浙江大学 概率论与数理统计 第七章数理统计习题__偶数答案

浙江大学 概率论与数理统计 第七章数理统计习题__偶数答案
浙江大学 概率论与数理统计 第七章数理统计习题__偶数答案

注意: 这是第一稿(存在一些错误) 第七章数理统计习题__偶数.doc

4解:矩估计:

()1012122μθλθλθλ=?+?+?--=--,

()()()()2

2

2

2222121νθλθθλλθλθλ=--++-++--,

11A =,

234

B =

,

故()

()

()(

)

2

2

2

??221,3??

????????222121.

4

θλ

θλθθλ

λ

θλθλ?

--=??

--++-++--=??

解得1?,

43?.

8

λθ?=??

?

?=??

为所求矩估计。

极大似然估计:

(){}()3

3

2

14526837,0,2,11L P X X X X X X X X θλθλ

θλ==========--,

()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,

()(),33

0,1,230.1l l θλθθθλθλλλθλ??=-=?

??--???=-=??--?解得3?,8

1?.4

θλ?=????=??即为所求。 6解:(1)()10

112

E X x x dx θ

θθθ+=

+=

+?

?1

?2

X θθ+=+得21

?1X X θ-=-为θ的矩估计量。 ()()()1

1

1,

01,,,0,n

n n

i i i i x x L f x θ

θθλθ==?+∏<

其他。

()()()1

ln 1ln ,

01,,ln ,0,n

i i n x x l L θθθλθλ=?

++<

∑其他。

()

1

ln 01

n

i

i l n

x

θθ

θ=?=

+

=?+∑得

1

?1

ln n

i

i n

x

θ==-

-∑,

所以θ的极大似然估计为1

1ln n

i

i n

x

=-

-∑。

(2)()120

,EX xf

x dx e θ

θ=

=?

,令?

2

e X θ=得?2ln X θ=为θ的矩估计量。

()()()()

2

1

ln 21

21

1

,,2n

i i x n

i n

n

i i

i L f x e

x θ

θλθπθ=-

==∑=∏=

∏,

()()()()2

1

1

ln ,ln ,ln 2ln 2

2n

i n

i i i x n l L x θλθλπθθ

====-

--

∑∑

()

()

2

1

2

ln 022n

i

i x l n θθ

θ

θ=?=-

+

=?∑得()2

1

1

?ln n

i i x n

θ==

∑为θ的极大似然估计。

(3)()20

2,1

E X xf

x dx

θ

θθ=

=

+?

令?2?1

X θθ=+得?2X

X θ=-为θ的矩估计量。 ()()1

1

1

2

,02,,0,n n n n

i i i i x x L f x θθθθθ--==?∏<

其他。

()()()1

ln ln 21ln ,

02,ln 0,n

i i n n x x l L θθθθθ=?

-+-<

∑其他。

()

1

ln 2ln 0n

i

i l n

n x

θθ

θ

=?=

-+

=?∑得,1

?ln 2ln n

i

i n

n x θ==

-∑为θ的极大似然估计。

(4)()100

100,2

E X xf

x dx

θ

θθ+=

=

?,令

?

1002

X

θ+=得?2100X θ=-为θ的矩估计量。

()()()

1

1

,100n

i n

i L f x θθθ==∏=

-,因0100θ<<,要使()L θ最大,则θ应取最大。

又θ不能大于{}1min ,,n x x ,故θ的极大似然估计为{}1?

min ,,n X X θ=

(5)(),0EX xf x dx θ∞-∞

=

=?

,故0X =。

2

2

var 2X EX θ

==,

由()

2

221

1

1

1

?2n

n

i

i

i i X X

X n

n

θ===

-=

∑∑和0θ>得

2

1

?2n

i

i X n

θ==

为θ的矩估计量。

()()11

1

,

,,2

0,n

i i X n i n n i e x L f x θθθθ=-=?∑??-∞<<∞=∏=????

其他。

()()1

1ln 2ln ,

,ln 0,n

i i n n x x l L θθθθ

=?

---

-∞<<∞?==???

其他。

()

1

2

0n

i

i x l n

θθ

θθ

=?=-

+

=?∑

得11

?n

i

i x n θ==

为θ的极大似然估计。

8(1)X μ=,()()()2

2

22

2

1

1

1

1

1

1

2n

n

n

i

i

i

i i i i E

X E X EX EX n

n

n

μμμμ

σ

===-=

-=

-+=∑∑∑

(2)()()()()122

222

1111111221n n n

i i i i i i i i i i i E k X X k E X X k EX EX EX EX n k σ

-++++===??-=-=-+=-????

∑∑∑

()1

21k n =

-即为所求。

10(1)依题,i X ,j Y 与l Z 相互独立,()2222123ET aES bES cES a b c σ=++=++

故T 是2σ的无偏估计的充要条件为1a b c ++= (2)记n 个样本的方差为2

S ,则

()()2

2

2

11n S n χσ

-- ,()4

2

21D S

n σ

=-

故()2412D S σ=,()242D S σ=,()24

323

D S σ=

故222

22

22

2241

2

3

223b c DT a DS b DS c DS a σ??

=++=++ ??

?

要使T 为最有效估计,只须使2

2

2

2

3

b

c

a +

+

在1a b c ++=的条件下取最小值即可。

()

2

2

2

12

3

b

c

L a a b c λ=+

+

-++-

由20,0,20,3 1.

L

a a L

b b L c

c a b c λλλ??=-=?????=-=?

????=-=?

???++=?得1,61,31.2a b c ?=???=???=??

即为所求。

12()2

2,0,,0,x

x f x θθθ?≤

=???

其他。,0θ>,

()2,3E X xf

x dx

θ

θ∞-∞

=

=

?

故3

?2

X θ=为θ的矩估计量,且为无偏估计。 ()()211

2,0,,0,n n n

i

n i i i x x L f x θθθθ==?∏≤

=∏=???

其他。

显然()L θ关于θ单调递减。故θ取最小值时()L θ最大。

又θ不小于{}1max ,,n X X ,故(){}21?max ,,n n X X X θ== 为θ的极大似然估计。

又()

()21

22,0,,0,n

n n X n x

x f x θθθ

-?≤

其他。

故()220

2221

n

n n

n

n

E X x dx n θθθ

=

=+?

即()22?21

n n E E X n θθ==

+故2?θ为θ的有偏估计。

14(1)()()()

1

1

,n

i i X n

i i L f x e

μμμ=-

-=∑=∏=,

()1

()ln n

i i l L X n μμμ

===-+∑,

()l μ为μ的单调递增函数,故μ取最大值时()l μ取最大值。

又μ不大于{}1min ,,n X X ,故(){}111?min ,,n X X X μ== 为μ的极大似然估计。

因()()

()

,1x

t x F x e

dt e

μμμ

μ----==-? 易知()

()()

1

,,

,0,n x X i ne

x f x μμμ--?≥?=?

??

其他。

所以()()

()1

111?,X

i E E X xf x dx n

μ

μμ∞-∞

===+

?

,即1?μ

是μ的有偏估计。 *

111??n

μμ

=-是μ的无偏估计。

(2)()

1x EX xe

dx μμ

μ∞

--=

=+?,则2?1X μ

=-是μ的矩估计量且为无偏估计。 (3)()

()()

()()

12

*

21

1112

11???D D D EX EX n n

μ

μ

μ?

?=-==-=

??

? ()()()()*

211??1D D X D X D n

μμ=-==

>,故*1?μ比2?μ

更有效。

(4)由切比雪夫不等式知,0ε?>,{}()*

1*

12

2

2

?1?111D P n μ

μ

μεε

ε

-<≥-=-

{}()222

2

?1?111D P n μ

μ

μεε

ε

-<≥-=-

故*

1?μ与2?μ

为μ的相合估计。 16(1)2

223

x

E X x

dx θθθ

=

=

?

,故13?2

X

θ=

为θ的矩估计量,且为无偏估计。

()

2

2

2

2

2

2

22318x

D X EX

EX x

dx θ

θθθ

??

=-=

-= ?

??

?

2

199?4

48D DX DX n

n

θ

θ=

=

=

故{}

()

2

1

12

??1118D P n

θθ

θμεε-<≥-

=-

→,故1?θ为θ的相合估计。

(2)()()21

1

2

,n

n

n

i i n

i i L f x x θθθ

===∏=

易知()L θ为θ的单调递减函数,故θ取最小值时,()L θ取最大值。

又θ不小于{}1max ,,n X X ,故(){}21?max ,,n n X X X θ== 为θ的极大似然估计。

()

()21

22,0,,0,n n n X

n x

x f x θθθ

-?≤

其他。

故()22?21

n n E E X n θθ==+,故2?θ为θ的有偏估计。

()()()

()

()()

2

2

2

22

?121n n n n D D X EX EX n n θ

θ==-=

++

所以{}

()

()()2

2

22

2

2

??111121D n P n n θθ

θθεε

ε

-<≥-=-

→++

故2?θ为θ的相合估计。 18(1)因(){}{}(1)

(1)(1)1nx

X

F x P X x P X x e

μ

μμ--=-<=<+=-与参数μ无关,故可

取(1)X μ-为关于μ的区间估计问题的枢轴量。

(2)设常数a b <,满足{}(1)1P a X b μα<-<=-,即{}(1)(1)1P X b X a μα-<<-=-

此时,区间的平均长度为L b a =-,易知,取1

ln 12a n α?

?=-

- ???

,1ln

2b n α=-时,

区间的长度最短,从而μ的置信水平为1α-的置信区间为

(1)

(1)11ln ,ln 122X X n n αα??

??++- ? ????

?。 20易知μ的置信水平为95%的置信区间为0.0250.025,X z X z n

n σ

σ

??

-

+

??

?

将0.025 1.96z =,10σ=,25n =,140X =代入得

μ的置信水平为95%的置信区间为()136.08,143.92。

22

2

σ的置信水平为99%的置信区间为()()()()22220.0050.09511,11n S n S n n χχ??

-- ? ?--??

将16n =, 2.2S =,()20.00515χ及()2

0.09515χ的值代人得

2

σ的置信水平为99%的置信区间为()2.213,15.779。

24 已知112n =,13.8X =,1 1.2S =,215n =,12.9Y =,2 1.5S =,1

222σσ=

(1)12μμ-的置信水平为95%的置信区间为()0.02512121

11w

X Y t n n S n n ?

?

-±+-+ ?

??

? 其中()()22

11222

12112

w n S n S S n n -+-=

+-,查EXCEL 表得()0.02526t 的值,将各值代人得

12μμ-的置信水平为95%的置信区间为()0.198,1.998-

(2)依题()13.812.90.90.198,1.998X Y -=-=∈-,故可认为无显著差异。 26116n =,155.7S =,220n =,231.4S =,10.95α-= (1)

21

2

2

σσ的置信水平为

95%的置信区间为(

)()2222

1212

0.0250.975,15,1915,19S S S S F F ?? ? ??? 查EXCEL 表得()0.02515,19F 和()0.97515,19F 的值,将各值代人得

21

2

2

σσ的置信水平为95%的置信区间为()0.678,4.919

(2)这些资料不足于说明2

1σ不同于22σ。 28易知P 置信水平为10.95α-=的置信区间为

(

)

()

2

2

1

1

4,

422b b ac b b ac a

a

??----+- ?

??

由已知资料计算得

2

2

0.02560 1.9663.8416a n z =+=+=,

()220.025202260 1.9643.8416

60b nx z ??

=-+=-??+=- ???

2

2

2060 6.6760c nx ??

==?≈ ???

,故所求的置信区间为()0.227,0.459。

概率论与数理统计综合试题

Ⅱ、综合测试题 s388 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

概率论与数理统计及其应用课后答案浙江大学盛骤

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计浙大四版习题答案第八章

第八章 假设检验 1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25. 解:设测定值总体X ~N (μ,σ 2),μ,σ 2 均未知 步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25 .3--= n t n S X t (3)H 0的拒绝域为| t |≥).1(2 -n t α (4)n=5, α = 0.01,由计算知01304.0)(1 1,252.35 1 2=--= =∑=i i X X n S x 查表t 0.005(4)=4.6041, )1(343.05 01304.025 .3252.3||2 -<=-= n t t α (5)故在α = 0.01下,接受假设H 0 2.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(2 1 ≈-= l ω,这样的矩形称为黄金矩形。这种尺寸的矩形使人们看上去有良好的感觉。现代建筑构件(如窗架)、 工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05) H 0:μ = 0.618 H 1:μ≠0.618 0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618 .0--= n t n S X t

概率论与数理统计及其应用第二版课后答案浙江大学

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为 48.0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为338412 131425=C C C C ;

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计浙大四版习题答案

概率论与数理统计浙大四版习题答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为 未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,) 1()(<<=-==- 为未知参数。 解:(1) X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== = +-∞+-∞+∞ -? ? 1 ,11)()(1令,得 c X X θ-= (2) ,1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =?

3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211)()()(+-===∏θn θn n n i i x x x c θx f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑==n i i n i i x c n n θ θd θL d x θc θn θn θL ∑=-= n i i c n x n θ1 ln ln ? (解唯一故为极大似然估计量) (2) ∑ ∏=-- =-+-=== n i i θn n n i i x θθn θL x x x θ x f θL 1 1 212 1 ln )1()ln(2)(ln ,) ()()( ∑∑ ====+?-=n i i n i i x n θx θ θn θd θL d 1 2 1 ) ln (?,0ln 21 12)(ln 。(解唯一)故为极大 似然估计量。 (5)∑∑==- =-??? ? ?????? ??===∏ n i n i i i x mn x n n i i p p x m x m x X P p L 1 1 )1(}{)(11 , ()),1ln()(ln ln )(ln 1 1 1 p x mn p x p L n i i n i i n i m x i -- ++= ∑∑∑=== 01) (ln 1 1 =--- =∑∑==p x mn p x dp p L d n i i n i i 解得 m X mn x p n i i = = ∑=2 ,(解唯一)故为极大似然估计量。 4.[四(2)] 设X 1,X 1,…,X n 是来自参数为λ的泊松分布总体的一个样本,试求λ的极大似然估计量及矩估计量。

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)???>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1 211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

浙大版概率论与数理统计答案---第七章

第七章 参数估计 注意: 这是第一稿(存在一些错误) 1、解 由θ θθμθ 2 ),()(0 1===? d x xf X E ,204103)(2 221θθθ=-==X D v ,可得θ的矩估计量为X 2^ =θ,这时θθ==)(2)(^X E E ,n n X D D 5204)2()(2 2 ^ θθθ= ? ==。 3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为: 3 2 62121^ =-=- =X θ。 建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L 令014 8))1ln(4ln 8()(ln =--=?-+?=??θ θθθθθθL , 得到θ的极大似然估计值:32^=θ 4、解:矩估计: ()1012122μθλθλθλ=?+?+?--=--, ()()()()2 2 2 2222121νθλθθλλθλθλ=--++-++--, 11A =, 23 4 B = , 故()()()( ) 22 2 ??221,3??????????222121.4 θ λθλθθλλθλθλ?--=??--++-++--=?? 解得1?,43?.8λθ?=??? ?=?? 为所求矩估计。 极大似然估计: (){}()3 3214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,

()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--, ()(),33 0,1,230.1l l θλθθθλθλλλθλ??=-=???--???=-=??--?解得3?,81?.4 θλ?=????=??即为所求。 5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为 ^ p = = 建立关于p 的似然函数:32 10)1()2 )1(3()()2)1(( )(22n n n n p p p p p p p L ---= 令0)(ln =??p p L ,求得到θ的极大似然估计值:n n n n p 222 10^++= 6、解:(1)()1 1 12 EX x x dx θθθθ+= += +? , 由?1?2X θθ +=+得21?1X X θ-=-为θ的矩估计量。 ()()()11 1,01, ,,0,n n n i i i i x x L f x θ θθλθ==?+∏<

概率论与数理统计答案第四版第2章(浙大)

1、考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元, 若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。 解:设X为公司的赔付金额,X=0,5,20 P(X=0)=1-0.0002-0.0010=0.9988 P(X=5)=0.0010 P(X=20)=0.0002 X 0 5 20 P 0.9988 0.0010 0.0002 2.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律. 解:方法一: 考虑到5个球取3个一共有=10种取法,数量不多可以枚举来解此题。 设样本空间为S S={123,124,125,134,135,145,234,235,245,345 } 易得,P{X=3}=;P{X=4}=;P{X=5}=; X 3 4 5 1/10 3/10 6/10 方法二:X的取值为3,4,5 当X=3时,1与2必然存在,P{X=3}= =; 当X=4时,1,2,3中必然存在2个,P{X=4}= =; 当X=5时,1,2,3,4中必然存在2个,P{X=5}= =; X 3 4 5 1/10 3/10 6/10 (2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律. 解:P{X=1}= P (第一次为1点)+P(第二次为1点)- P(两次都为一点) = =; P{X=2}= P (第一次为2点,第二次大于1点)+P(第二次为2点,第一次大于1点)- P(两次都为2点) = =; P{X=3}= P (第一次为3点,第二次大于2点)+P(第二次为3点,第一次大于2点)- P(两次都为3点)

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布 1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。考虑两种试验:(1)放回抽样,(2)不放回抽样。我们定义随机变量X ,Y 如下: ???? ?= 若第一次取出的是次品若第一次取出的是正品,1, ,0X ???? ?= 若第二次取出的是次品若第二次取出的是正品,1, ,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。 解:(1)放回抽样情况 由于每次取物是独立的。由独立性定义知。 P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=3625 12101210=? P (X=0, Y=1 )=3651221210=? P (X=1, Y=0 )=3651210122=? P (X=1, Y=1 )= 36 1122122=? 或写成 (2)不放回抽样的情况 P {X=0, Y=0 }=66451191210=? P {X=0, Y=1 }= 66 101121210=?

P {X=1, Y=0 }=66101110122=? P {X=1, Y=1 }= 66 1111122=? 或写成 3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表,Y 的联合分布律。 解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }= 35147 2 222= C C C P {X=1, Y=1 }= 3564 722 1213= C C C C P {X=1, Y=2 }=35 64 712 2213= C C C C P {X=2, Y=0 }=35347 2223= C C C P {X=2, Y=1 }= 35 124 7 12 1223= C C C C

概率论与数理统计浙大四版习题答案第七章

第七章参数估计 1.[ 一] 随机地取8只活塞环,测得它们的直径为(以 求总体均值卩及方差b 2的矩估计,并求样本方差 S 2。 n 2 6 (X i x) 6 10 i 1 S 2 6.86 10 6。 ln L(e ) nln(e ) n e inc (1 e ) In d 寫⑹ (1) f (x) e c e x (e 1},x c 0,其它 其中c >0为已知, e >1, e 为未知参数。 (2) f(x) 、e x e 1,0 x 1 0,其它. 其中e >0, e 为未知参数。 (5) P(X x) m p x (1 p)m x ,x 0,1,2, ,m,0 p 1, p 为未知参数。 解: ( 1) E(X) xf(x)dx c e c e x e dx e c e c e 1 e 1 e c 令 e c X e 1, 令 e 1 X X c (2) E(X) xf (x)dx e x e dx - 丄匚,令- '-e X ,We ( X )2 2.[二]设X , X ,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律 中的未知参数的矩估计量。 得e 1 e (5) -e 1 解:(1)似然函数 n L (e ) f (人)e n c n e (x 1 x 2 i 1 X n ) mm 计) 解:U,b 2的矩估计是 X 74.002 E (X ) = mp 令 mp = X ,解得?莖 m 3.[三]求上题中各未知参数的极大似然估计值和估计 量。 ln x i 0

(解唯一故为极大似然估计 量) In X i nln c i 1 ⑵ L(B ) n n _ f (X i ) e 2(X 1X 2 X n ) 0 1 ,ln L(B ) n 2~ n ln( 0) (0 1) In X i i 1 dI nL(0) n d 0 2 1 0 1 n In X i 0, i 1 ? (n In x i )2 0 (解唯一)故为极大似然 估 2.一 0 计量。 n m m n X i n mn 召 (5) L(p) P{X X i } p i1 (1 p) i1 , i - 1 X 1 X n n n n In L(p) In m X i x i In p (mn X i )l n(1 p), i 1 i 1 i 1 i 1 n mn x i i 1 0 1 p n X i d In L(p) i 1_ dp p n Xi - 解得 p q — —,(解唯一)故为极大似然估计量。 mn m 4.[四(2)]设X , X,…,X.是来自参数为入的泊松分布总体的一个样本,试求入 的极大似然估计量及矩估计量。 解:(1)矩估计 X ~ n 入),E ( X )=入,故*= X 为矩估计量。 (2)极大似然估计L (入) n P(X i ;入) 1 n X i *1 X 1 !X 2! X e n *, In L(入) i X i In In X i ! d In L(入) d 入 n X i i 1 入 0 ,解得* X 为极大似然估计 量。

相关文档
最新文档