a =(1-4λ)a +λb ,c -b =(2-4λ)a +(λ-1)b ,∴(c -a )·(c -b )=[(1-4λ)a +λb ]·[(2-4λ)a +(λ-1)b ]=(16λ2-12λ+2)a 2+(-8λ2+7λ-1)a ·b +(λ2-λ)b 2,代入|a |=|b |=a ·b =2,原式=52λ2-38λ+6,∴当λ=时,原式取得最小值,为-.1952495215.已知正三角形ABC 按如图所示的方式放置,AB =4,点A ,B 分别在x 轴的正半轴和y轴的正半轴上滑动,则·的最大值是________.OA → OC →答案 12解析 设∠OAB =θ,θ∈,(0,π2)则A (4cos θ,0),C ,(4cos θ+4cos (2π3-θ),4sin (2π3-θ))所以·=4cos θ·OA → OC → [4cos θ+4cos (2π3-θ)]=4cos θ(2cos θ+2sin θ)3=4cos 2θ+4+4sin 2θ3=8sin +4,θ∈,(2θ+π6)(0,π2)故当2θ+=,即θ=时,·有最大值12.π6π2π6OA → OC → 16.已知向量a =(,-1),b =.3(12,32)(1)求与a 平行的单位向量c ;(2)设x =a +(t 3+3)b ,y =-k ·t a +b ,若存在t ∈[0,2],使得x ⊥y 成立,求k 的取值范围.解 (1)设c =(x ,y ),根据题意得Error!解得Error!或Error!∴c =或c =.(32,-12)(-32,12)(2)∵a =(,-1),b =,3(12,32)∴a·b =0.∵x ⊥y ,∴-kt |a |2+(t 2+3)|b |2=0.∵|a |=2,|b |=1,∴t 2-4kt +3=0.问题转化为关于t 的二次方程t 2-4kt +3=0在[0,2]内有解.令f (t )=t 2-4kt +3,则当2k ≤0,即k ≤0时,∵f (0)=3,∴方程t 2-4kt +3=0在[0,2]内无解.当0<2k ≤2,即0<k ≤1时,由Δ=16k 2-12≥0,解得k ≤-或k ≥,∴≤k ≤1.323232当2k >2,即k >1时,由f (2)≤0得4-8k +3≤0,解得k ≥,∴k >1.78综上,实数k 的取值范围为.[32,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与平面向量相关的最值问题与平面向量共线有关的最值问题是高考的热点与难点,常以中档小题、压轴小题出例题:如图,在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一动点,若OC →=xOA →+yOB →(x ,y ∈R ) ,求x +4y 的取值范围.变式1设点A ,B ,C 为单位圆上不同的三点,若∠ABC =π4,OB →=mOA →+nOC →(m ,n∈R ),则m +n 的最小值为________________.变式2如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量AC →=λDE →+μAP →(λ,μ∈R ),求λ+μ的最小值.串讲1已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13AC →,则|BQ →|的最小值为________________.串讲2已知三角形ABC 中,过中线AD 的中点E 任作一条直线分别交边AB ,AC 于M ,N 两点,设AM →=xAB →,AN →=yAC →(xy ≠0),求4x +y 的最小值.(2017·新课标Ⅲ卷)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上,若AP →=λAB →+μAD →,求λ+μ的最大值.(2018·洛阳三模)在△ABC 中,点P 满足BP →=2PC →,过点P 的直线与AB ,AC 所以直线分别交于点M ,N ,若AM →=mAB →,AN →=nAC →(m >0,n >0),求m +2n 的最小值.答案:3.解析:因为BP →=2PC →,所以,AP →=AB →+BP →=AB →+23(AC →-AB →)=13AB →+23AC →,4分又因为AM →=mAB →,AN →=nAC →,所以AP →=13m AM →+23n AN →,7分由于M ,P ,N 三点共线,所以13m +23n=1,9分所以m +2n =13(m +2n)⎝⎛⎭⎫1m +2n =13⎝⎛⎭⎫1+4+2n m +2m n ≥13⎝⎛⎭⎫5+22n m ·2m n =3,12分 当且仅当m =n =1时,等号成立,所以m +2n 的最小值为3.14分例题答案:[1,4].解法1建立如图所示的直角坐标系,设此扇形的半径为1,∠AOB =60°,所以A ⎝⎛⎭⎫12,32,B(1,0),设⎩⎨⎧x C =cos θ,y C =sin θ,⎝⎛⎭⎫θ∈⎣⎡⎦⎤0,π3,因为OC →=xOA →+yOB →,所以(cosθ,sin θ)=x ⎝⎛⎭⎫12,32+y(1,0), 解得⎩⎪⎨⎪⎧x =2sin θ3,y =cos θ-sin θ3,则t =x +4y =4cos θ-23sin θ3,θ∈⎣⎡⎦⎤0,π3,以下用导数方法求解函数t 的最值情况,因为t′=-4sin θ-233cos θ,当θ∈⎣⎡⎦⎤0,π3时,sin θ>0,cos θ>0,则t′<0,即函数t 在θ∈⎣⎡⎦⎤0,π3时是单调递减的,所以当θ=0时,t max =4×1-233×0=4,当θ=π3时,t min =4×12-233×32=1,综上所述,x +4y 的取值范围是[1,4].解法2建立解法1中的直角坐标系xOy ,设此扇形的半径为1,由于∠AOB =60°,则A ⎝⎛⎭⎫12,32,B(1,0),设C(m ,n),因为C 为弧AB 上的一个动点,则m 2+n 2=1⎝⎛⎭⎫12≤m ≤1,0≤n ≤32,由于OC →=xOA →+yOB →,所以(m ,n)=x ⎝⎛⎭⎫12,32+y(1,0),从而⎩⎨⎧m =x2+y ,n =32x ,解得 ⎩⎨⎧x =23n 3,y =m -33n ,所以x +4y =233n +4×⎝⎛⎭⎫m -33n =233(23m -n),记t =23m -n ,则直线l :n =23m -t 过弧AB 上的点,当点l 过点B(1,0)时t 取得最大值t max =23,当l 过点A ⎝⎛⎭⎫12,32时,t 取得最小值t min=32,所以x +4y =233t ∈[1,4].解法3取OB 的四等分点(靠近点O)D ,连接AD 交OC 于点E ,设此扇形的半径为1,则|OC →|=1,由于OC →=xOA →+yOB →,则OC →=xOA →+4y ×14OB →=xOA →+4yOD →,因为A ,E ,D 共线,设OE →=λOA →+μOD →,则λ+μ=1,又因为O ,E ,C 共线,设OC →=kOE →,则OC →=kOE →=kλOA →+kμOD →=xOA →+4yOD →,所以x +4y =k =|OC →||OE →|=1|OE →|,当E ,D 重合时,|OE →|取得最小值,x +4y 取得最大值4;当E ,A 重合时,|OE →|取得最大值,x +4y 取得最小值1,所以x +4y ∈[1,4].(用等和线的知识三言两语就能得出结果,用平面向量基本定理转化需要大量篇幅).变式联想变式1 答案:- 2. 解法1因为∠ABC =π4,所以∠AOC =π2,不妨设A(1,0),C(0,1),B(cos θ,sin θ),θ∈⎝⎛⎭⎫π2,2π,则cos θ=m ,sin θ=nm +n =cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4≥-2,当且仅当θ=5π4时取等号. 解法2如图,因为∠ABC =π4,所以∠AOC =π2,不妨设A(1,0),C(0,1),B(x ,y)(优弧上的点),由于OB →=mOA →+nOC →,则(x ,y)=m(1,0)+n(0,1),即x =m ,y =n ,所以m +n =x +y ≥-2(x 2+y 2)=-2,当且仅当x =y =-22时取等号.解法3如图,因为∠ABC =π4,所以∠AOC =π2,不妨设A(1,0),C(0,1),B(x ,y)(优弧上的点),则|OB →|=1,记OB 的反向延长线交AC 于点D ,则因为A ,D ,C 共线,设OD →=λOA →+μOC →,则λ+μ=1,又因为O ,D ,B 共线,设OB →=kOD →(k <0),则OB →=kOD →=kλOA →+kμOC →=mOA →+nOC →,所以m +n =k(λ+μ)=k =-|OB →||OD →|=-1|OD →|,当D 位于AC 中点时,|OD →|取得最小值,m +n 取得最小值-2,此时x =y =-22. (用等和线的知识三言两语就能得出结果,用平面向量基本定理转化需要大量篇幅) 变式2 答案:12.解法1以A 为原点,以AB 所在直线为x 轴,建立平面直角坐标系,设正方形ABCD 的边长为1,则E ⎝⎛⎭⎫12,0,C(1,1),D(0,1),A(0,0),设P(cos θ,sin θ),所以AC →=(1,1),又AC →=λDE →+μAP →.故λ⎝⎛⎭⎫12,-1+ μ(cos θ,sin θ)=(1,1),所以⎩⎪⎨⎪⎧12λ+μcos θ=1,-λ+μsin θ=1,故⎩⎪⎨⎪⎧λ=2sin θ-2cos θ2cos θ+sin θ,μ=32cos θ+sin θ,从而λ+μ=3+2sin θ-2cos θ2cos θ+sin θ=(-2cos θ-sin θ)+3sin θ+32cos θ+sin θ=-1+3sin θ+32cos θ+sin θ,记f(θ)=-1+3sin θ+32cos θ+sin θ,由题意得,0≤θ≤π2,则f(θ)=6+6sin θ-3cos θ(2cos θ+sin θ)2>0.所以f (θ)=-1+3sin θ+32cos θ+sin θ在⎣⎡⎦⎤0,π2上单调递增,所以当θ=0时,λ+μ的最小值为12.解法2如图,设正方形边长为1,将向量DE →沿DA 平移至AF →,则DE →=AF →,连接FP 并延长交AC 的延长线于点Q ,由于F ,P ,Q 共线,设AQ →=xAF →+yAP →=xDE →+yAP →,则x +y =1, 因为A ,C ,Q 共线,设AC →=kAQ →,则AC →=kAQ →=k(xDE →+yAP →),又因为AC →=λDE →+μAP →,由平面向量基本定理得λ=kx ,μ=ky ,所以λ+μ=kx +ky =k =|AC →||AQ →|=2|AQ →|,当|AQ →|最大时,λ+μ取得最小值,此时P ,B 重合,|AQ →|=22,所以(λ+μ)min =k min =12.(用等和线的知识三言两语就能得出结果,用平面向量基本定理转化需要大量篇幅!) 说明:平面向量线性表示背景下的最值问题涉及平面向量的线性表示、平面向量基本定理、向量共线等知识点,解决此类问题通常是先合理设元将向量关系数量化进而得出未知元之间的关系式,再依据函数的单调性或基本不等式求目标函数的最值.解决问题的关键是目标的有效选择与合理表征,等和线在解决线性目标函数问题时,比较快捷.串讲激活串讲1 答案:7-23.解法1以A 为原点,水平方向为x轴,竖直方向为y 轴,建立平面直角坐标系,则A(0,0),B ⎝⎛⎭⎫-32,-323, C ⎝⎛⎭⎫32,-323,设P(cos θ,sin θ),AQ →=23AP →+13AC →=23(cos θ,sin θ)+ 13⎝⎛⎭⎫32,-323=⎝⎛⎭⎫23cos θ+12,23sin θ-32,BQ→=BA →+AQ →=⎝⎛⎭⎫32,323+⎝⎛⎭⎫23cos θ+12,23sin θ-32=⎝⎛⎭⎫23cos θ+2,23sin θ+3,则|BQ →|=⎝⎛⎭⎫23cos θ+22+⎝⎛⎭⎫23sin θ+32=679+437sin (θ+α)(α是以sin α=277, cos α=217的非特殊角),所以 |BQ →|=679+437sin (θ+α) ≥679-437 =67-1279=37-23=7-23. 解法2如图,取AC 的三等分点D(靠近A),则AD →=13AC →,又AQ →=23AP →+13AC →,即AQ→=23AP →+AD →,及DQ →=23AP →,因为点P 是以A 为圆心的单位圆上一动点,所以点Q 是以点D 为圆心,23为半径的圆上的动点,又BD =BC 2+DC 2-2BC·DC cos ∠BCD =32+22-2×3×2cos 60° =7,所以|BQ →|的最小值为7-23.串讲2 答案:94.解法1由题意可知,M ,E ,N 三点共线,故设ME →=λMN →(0<λ<1),而AE →=12AD →=14(AB →+AC →),所以ME →=λMN →,即AE →-AM →=λ(AN →-AM →),即14(AB →+AC →)-xAB →=λ(y AC →-xAB →),即⎝⎛⎭⎫14-x +λx AB →+⎝⎛⎭⎫14-λy AC →=0,所以⎩⎨⎧14-x +λx =0,14-λy =0,即⎩⎨⎧x =14(1-λ),y =14λ,故4x +y =11-λ+14λ=⎝⎛⎭⎫11-λ+14λ[λ+(1-λ)]=λ1-λ+1-λ4λ+54≥2λ1-λ·1-λ4λ+54=94,当且仅当λ1-λ=1-λ4λ时,即λ=13时等号成立,故4x +y 的最小值是94. 解法2由于M ,E ,N 共线,设AE →=λAM →+μAN →,则λ+μ=1,因为AM →=xAB →,AN →=yAC →,所以AE →=λx AB →+μy AC →,由于AD 为三角形ABC 的中线,所以AD →=12AB →+12AC →,又因为E 为AD 中点,所以AE →=12AD →=14AB →+14AC →=λx AB →+μy AC →,所以⎩⎨⎧λx =14,μy =14,且λ+μ=1,所以1x +1y =4(xy ≠0),所以4x +y =14×(4x +y)⎝⎛⎭⎫1x +1y = 14⎝⎛⎭⎫4+1+4x y +y x ≥14×⎝⎛⎭⎫5+24x y ×y x =94,当且仅当x =38,y =34时取得等号.所以4x +y 的最小值是94.新题在线答案:3.解析:如图,建立平面直角坐标系,设A(0,1),B(0,0),C(2,0),D(2,1),P(x ,y).根据等面积公式可得圆的半径r =25,即圆的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μ,y -1=-λμ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x2-y +1-z =0,点P(x ,y)在圆(x-2)2+y2=45上,所以圆心到直线的距离d≤r,即|2-z|14+1≤25,解得1≤z≤3,所以z的最大值是3,即λ+μ的最大值是3.。

相关文档
最新文档