数据通信原理实验报告 (4)
数据传递实验报告

实验名称:数据传递实验实验日期:2023年11月10日实验地点:实验室实验人员:[姓名]一、实验目的1. 理解数据在不同系统、设备之间传递的过程和原理。
2. 掌握使用常见的数据传递协议和方法。
3. 提高在实际工作中处理数据传递问题的能力。
二、实验原理数据传递是指在不同系统、设备之间传输数据的过程。
数据传递过程中,需要使用一定的协议和方法,以确保数据的正确、完整和高效传输。
三、实验内容1. 使用TCP/IP协议进行数据传递2. 使用串口通信进行数据传递3. 使用Modbus协议进行数据传递四、实验步骤1. 使用TCP/IP协议进行数据传递(1)搭建实验环境:两台计算机,一台作为服务器,一台作为客户端。
(2)编写服务器端程序:使用Python编写一个简单的TCP服务器程序,监听指定端口,接收客户端发送的数据。
(3)编写客户端程序:使用Python编写一个简单的TCP客户端程序,连接到服务器,发送数据。
(4)测试:在客户端发送数据,观察服务器端是否接收到数据。
2. 使用串口通信进行数据传递(1)搭建实验环境:一台计算机,一台具有串口功能的设备(如Arduino)。
(2)编写设备端程序:使用C语言编写一个简单的设备端程序,实现数据的读取和发送。
(3)编写计算机端程序:使用Python编写一个简单的计算机端程序,通过串口接收设备端发送的数据。
(4)测试:在设备端发送数据,观察计算机端是否接收到数据。
3. 使用Modbus协议进行数据传递(1)搭建实验环境:一台计算机,一台具有Modbus接口的设备(如PLC)。
(2)编写设备端程序:使用C语言编写一个简单的设备端程序,实现Modbus协议的数据读取和发送。
(3)编写计算机端程序:使用Python编写一个简单的计算机端程序,通过Modbus协议与设备端通信。
(4)测试:在设备端发送数据,观察计算机端是否接收到数据。
五、实验结果与分析1. 使用TCP/IP协议进行数据传递实验结果:客户端发送数据后,服务器端成功接收到数据。
通信原理实验报告

中南大学数字通信原理实验报告课程名称:数字通信原理实验班级:学号:姓名:指导教师:实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、实验步骤本实验使用数字信源单元和HDB3编译码单元。
1、熟悉数字信源单元和HDB3编译码单元的工作原理。
接好电源线,打开电源开关。
2、用示波器观察数字信源单元上的各种信号波形。
用信源单元的FS作为示波器的外同步信号,示波器探头的地端接在实验板任何位置的GND点均可,进行下列观察:(1)示波器的两个通道探头分别接信源单元的NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2)用开关K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ 码特点。
3、用示波器观察HDB3编译单元的各种波形。
仍用信源单元的FS信号作为示波器的外同步信号。
(1)示波器的两个探头CH1和CH2分别接信源单元的NRZ-OUT和HDB3单元的AMI-HDB3,将信源单元的K1、K2、K3每一位都置1,观察全1码对应的AMI码(开关K4置于左方AMI 端)波形和HDB3码(开关K4置于右方HDB3端)波形。
网络与数据通信实验报告

网络与数据通信实验报告实验1 网络协议分析alEthere一、ARP协议分析ARP协议,即地址解析协议,属于网络层协议。
它负责将IP地址转换成MAC地址,以便于在局域网中进行通信。
当一个计算机要与本网段的另一台计算机通信时,必须知道它的MAC地址才能进行通信。
一般是先查找本计算机内的ARP缓存表,通过目标计算机的IP地址找到与其对应的MAC地址。
如果找不到,则进行广播通信,由目标计算机作出响应。
ARP协议分析:Frame number : 5 指出了帧编号是5Packet length: 60 bytes 指出了数据包长度是60字节Source: 00:0d:87:f8:46:2f 指出了发送此数据包的计算机的MAC地址Destination: ff:ff:ff:ff:ff:ff 指出数据包是通过广播通信,广播到连接到总线上的所有计算机。
Type: ARP 指出了采用的协议是ARP协议Protocol Type: IP 这里标注还使用了一个网络层协议为IP,IP和ARP都是网络层上的协议Sender MAC address和Sender IP address 分别指出了发送此数据包的计算机的MAC地址和IP地址,以便于响应包响应时发送给该计算机Target MAC address 指出了该数据包的目标地址,且根据显示判断出这是一则广播通信,目标是与总线相连的所有计算机。
Target IP address:192.168.80.1 指出了请求的是该IP地址的MAC地址,连接在总线上192.168.80.1主机接到ARP请求包后通过与自己的IP对比,对此请求作出响应,回复自己的MAC地址。
二、HTTP协议分析http协议,即超文本传输协议,属于应用层协议。
功能是供用户访问遍布在Internet计算机上相互链接的文件。
服务器,客户机之间通http协议将页面从服务器传回客户端。
Frame number: 28 说明帧编号是28Packet length: 265 bytes 说明了数据包长度是265字节Destination : 00:0d:87:f8:51:c7(192.168.0.63) 说明目的计算机的MAC地址以及IP地址Source: 00:0d:87:f8:4c:f9(192.168.0.41) 说明发送数据包的源MAC地址以及IP地址Type: IP 即网络层使用的协议是IP协议IP协议的分析:IP协议是TCP/IP协议簇的网络层协议,负责将从传输层传过来的消息组装成IP数据报,传递给网络接口层;定义了统一的IP数据报格式,及其路由机制,使数据报独立地传向目标Source address: 192.168.0.41 说明发送数据包的源IP地址Destination address: 192.168.0.63 说明目的主机的IP地址Version: 4 说明版本号是4Header length: 20 bytes 说明IP数据报报头长度是20个字节Total length: 251 说明整个IP数据报报文总长度是251个字节Identification: 标志Flags: 标识这三者用来控制IP数据报的分片与重组,以满足Fragment offset: 片偏移量网络所能传输的帧长度的上限。
数据通信与计算机网络实验报告

实验一网线制作一实验目的1、了解局域网的组网方式以及双绞线的制作规范;2、使学生掌握RJ-45头的制作,以及网线连通性的测试。
二、实验仪器1、RJ-45头若干;2、双绞线若干米;3、RJ-45压线钳一把;4、测试仪一套。
三、实验原理1、双绞线(TP:Twisted Pair)也称双扭线,是最常见的一种传输介质。
两根具有绝缘保护层的铜线组成。
2、为什么两根线要扭在一块?当传输差分信号时,每一根导线在传输中辐射的电波会被另一根线上发出的电波抵消,因此可以程度上降低信号干扰。
3、双绞线的分类非屏蔽双绞线(UTP:Unshilded TP)距离很短时,传输率可达100Mbps~155Mbps。
屏蔽双绞线(STP:Shilded TP)铅萡包裹,减小辐射。
100米内传输速率可达155Mbps。
4、UTP优缺点缺点:对电波干扰敏感性较大,电气性较差。
优点:直径小,重量轻、易弯曲、易安装、价格便宜。
5、双绞线导线色彩编码白蓝、蓝白橙、橙白绿、绿白棕、棕6、双绞线的连接方法:直通线缆:水晶头两端都采用T568A标准或T568B标准。
交叉线缆:一端采用T568A标准,另一端采用T568B标准7、直通、交叉线缆应用场合直通线用的场合:PC-集线器Hub;集线器Hub-集线器Hub(普通口-级连口);集线器Hub(级连口)-交换机Switch; 交换机Switch-路由器Router;交叉线缆应用场合:PC-PC 机对机;集线器Hub(普通口)-集线器Hub(普通口);集线器Hub-集线器Hub(级连口-级连口);集线器Hub-交换机Switch; 交换机Switch-交换机Switch; 路由器Router-路由器Router;同种设备相连用交叉线,不同设备用直通线。
四、实验内容与步骤1、直通UTP线缆的制做。
2、实验步骤如下:第一步:利用压线钳剪线口剪出相应长度的网线。
第二步、剥掉双绞线的灰色保护层。
将线头放入剥线专用的道口,稍微用力握紧压线钳慢慢旋转,让刀口划开双绞线的保护胶皮,通常将双绞线的外皮剥去2-3厘米。
通信原理实验报告AM调制

通信原理实验报告AM调制实验报告:AM调制实验1.实验目的:了解AM调制的原理,并通过实验观察并验证AM调制过程。
2.实验仪器:-函数信号发生器-带宽可调的示波器-模拟电路实验板-电压表3.实验原理:AM调制是一种将调制信号的幅度变化作用在载波上的调制方式。
AM调制的过程可以通过以下公式表示:信号载波:c(t) = A_c * cos(2 * π * f_c * t)调制信号:m(t) = A_m * cos(2 * π * f_m * t)调制过程:s(t)=(1+k_a*m(t))*c(t)其中,A_c为载波的幅度,A_m为调制信号的幅度,f_c为载波频率,f_m为调制信号的频率,k_a为调制系数。
4.实验步骤:1)将函数信号发生器的输出信号与实验板上的载波输入端相连,调整函数信号发生器的频率为f_c。
2)将函数信号发生器的信号输入m(t)与实验板上的调制信号输入端相连,调整函数信号发生器的频率为f_m。
3)调整函数信号发生器的幅度为A_m,调整实验板上的幅度调节旋钮为k_a。
4)将实验板上的输出端与示波器相连,观察并记录示波器上的波形。
5)通过调整示波器的水平和垂直缩放,观察调制波的特征和调制系数对波形的影响。
6)测量电压表上的数值,计算出调制信号的幅度。
5.实验结果:实验过程中观察到载波和调制信号的波形均为正弦波,并且可以通过示波器的放大和缩小进行调整观察。
调制系数k_a的改变会使调制波的振幅发生变化,验证了调制信号的幅度变化作用在载波上的效果。
6.实验结论:AM调制是一种将调制信号的幅度变化作用在载波上的调制方式。
通过实验验证了调制信号的幅度变化对载波的影响。
AM调制可以用于无线电广播、电视、通信等领域,是一种常用的调制方式。
7.实验思考:通过调节示波器观察波形可以发现,调制信号的频率和载波的频率存在相互干扰的现象。
这是因为在AM调制过程中,调制信号的频率会影响载波的相位,进而影响到波形的形状。
通信原理的实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。
2. 掌握模拟通信和数字通信的基本技术。
3. 熟悉调制、解调、编码、解码等基本过程。
4. 培养实际操作能力和实验技能。
三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。
1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。
模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。
2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。
数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。
五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。
2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。
(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。
2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。
(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。
通信原理实验报告答案(3篇)
第1篇一、实验目的1. 理解通信系统的基本原理和组成。
2. 掌握通信系统中的调制、解调、编码、解码等基本技术。
3. 熟悉实验仪器的使用方法,提高动手能力。
4. 通过实验,验证通信原理理论知识。
二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。
2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。
3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。
三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。
2. 信号源:提供调制、解调所需的信号。
3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。
四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。
(2)将信号源信号输入调制器,观察调制后的信号波形。
(3)调整解调器参数,如解调方式、解调频率等。
(4)将调制信号输入解调器,观察解调后的信号波形。
2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。
(2)将调制信号输入解调器,观察解调后的信号波形。
(3)调整调制器参数,如调制方式、调制频率等。
(4)将解调信号输入调制器,观察调制后的信号波形。
3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。
(2)将信息信号输入编码器,观察编码后的数字信号。
(3)设置解码器参数,如解码方式、解码长度等。
(4)将编码信号输入解码器,观察解码后的信息信号。
4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。
(2)将信号源信号输入传输线路,观察传输过程中的信号变化。
(3)调整传输线路参数,如衰减、反射等。
(4)观察传输线路参数调整对信号传输的影响。
五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。
2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。
通信原理实验实验报告
1. 理解并掌握通信系统基本组成及工作原理。
2. 掌握通信系统中信号的传输与调制、解调方法。
3. 学习通信系统性能评估方法及分析方法。
二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。
(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。
(3)通过实验验证通信系统的工作原理。
2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。
(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。
(3)通过实验验证调制、解调方法的有效性。
3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。
(2)通过实验测量通信系统性能参数,如误码率、信噪比等。
(3)分析实验数据,总结通信系统性能。
1. 观察通信原理实验平台,了解通信系统的基本组成。
2. 设置实验参数,如调制方式、载波频率、调制指数等。
3. 观察并记录实验过程中各模块的输出信号。
4. 利用示波器、信号分析仪等仪器分析实验数据。
5. 计算通信系统性能参数,如误码率、信噪比等。
6. 分析实验结果,总结实验结论。
五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。
2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。
例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。
3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。
实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。
4. 分析实验数据,总结实验结论。
实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。
六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。
实验四OOK信号的调制与解调
实验四OOK信号的调制与解调
北京邮电大学实验报告
实验报告
题目:基于TIMS通信原理实验报告
2022年12月
北京邮电大学实验报告
一、实验目的
1.了解OOK信号的产生及其实现方法。
2.了解OOK信号波形和功率谱的特点及其测量方法。
3.了解OOK信号的解调及其实现方法。
二、实验原理
OOK的产生原理图:
OOK的非相干解调:
将OOK信号整流,再经过低通,实现包络检波,用提取出来的时钟抽样判决得到解调输出
三、实验步骤
1.连接电路,产生OOK信号。
用示波器观察各点信号波形,并用
频谱仪观察各点功率谱(将序列发生器模块印刷电路板上的双列直插开关拨到“11”,使码长为2048。
北京邮电大学实验报告
2.自主完成时钟提取、采样、判决,产生OOK的非相干解调信号。
用
示波器观察各点波形。
四、实验结果
4分频2.083khz时钟信号:
北京邮电大学实验报告
ook调制信号:
00k信号的解调:
北京邮电大学实验报告
与初始序列相比有一定的时延和失真,但是调试了很久,无法改善。
五、实验讨论(思考题)
对OOK信号的相干解调,如何进行载波提取?请画出原理框图及实验
框图。
答:从接收到的OOK信号提取离散的载频分量,恢复载波。
框图如下:北京邮电大学实验报告
六、实验总结:
ook的调制与解调相对来说没有什么特别的困难点,有了上面三次实验的基础,整个实验还是颇为顺利,但是最后解调失真一直不能
削去,以后还是要追求尽善尽美。
通信原理实验报告
实验一基带信号的常见码型变换一、实验目的1.熟悉NRZ,BNRZ,RZ,BRZ,曼彻斯特,CMI,密勒,PST码型变换原理及工作过程。
2.观测数字基带信号的码型变换测量点波形。
二、实验原理在实际的基带传输系统中,传输码的结构应具有以下主要特性:1).相应的基带信号无直流分量,且低频分量少。
2).便于从信号中提取定时信息。
3).信号中高频分量尽量少,以节省传输频带并减少码间串扰。
4).以上特性不受信息源统计特性的影响,即适应信息源的变化。
5).编译码设备要尽可能简单。
1.单极性不归零码(NRZ码)单极性不归零码中,二进制代码“1”用幅度为E的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
2.双极性不归零码(BNRZ码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
3.单极性归零码(RZ码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
4.双极性归零码(BRZ码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
5.曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
例如:消息代码: 1 1 0 0 1 0 1 1 0…曼彻斯特码:10 10 01 01 10 01 10 10 01…曼彻斯特码只有极性相反的两个电平,因为曼彻斯特码在每个码元中期的中心点都存在电平跳变,所以含有位定时信息,又因为正、负电平各一半,所以无直流分量。
6.CMI码CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建农林大学计算机与信息学院 信息工程类
实验报告 课程名称: 数据通信原理 姓 名: 系: 电子信息工程 专 业: 电子信息工程 年 级: 学 号: 指导教师: 职 称: 讲师
2012年 12 月 3 日 实验项目列表 序号 实验项目名称 成绩 指导教师 1 数字信号源实验 2 数字调制实验 3 2ASK、2FSK数字解调实验 4 2DPSK数字解调实验 5 数字基带通信系统实验 福建农林大学计算机与信息学院信息工程类实验报告 系: 电子信息工程专业: 电子信息工程 年级: 2010 姓名: 学号: 实验课程: 数据通信原理 实验室号:_____田C-405 实验设备号: 3 实验时间: 11.21 指导教师签字: 成绩: 实验一 数字信号源实验 一、 实验目的和要求 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握集中插入帧同步码时分复用信号的帧结构特点。 3、掌握数字信号源电路组成原理。 4、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。 5、用示波器观察NRZ、FS、BS三信号的对应关系。 6、学习电路原理图。 二、实验原理 本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示‘1’码,熄状态表示‘0’码。 本模块有以下测试点及输入输出点: CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz FS 信源帧同步信号输出点/测试点,频率为7.1KHz NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: 晶振 CRY:晶体;U1:反相器7404 分频器 US2:计数器74161;US3:计数器74193; US4:计数器40160 并行码产生器 KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应 八选一 US5、US6、US7:8位数据选择器4512 三选一 US8:8位数据选择器4512 倒相器 US10:非门74HC04 抽样 US9:D触发器74HC74 BSS5S4S3S2S1 BS-OUT NRZ-OUTCLK
并 行 码 产 生 器八选一八选一八选一分 频 器三选一NRZ抽
样
晶振FS
倒相器 图1-1 数字信源方框图
010×0111××××××××××××××××数据2数据1帧同步码无定义位
图1-2 帧结构 下面对分频器,八选一及三选一等单元作进一步说明。 (1)分频器 74161进行13分频,输出信号频率为341kHz。74161是一个4位二进制加计数器,预置在3状态。 74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号。BS为位同步信号,频率为170.5kHz。S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。74193是一个4位二进制加/减计数器,当CD= PL =1、MR=0时,可在Q0、QB、QC及QD端分别输出上述4个信号。 40160是一个二一十进制加计数器,预置在7状态,完成÷3运算,在Q0
和Q1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的
1/3。 分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。 (2)八选一 采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。US5、US6和US7的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0 ~ x7分别K1、K2、K3输出的8个并行信号连接。由表1-1可以分析出US5、US6、US7输出信号都是码速率为170.5KB、以8位为周期的串行信号。 (3)三选一 三选一电路原理同八选一电路原理。S4、S5信号分别输入到US8的地址端A和B,US5、US6、US7输出的3路串行信号分别输入到US8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB的2路时分复用信号,此信号为单极性不归零信号(NRZ)。
S3
S2S1
(a)S5S4S3
(b) 图1-4 分频器输出信号波形 (4)倒相与抽样 图1-1中的NRZ信号的脉冲上升沿或下降沿比BS信号的下降沿稍有点迟后。在实验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这两个信号由数字信源提供。倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT及BS-OUT信号满足码变换电路的要求。 表1-1 4512真值表 C B A INH DIS Z 0 0 0 0 0 x0 0 0 1 0 0 x1 0 1 0 0 0 x2 0 1 1 0 0 x3 1 0 0 0 0 x4 1 0 1 0 0 x5 1 1 0 0 0 x6 1 1 1 0 0 x7 Φ Φ Φ 1 0 0 Φ Φ Φ Φ 1 高阻 123456
ABCD654321DCBA
P015P11P210P39CU5CD4Q03QB2QC6QD7TCU12TCD13PL11MR14US374LS19312US1A74LS04P03P14P25P36Q014Q113Q212Q311TC15CEP7CET10CLK2PE9MR1US274LS161RS2100kP03P14O-014P25O-113P36O-212O-311CET10CEP7CP2TC15PE9MR1US440160X01X12X23X34X45X56X67X79A11B12C13DIS15INH10Z14US54512X01X12X23X34X45X56X67X79A11B12C13DIS15INH10Z14US8451234US1B74LS0489US1D74LS0412345678161514131211109K1123456789RES1BSS1S2S3X01X12X23X34X45X56X67X79A11B12C13DIS15INH10Z14US6451212345678161514131211109K2123456789RES2X01X12X23X34X45X56X67X79A11B12C13DIS15INH10Z14US7451212345678161514131211109K3123456789RES3BS-OUTBS-OUTCLKS4S5FSCRYS14.433MCS122pRS11k56US1C74LS041011
US1E
74LS0412
13US1F74LS04
selfself11223344556677889910101111121213131414151516161717181819192020LED1LED1011223344556677889910101111121213131414151516161717181819192020LED2LED1011223344556677889910101111121213131414151516161717181819192020LED3LED10VCCVCCVCCVCCVCCVCCVCCVCC NRZ-OUT12
US10A
7404
CLK3D2SD4CD1Q5Q6
US9A
7474
数字信号源 FS信号可用作示波器的外同步信号,以便观察2DPSK等信号。 FS信号、NRZ-OUT信号之间的相位关系如图1-5所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。FS信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT
图1-3 数字信源电原理图 码第一位起始时间超前一个码元。 FSNRZ-OUT帧同步码数据1数据2
图1-5 FS、NRZ-OUT波形 三、 主要仪器设备 (1)通信原理实验箱 (2)示波器 四、操作方法与实验步骤 1、熟悉信源模块的工作原理。 2、打开电源开关及模块电源开关,用示波器观察数字信源模块上的各种信号波形。 3、用同轴电缆将FS输出与示波器外同步信号输入端相连接,把FS作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄); (2) 用拨码K1产生代码×1110010(×为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。 五、实验内容及实验数据记录 1、熟悉信源模块的工作原理。 本模块有以下测试点及输入输出点: CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz FS 信源帧同步信号输出点/测试点,频率为7.1KHz NRZ-OUT NRZ信号输出点/测试点
(信号源模块)