2019-2020上学期九年级数学专题复习资料五:二次函数解析式的求法例谈
初三数学二次函数的表达式讲义

学科教师辅导讲义一、 知识梳理二、 知识概念(一)二次函数解析式的表示方法1、一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2、顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3、两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.体系搭建(二)二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式.考点一:一般式例1、如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是()A.y=x2﹣x﹣2B.y=﹣x2﹣x﹣2或y=x2+x+2C.y=﹣x2+x+2D.y=x2﹣x﹣2或y=﹣x2+x+2例2、如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx﹣3的图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y1>y2时自变量x的取值范围.考点二:顶点式例1、根据表中的自变量x与函数y的对应值,可判断此函数解析式为()x…﹣1012…y…﹣12…A.y=x B.y=﹣C.y=(x﹣1)2+2D.y=﹣(x﹣1)2+2例2、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3D.y=3(x+1)2+3例3、若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0 5B.0 1C.﹣4 5D.﹣4 1考点三:交点式(两根式)例1、如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2,过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为()A.y=(x﹣2)2+4B.y=(x﹣2)2+3C.y=(x﹣2)2+2D.y=(x﹣2)2+1例2、图象经过P(3,4)且与x轴两个交点的横坐标为1和﹣2,求这个二次函数的解析式.考点四:待定系数法例1、如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的解析式;(2)在抛物线上有一点P,满足S△AOP=1,请直接写出点P的坐标.例2、在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.实战演练➢课堂狙击1、与y=2(x﹣1)2+3形状相同的抛物线解析式为()A.y=1+x2B.y=(2x+1)2C.y=(x﹣1)2 D.y=2x22、一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3 B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3D.y=﹣(2x﹣1)2+33、二次函数y=x2﹣6x+5配成顶点式正确的是()A.y=(x﹣3)2﹣4B.y=(x+3)2﹣4C.y=(x﹣3)2+5D.y=(x﹣3)2+144、二次函数图象如图所示,则其解析式是()A.y=﹣x2+2x+4B.y=x2+2x+4C.y=﹣x2﹣2x+4 D.y=﹣x2+2x+35、如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+26、如图,△AOB是边长为2的等边三角形,过点A的直线y=﹣x+m与x轴交于点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.7、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D (1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.➢课后反击1、已知抛物线y=x2﹣2x+c的顶点在x轴上,你认为c的值应为()A.﹣1B.0C.1D.22、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式()A.y=﹣2x2+8x+3B.y=﹣2x‑2﹣8x+3C.y=﹣2x2+8x﹣5D.y=﹣2x‑2﹣8x+23、把二次函数y=x2﹣4x+1化成y=a(x+m)2+k的形式是()A.y=(x﹣2)2+1 B.y=(x﹣2)2﹣1C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3 4、若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b,k的值分别()A.0,5B.﹣4,1C.﹣4,5D.﹣4,﹣15、已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=﹣3(x﹣1)2+3B.y=3(x﹣1)2+3C.y=﹣3(x+1)2+3 D.y=3(x+1)2+36、若所求的二次函数图象与抛物线y=2x2﹣4x﹣1有相同的顶点,并且在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,则所求二次函数的解析式为()A.y=﹣x2+2x+4B.y=﹣ax2﹣2ax﹣3(a>0)C.y=﹣2x2﹣4x﹣5D.y=ax2﹣2ax+a﹣3(a<0)7、已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),(1)求二次函数和一次函数解析式.(2)求△OAB的面积.8、已知:二次函数y=﹣x2+bx+c的图象过点A(﹣1,0)和C(0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数y=﹣x2+bx+c的图象在直线y=1上方的部分沿直线y=1翻折,图象其余的部分保持不变,得到的新函数图象记为G,点M(m,y1)在图象G上,且y1≥0,求m的取值范围.直击中考1、【2016•兰州】二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣1)2+3C.y=(x﹣2)2+2D.y=(x﹣2)2+42、【2013•深圳】已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A.B.C.D.3、【2011•泰安】若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353A.5B.﹣3C.﹣13D.﹣274、【2008•济宁】已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2﹣2x+3B.y=x2﹣2x﹣3C.y=x2+2x﹣3 D.y=x2+2x+35、【2010•深圳】如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S‑PAD=4S‑ABM成立,求点P的坐标.重点回顾二次函数表达式的三种形式:一般式、顶点式、交点式;待定系数法名师点拨1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式.学霸经验➢本节课我学到➢我需要努力的地方是。
2019中考数学专题复习《二次函数与线段最值问题》含解析

2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
中考数学专题复习练习:二次函数综合应用问题

2019-2020年中考数学专题复习练习:二次函数综合应用问题已知直线y=3x+3x与x轴交于点A,与y轴交于点B,一抛物线过A、B两点,且与x轴交于点C(3,0),顶点为D。
(1)、求A、B两点坐标及△AOB的面积。
(2)、求抛物线的解析式。
(3)、在x轴上方的抛物线上找一点D₁,使△A D₁C的面积最大,并求面积的最大值及面积最大时点D₁的坐标。
(4)、在抛物线的对称轴上是否存在点P,使△APB为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。
(5)、在y轴上是否存在点Q,使得以A、O、Q为顶点的三角形与△AOB相似?若存在,求出点Q的坐标;若不存在,请说明理由。
(6)、在抛物线的对称轴上是否存在点M,使MA+MB最小?若存在,求出点M的坐标,并求出这个最小值;若不存在,请说明理由。
(7)、在抛物线上是否存在点N,使△ANC与△ADC的面积比为3:4?若存在,求出点N的坐标;若不存在,请说明理由。
(8)在抛物线的对称轴上是否存在点Y,使△AYB为直角三角形?若存在,求出点Y的坐标;若不存在,请说明理由。
(9)、点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为√2时,求点E的坐标。
(10)、过点A的直线与抛物线交于点F,交y轴于点G,其中点F的横坐标为2,点H是抛物线对称轴上一动点,则在x轴上是否存在一点K,使B、H、K、F四点所围成的四边形周长最小?若存在,求出这个最小值及H、K的坐标;若不存在,请说明理由。
(11)、在抛物线上是否存在一点T,过点T作TM₁⊥x轴于点M₁,过点M₁作M₁N₁∥BC,交AB于点N₁。
连接M₁B,使△B N₁M₁∽△C M₁B,若存在,求出点T的坐标;若不存在,请说明理由。
(12)、点P₁是直线BC上方的抛物线上的一个动点(不与B、C重合),过点P₁作P₁E₁⊥x轴于点E₁,交直线BC于点F₁,作P₁B₁⊥BC于点B ₁。
动点P₁在什么位置时,△ P₁B₁F₁的周长最大?求出此时点P₁的坐标。
中考数学复习 第三单元 函数 第15课时 二次函数的实际应用数学课件

25 + 5 + = 0.5.
如图15-3记录了三次实验的数据.根据上述
= -0.2,
函数模型和实验数据,可以得到最佳加工时
解得 = 1.5,
间为(
)
= -2,
A.3.50分钟
即 p=-0.2t2+1.5t-2,
[解析]设售价定为x元/千克,则每千克获利(x-4.1)元.
∵价格每上涨0.1元,每天少卖出20千克,
∴每天的销售量为200-20(x-4.1)÷0.1=-200x+1020(千克).
设每天获利W元,则W=(-200x+1020)(x-4.1)
=-200x2+1840x-4182=-2(100x2-920x+2116)+4232-4182=-2(10x-46)2+50.
图15-1
2.某品牌钢笔每支进价8元,按10元1支出售
[答案] D
时每天能卖出20支,市场调查发现,如果每支 [解析]设每天的利润为w元,涨价x元.
涨价1元,每天就少卖出2支,为了每天获得最 由题意得,每天利润为:
大利润,其售价应定为(
)
w=(2+x)(20-2x)=-2x2+16x+40
A.11元
后 4 s 滑行 24 m.
7.春节期间,物价局规定某种蔬菜的最低价格为4.1元/千克,最高价格为4.5元/千克,
小王按4.1元/千克购入,若原价出售,则每天平均可卖出200千克,若价格每上涨0.1
元,则每天少卖出20千克,则蔬菜售价定为
初中数学—二次函数知识讲解

海
有 (1)c﹤0,抛物线与 y 轴交点的纵坐标为负,即抛物线 无
与 y 轴的交点在 x 轴下方;
路 (2)c=0,抛物线与 y 轴交点的纵坐标为 0,即抛物线与 涯
勤 y 轴的交点为原点;
苦
(3) c﹥0,抛物线与 y 轴交点的纵坐标为正,即抛物线
为 与 y 轴的交点在 x 轴上方;
作
径
舟
函数与方程
苦
为
作
径
舟
性质
书
学
以y=ax2+bx+c,(a≠0)函数图像与各系数间关系为例
山 与一次项系数 b的关系
海
在二次项系数 a 确定的前提下,b 决定了抛物线的对称轴
有 (2)a﹤0 的前提下: 当 b﹤0 时,-(b/2a)﹤0,即抛物 无
路 线的对称轴在 y 轴左侧; 当 b=0 时,-(b/2a)=0,即抛 涯
物线的对称轴是 y 轴; 当 b﹥0 时,-(b/2a)﹥0,即抛
勤 物线的对称轴在 y ห้องสมุดไป่ตู้右侧
苦
为 总结:对称轴在 y 轴左侧,则 ab﹥0;对称轴在 y 轴右 作
侧,则 ab﹤0;亦可倒推。概括 地说,即“左同右异”。
径
舟
性质
书
学
以y=ax2+bx+c,(a≠0)函数图像与各系数间关系为例
山 与常数项 c的关系
路 (2)当题给条件为已知图象的顶点坐标或对称轴时,可设 涯
勤 解析式为顶点式:y=a(x-h)²+k(a≠0).
苦
(3)当题给条件为已知图象与 x 轴的两个交点坐标时,可
为 设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).
九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

专题03 二次函数与方程、不等式知识网络重难突破知识点一二次函数与一元二次方程二次函数y=ax2+bx+c(a,b,c是常数,a≠0)1.抛物线与x轴的交点的横坐标是一元二次方程ax2+bx+c=0的解.2.若已知二次函数y=ax2+bx+c的函数值为s,求自变量x的值,就是解一元二次方程ax2+bx+c=s.【典例1】(2019•镇海区一模)若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c =0的解为()A.x1=﹣3,x2=﹣1 B.x1=﹣1,x2=3C.x1=1,x2=3 D.x1=﹣3,x2=1【点拨】先确定抛物线的对称轴为直线x=1,再根据抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而根据抛物线与x轴的交点问题得到方程ax2﹣2ax+c=0的解.【解析】解:抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的另一个交点坐标为(3,0),所以方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.【变式训练】1.(2018秋•江汉区期中)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是()x…﹣3 ﹣2 ﹣1 0 1 …y…﹣11 ﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.0<x1<1【点拨】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解析】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.【点睛】本题考查了图象求一元二次方程的近似根,两个函数值的积小于零时,方程的解在这两个函数值对应的自变量的中间.2.(2019•德城区一模)关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5 B.3<α<5<βC.α<2<β<5 D.α<3且β>5【点拨】根据平移可知:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,依此画出函数图象,观察图形即可得出结论.【解析】解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.【点睛】本题考查了抛物线与x轴的交点、二次函数的图象以及平移的性质,依照题意画出函数图象,利用数形结合解决问题是解题的关键.3.(2019秋•镇海区校级期中)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为﹣3,1.【点拨】根据抛物线与直线的交点坐标的横坐标即可求解.【解析】解:因为抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),所以关于x的方程ax2=bx+c的解为x1=﹣3,x2=1,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣3,x2=1.故答案为﹣3、1.【点睛】本题考查了抛物线与直线交点坐标,解决本题的关键是两交点的横坐标就是方程的解.知识点二二次函数与x轴交点情况对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.【典例2】下列二次函数的图象与x轴没有交点的是()A.y=﹣3x2﹣4x B.y=x2﹣3x﹣4 C.y=x2﹣6x+9 D.y=2x2+4x+5【点拨】分别计算四个选项中的判别式的值,然后根据判别式的意义确定抛物线与x轴的交点个数,从而可对各选项进行判断.【解析】解:A、△=(﹣4)2﹣4×(﹣3)×0>0,此抛物线与x轴有两个交点,所以A选项错误;B、△=(﹣3)2﹣4×(﹣4)>0,此抛物线与x轴有两个交点,所以B选项错误;C、△=(﹣6)2﹣4×9=0,此抛物线与x轴有1个交点,所以C选项错误;D、△=42﹣4×2×5<0,此抛物线与x轴没有交点,所以D选项正确.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2﹣4ac决定抛物线与x轴的交点个数(△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点).【变式训练】1.(2019秋•新昌县校级月考)二次函数y=2x2﹣5x+3的图象与x轴的交点有()A.1个B.2个C.3个D.4个【点拨】△=b2﹣4ac=25﹣4×2×3=1>0,即可求解.【解析】解:△=b2﹣4ac=25﹣4×2×3=1>0,故二次函数y=2x2﹣5x+3的图象与x轴有两个交点,故选:B.【点睛】本题考查的是抛物线与x轴的交点,主要考查根的判别式,要求学生非常熟悉函数与坐标轴的交点代表的意义.2.(2018秋•西湖区期末)一元二次方程x2+bx+c=0有一个根为x=﹣3,则二次函数y=2x2﹣bx﹣c的图象必过点()A.(﹣3,0) B.(3,0) C.(﹣3,27) D.(3,27)【点拨】先把x=﹣3代入方程x2+bx+c=0得3b﹣c=9,利用整体代入的方法计算出自变量为﹣3对应的函数值为27,从而可判断抛物线经过点(﹣3,27).【解析】解:把x=﹣3代入方程x2+bx+c=0得9﹣3b+c=0,则3b﹣c=9,当x=﹣3时,y=2x2﹣bx﹣c=18+3b﹣c=18+9=27,所以二次函数y=2x2﹣bx﹣c的图象必过点(﹣3,27).故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的图象上点的坐标特征.3.(2018秋•瑞安市期末)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0) B.(0,﹣2) C.(0,﹣3) D.(﹣3,0)【点拨】利用点B与点A关于直线x=﹣1对称确定B点坐标.【解析】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=﹣1,点A的坐标为(1,0),∴点B的坐标是(﹣3,0).故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.知识点三二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.【典例4】(2019秋•新昌县校级月考)已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是()A.<x<2 B.x>2或x<C.x<﹣2或x>D.﹣2<x<【点拨】联立y1=x2、y2=x+3并解得:x=﹣2或,y1<y2,此时直线在抛物线上方,即可求解.【解析】解:联立y1=x2、y2=x+3并解得:x=﹣2或,∵y1<y2,即直线在抛物线上方时,确定x的取值范围,此时,﹣2<x,故选:D.【点睛】本题考查的是二次函数与不等式(组),要求学生通过函数图象交点,比较函数值的大小,从而确定不等式的解值,而不是采取直接解不等式的方法求解.【变式训练】1.(2018秋•苍南县期中)如图,二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),则不等式ax2+bx+c>2的解集为0<x<4.【点拨】直接利用二次函数图象利用A,B点坐标得出不等式ax2+bx+c>2的解集.【解析】解:如图所示:∵二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),∴不等式ax2+bx+c>2的解集为:0<x<4.故答案为:0<x<4.【点睛】此题主要考查了二次函数与不等式,正确利用数形结合分析是解题关键.2.(2018秋•下城区期末)已知函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过A(4,﹣4).若y2≤y1,则x的取值范围为x≤0或x≥4.【点拨】先A点坐标代入y2=mx+2得4m+2=﹣4,再求出m,则可判断二次函数图象的开口向上,易得函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),然后根据函数图象,写出直线不在抛物线上方所对应的自变量的范围即可.【解析】解:把A(4,﹣4)代入y2=mx+2得4m+2=﹣4,解得m=﹣,∵﹣(m+1)>0,∴二次函数图象的开口向上,∵函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),∴y2≤y1,则x的取值范围为x≤0或x≥4.故答案为x≤0或x≥4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.3.(2019秋•秀洲区期中)如图,直线y=x+m和抛物线y=x2+bx+3都经过点A、点B,且A(1,0),(1)求m的值及点B的坐标;(2)求不等式x2+bx+3≥x+m的解集.(直接写出答案)【点拨】(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,同理解得:b=﹣4,联立方程组即可求解;(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【解析】解:(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,故直线的表达式为:y=x﹣1…①;将点A的坐标代入抛物线表达式得:0=1+b+3,解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x+3…②,联立①②并解得:x=1或4,故点B(4,3);(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.巩固训练1.(2019春•西湖区校级月考)函数y=ax2+bx+c如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则()A.k>0 B.k>﹣3 C.k<﹣3 D.k=0【点拨】结合函数图象,利用当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,从而可对各选项进行判断.【解析】解:抛物线y=ax2+bx+c的顶点的纵坐标为﹣3,直线y=﹣3与抛物线y=ax2+bx+c=0只有一个交点,当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,所以当k>﹣3时,方程ax2+bx+c=k有两个不相等的实数根.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2.(2019春•安吉县期中)如图,抛物线y=﹣x2+mx的对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<3的范围内有解,则t的取值范围是()A.﹣5<t≤4 B.3<t≤4 C.﹣5<t<3 D.t>﹣5【点拨】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=﹣x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【解析】解:∵抛物线y=﹣x2+mx的对称轴为直线x=2,∴﹣=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=3;当x=3时,y=﹣x2+4x=3,∵关于x的一元二次方程x2+mx﹣t=0(t为实数)在1<x<3的范围内有解,∴抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点,∴3<t≤4.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.(2019•慈溪市模拟)已知抛物线y=x2+mx+n与x轴只有一个公共点,且过点A(a,b),B(a﹣4,b),则b 的值为()A.4 B.2 C.6 D.9【点拨】根据抛物线y=x2+mx+n与x轴只有一个公共点,可知△=0,从而可以得到m与n的关系,再根据抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),可以得到a和m的关系,从而可以求得b的值.【解析】解:∵抛物线y=x2+mx+n与x轴只有一个公共点,∴△=m2﹣4×1×n=m2﹣4n=0,∴n=m2,∵抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),∴b=a2+ma+n,b=(a﹣4)2+m(a﹣4)+n,∴a2+ma+n=(a﹣4)2+m(a﹣4)+n,化简,得a=,∴b=a2+ma+n=()2+m×+m2=4,故选:A.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出b的值.4.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y =(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2C.M=N或M=N+1 D.M=N或M=N﹣1【点拨】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.【解析】解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.【点睛】本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.5.(2019春•西湖区校级月考)函数y=x2+bx+c与y=x的图象如图所示,则不等式x2+(b﹣1)x+c<0的解集为1<x<3.【点拨】根据当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解析】解:∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.∴不等式x2+(b﹣1)x+c<0的解集为1<x<3,故答案为1<x<3.【点睛】主要考查二次函数与不等式(组),此题难度适中,注意掌握数形结合思想的应用.6.(2019•拱墅区校级模拟)已知如图二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示)则能使y1<y2成立的x的取值范围是﹣2<x<8.【点拨】根据函数图象,写出抛物线在直线下方部分的x的取值范围即可.【解析】解:由图可知,﹣2<x<8时,y1<y2.故答案为:﹣2<x<8.【点睛】本题考查了二次函数与不等式组,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.7.(2019•柯城区校级一模)如图,已知直线y1=﹣x+2与x轴交于点A,与y轴交于点B.过A,B两点的抛物线y2=ax2+bx+c交x轴于点C(﹣1,0).(1)求A,B的坐标;(2)求抛物线的解析式;(3)求出当y1>y2时,自变量x的取值范围.【点拨】(1)利用一次函数的解析式确定A、B的坐标;(2)利用待定系数法求抛物线解析式;(3)写出抛物线在直线下方所对应的自变量的范围.【解析】解:(1)当x=0时,y=﹣x+2=2,则B(0,2);当y=0时,﹣x+2=0,解得x=4,则A(4,0);(2)设抛物线解析式为y=a(x+1)(x﹣4),把B(0,2)代入得a(0+1)(0﹣4)=2,解得:a=﹣,所以抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;(3)当y1>y2时,x的取值范围为x<0或x>4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了抛物线与x轴的交点问题和二次函数的性质.8.(2019春•西湖区校级月考)若二次函数y=kx2+(3k+2)x+2k+2.(1)若抛物线的对称轴是直线x=﹣1,求k的值;(2)求证:抛物线与x轴有交点.(3)经研究发现,无论k为何值,抛物线经过某些特定的点,请求出这些定点.(4)若y1=2x+2,在﹣2<x<﹣1范围内请比较y1,y的大小.【点拨】(1)抛物线的对称轴是直线x=﹣1=﹣,即可求解;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,即可求解;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,即可求解;(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【解析】解:(1)抛物线的对称轴是直线x=﹣1=﹣,解得:k=﹣2;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,故:抛物线与x轴有交点;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,则定点为:(﹣1,0)、(﹣2,﹣2);(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。
专题08二次函数的图象与性质(讲)-2019年中考数学二轮复习
备战2019年中考二轮讲练测(精选重点典型题)专题08 二次函数的图象与性质(讲案)一讲考点——考点梳理(一)二次函数的定义形如2y ax bx c =++(其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数. (二)二次函数的性质(1)a 决定抛物线的开口方向①0a >⇔开口向上;②0a <⇔开口向下. (2)c 决定抛物线与y 轴交点的位置①0c >⇔图象与y 轴交点在x 轴上方;②0c =⇔图象过原点;③0c <⇔图象与y 轴交点在x 轴下方. (3)a b 、决定抛物线对称轴的位置(对称轴:2bx a=-) ①a b 、同号⇔对称轴在y 轴左侧;②0b =⇔对称轴是y 轴;③a b 、异号⇔对称轴在y 轴右侧,简记为:左同右异中为0.(4)顶点坐标24()24b ac b a a --,.(5)24b ac ∆=-决定抛物线与x 轴的交点情况. ①△>0⇔抛物线与x 轴有两个不同交点; ②△=0⇔抛物线与x 轴有唯一的公共点(相切); ③△<0⇔抛物线与x 轴无公共点.(6)二次函数是否具有最大、最小值由a 判断.①当a>0时,抛物线有最低点,函数有最小值;②当a<0时,抛物线有最高点,函数有最大值. (7)242a b a b c a b c ±±+±+、、 的符号的判定:x yO-112a-b 2a+b①若对称轴在直线x=1的左侧,则2a b +与a 同号,若对称轴在直线x=1的右侧,则2a b +与a 异号,若对称轴为直线x=1,则2a b +=0,简记为:1的两侧判2a b +,左同右异中为0;②若对称轴在直线1x =-的左侧,则2a b -与a 异号,若对称轴在直线1x =-的右侧,则2a b -与a 同号,若对称轴为直线1x =-,则2a b -=0,简记为:-1的两侧判2a b -,左异右同中为0; ③当1x =时,y a b c =++,所以a b c ++的符号由1x =时,对应的函数值y 的符号决定; 当1x =-时,y a b c =-+,所以a b c -+的符号由1x =-时,对应的函数值y 的符号决定; 当2x =时,42y a b c =++,所以42a b c ++的符号由2x =时,对应的函数值y 的符号决定; 当2x =-时,42y a b c =-+,所以42a b c -+的符号由2x =-时,对应的函数值y 的符号决定; 简记为:表达式,请代值,对应y 值定正负; 对称轴,用处多,三种式子a 相约;y 轴两侧判a b 、,左同右异中为0;1的两侧判2a b +,左同右异中为0; 1两侧判2a b -,左异右同中为0. (三)二次函数的解析式①一般式:2y ax bx c =++()0≠a ,用于已知三点,求抛物线的解析式.②顶点式:2()y a x h k =-+,用于已知顶点坐标或最值或对称轴,求抛物线的解析式.③交点式:()()21x x x x a y --=,其中1x 、2x 是二次函数与x 轴的两个交点的横坐标.若已知对称轴和在x 轴上的截距,也可用此式. (四)二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少.(五)二次函数图象的平移 方法一:顶点法二次函数的平移实际上是顶点的平移,故可以把原抛物线化为顶点式,通过顶点的平移来寻找答案。
2019-2020届初三 中考复习 实际问题与二次函数【基础】专项练习(含答案解析)
实际问题与二次函数【基础】专项练习一、简答题1、某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?2、小明跳起投篮,球出手时离地面m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?3、如图所示,某小区计划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条宽均为x m的通路,使其中两条与AB垂直,另一条与AB平行,剩余部分种草,设剩余部分的面积为y m2,求y关于x的函数表达式,并写出自变量的取值范围.4、.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半月内获得最大的利润?5、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?6、如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计)。
2022-2023学年人教版九年级数学上学期压轴题汇编专题05 二次函数的图像和性质(含详解)
2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题05 二次函数的图像和性质考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•长沙期末)抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y22.(2分)(2022春•长沙期末)已知二次函数y=(x﹣1)2+1,则关于该函数的下列说法正确的是()A.该函数图象与y轴的交点坐标是(0,1)B.当x>1时,y的值随x值的增大而减小C.当x取0和2时,所得到的y的值相同D.当x=1时,y有最大值是13.(2分)(2022春•岳麓区校级期末)将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线()A.y=(x+4)2+4 B.y=(x﹣4)2+4 C.y=(x+4)2﹣2 D.y=(x﹣4)2﹣24.(2分)(2022春•岳麓区校级期末)抛物线y=(x+1)2﹣3的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣3 D.直线x=35.(2分)(2021秋•雨花区期末)在同一平面直角坐标系中,函数y=ax2+b与y=ax+2b(ab≠0)的图象大致如图()A.B.C.D.6.(2分)(2022•长沙模拟)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④7.(2分)(2021秋•长沙月考)我们定义一种新函数:形如y=|ax²+bx+c|(a≠0,b²﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x²﹣2x﹣3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4;⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6 B.5 C.4 D.38.(2分)(2020秋•岳麓区校级期末)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤39.(2分)(2016•长沙校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0 10.(2分)(2021春•天心区期中)如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•雨花区校级期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是.12.(2分)(2021•岳麓区开学)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③3a+c>0;④当x >﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)13.(2分)(2020•天心区开学)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为.(注:只填写正确结论的序号)14.(2分)(2019秋•浏阳市期末)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正确结论的序号是.15.(2分)(2019•雨花区校级开学)如图,在平面直角坐标系中,抛物线y =ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.16.(2分)(2021春•雨花区期末)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.17.(2分)(2019秋•天心区校级月考)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.18.(2分)(2019秋•浏阳市期中)已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是.19.(2分)(2017秋•开福区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是.20.(2分)(2015春•长沙校级期中)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有个.评卷人得分三.解答题(共7小题,满分60分)21.(6分)(2021春•岳麓区校级期末)已知二次函数如图所示,M为抛物线的顶点,其中A(1,0),B(3,0),C(0,3).(1)求这个二次函数的解析式及顶点坐标M的坐标.(2)求直线CM的解析式.22.(8分)(2021春•天心区校级月考)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.23.(8分)(2020秋•长沙月考)已知抛物线y=(2m﹣1)x2+(m+1)x+3(m为常数).(1)若该抛物线经过点(1,m+7),求m的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;(3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,当﹣5≤x≤3时,点P是该部分函数图象的最低点,求m的取值范围.24.(8分)(2020•雨花区二模)已知抛物线y=ax2+x+c经过点A(﹣2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠DAB,设AE=x,BF=y,求y与x的函数关系式;(3)在(2)问的条件下,△DEF能否为等腰三角形?若能,求出DF的长;若不能,请说明理由.25.(8分)(2021秋•雨花区期末)如图,已知抛物线y=x2﹣2x﹣3的顶点为A,交x轴于B、D两点,与y轴交于点C.(1)求线段BD的长;(2)求△ABC的面积;(3)P是抛物线对称轴上一动点,求PC+PD的最小值.26.(10分)(2021•岳麓区开学)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的定顶抛物线,如:y=x2+1是y=x+1的定顶抛物线.(1)若y=x2﹣4是y=﹣x+p的定顶抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(1,3)一次函数y=kx+t(k≠0)的定顶抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的定顶抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.27.(12分)(2021春•长沙期末)如图①,抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,若OA=OC=2OB=2.(1)求抛物线的解析式及过点B、C的直线的解析式;(2)若P为线段AC上方抛物线上一动点,求△ACP面积的最大值;(3)如图②过点A作AD⊥BC于点D,过D作DH⊥x轴于H,若G为直线DH上的动点,N为抛物线上的动点,在x轴上是否存在点M,使得以M、N、G、H为顶点的四边形为正方形?若存在,求出M点坐标,若不存在,请说明理由.2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题05 二次函数的图像和性质考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•长沙期末)抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【思路引导】利用配方法将已知抛物线方程转化为顶点式,根据抛物线的对称性质和增减性比较大小.【完整解答】解:∵y=2x2﹣4x+c=2(x﹣1)2+c﹣2.∴抛物线开口向上,对称轴是直线x=1.∴当x<1时,y随x的增大而减小,∵抛物线y=2x2﹣4x+c经过三点(﹣4,y1),(﹣2,y2),(,y3),﹣4<﹣2<<1,∴y1>y2>y3,故选:B.2.(2分)(2022春•长沙期末)已知二次函数y=(x﹣1)2+1,则关于该函数的下列说法正确的是()A.该函数图象与y轴的交点坐标是(0,1)B.当x>1时,y的值随x值的增大而减小C.当x取0和2时,所得到的y的值相同D.当x=1时,y有最大值是1【思路引导】在y=(x﹣1)2+1中,令x=0得y=2,可判定A不符合题意;由1>0,对称轴直线x=1可判断B不符合题意;根据当x=0时,y=2;当x=2时,y=2,可判定C符合题意;由y=(x﹣1)2+1,根据函数性质可判定D不符合题意.【完整解答】解:令x=0,则y=(0﹣1)2+1=2,∴二次函数y=(x﹣1)2+1的图象与y轴的交点坐标为(0,2),故A不符合题意;∵二次函数y=(x﹣1)2+1的对称轴为x=1,开口向上,∴当x>1时,y随x的增大而增大,故B不符合题意;当x=0时,y=2,当x=2时y=(2﹣1)2+1=2,故C符合题意;∵二次函数y=(x﹣1)2+1的对称轴为x=1,开口向上,∴当x=1时,y有最小值,故D不符合题意.故选:C.3.(2分)(2022春•岳麓区校级期末)将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线()A.y=(x+4)2+4 B.y=(x﹣4)2+4 C.y=(x+4)2﹣2 D.y=(x﹣4)2﹣2【思路引导】直接根据二次函数图象平移的法则即可得出结论.【完整解答】解:根据“上加下减,左加右减”的法则可知,将抛物线y=x2+1向下平移3个单位,再向左平移4个单位,得到抛物线的表达式是y=(x+4)2+1﹣3,即y=(x+4)2﹣2.故选:C.4.(2分)(2022春•岳麓区校级期末)抛物线y=(x+1)2﹣3的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣3 D.直线x=3【思路引导】根据抛物线的顶点式,可以写出该抛物线的对称轴,本题得以解决.【完整解答】解:∵抛物线y=(x+1)2﹣3,∴该抛物线的对称轴是直线x=﹣1,故选:A.5.(2分)(2021秋•雨花区期末)在同一平面直角坐标系中,函数y=ax2+b与y=ax+2b(ab≠0)的图象大致如图()A.B.C.D.【思路引导】根据每一选项中a、b的符号是否相符,逐一判断.【完整解答】解:A、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;B、由抛物线可知,a<0,b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知a>0,b<0,由直线可知a>0,b>0,故本选项错误;D、由抛物线可知,a<0,b<0,由直线可知,a>0,b<0,故本选项错误.故选:B.6.(2分)(2018秋•天心区校级期末)已知函数y=ax2+bx+c,当y>0时,.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.【思路引导】当y>0时,,所以可判断a<0,可知﹣=﹣+=﹣,=﹣×=﹣,所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1进而得出解析式,找出符合要求的答案.【完整解答】解:因为函数y=ax2+bx+c,当y>0时,所以可判断a<0,可知﹣=﹣+=﹣,=﹣×=﹣所以可知a=6b,a=﹣6c,则b=﹣c,不妨设c=1则函数y=cx2﹣bx+a为函数y=x2+x﹣6即y=(x﹣2)(x+3)则可判断与x轴的交点坐标是(2,0),(﹣3,0),故选:A.7.(2分)(2021秋•长沙月考)我们定义一种新函数:形如y=|ax²+bx+c|(a≠0,b²﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x²﹣2x﹣3|的图象(如图所示),并写出下列结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4;⑥若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P.其中正确结论的个数是()A.6 B.5 C.4 D.3【思路引导】由(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|知①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线x=1,②也是正确的;根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;从图象上看,当x<﹣1或x>3,函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤时不正确的;⑥根据图形判断即可;逐个判断之后,可得出答案.【完整解答】解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,存在函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;⑥从图象上看,若点P(a,b)在该图象上,则当b=2时,可以找到4个不同的点P,因此⑥也是正确的.故答案为:①②③④⑥.故选:B.8.(2分)(2020秋•岳麓区校级期末)已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x>2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若t≥﹣3,则m的取值范围是()A.m≥B.≤m≤3 C.m≥3 D.1≤m≤3【思路引导】根据题意,x=﹣≤2,≥﹣3【完整解答】解:当对称轴在y轴的右侧时,,解得≤m<3,当对称轴是y轴时,m=3,符合题意,当对称轴在y轴的左侧时,2m﹣6>0,解得m>3,综上所述,满足条件的m的值为m≥.故选:A.9.(2分)(2016•长沙校级一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0 B.b2﹣4ac<0 C.9a+3b+c>0 D.c+8a<0【思路引导】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc<0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c=0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c<0.【完整解答】解:A.∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B.∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C.∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D.∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.10.(2分)(2021春•天心区期中)如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④【思路引导】①由非负数的性质,即可证得y2=﹣(x﹣2)2﹣1≤﹣1<0,即可得无论x取何值,y2总是负数;②由抛物线l1:y1=a(x+1)2+2与l2:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),可求得a的值,然后由抛物线的平移的性质,即可得l2可由l1向右平移3个单位,再向下平移3个单位得到;③由y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,可得随着x的增大,y1﹣y2的值减小;④首先求得点A,C,D,E的坐标,即可证得AF=CF=DF=EF,又由AC⊥DE,即可证得四边形AECD为正方形.【完整解答】解:①∵(x﹣2)2≥0,∴﹣(x﹣2)2≤0,∴y2=﹣(x﹣2)2﹣1≤﹣1<0,∴无论x取何值,y2总是负数;故①正确;②∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),∴当x=1时,y=﹣2,即﹣2=a(1+1)2+2,解得:a=﹣1;∴y1=﹣(x+1)2+2,∴H可由G向右平移3个单位,再向下平移3个单位得到;故②正确;③∵y1﹣y2=﹣(x+1)2+2﹣[﹣(x﹣2)2﹣1]=﹣6x+6,∴随着x的增大,y1﹣y2的值减小;故③错误;④设AC与DE交于点F,∵当y=﹣2时,﹣(x+1)2+2=﹣2,解得:x=﹣3或x=1,∴点A(﹣3,﹣2),当y=﹣2时,﹣(x﹣2)2﹣1=﹣2,解得:x=3或x=1,∴点C(3,﹣2),∴AF=CF=3,AC=6,当x=0时,y1=1,y2=﹣5,∴DE=6,DF=EF=3,∴四边形AECD为平行四边形,∴AC=DE,∴四边形AECD为矩形,∵AC⊥DE,∴四边形AECD为正方形.故④正确.故选:B.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2019春•雨花区校级期末)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15 .【思路引导】根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.【完整解答】解:∵点A、B的坐标分别为(﹣5,0)、(﹣2,0),∴AB=3,y=﹣2x2+4x+8=﹣2(x﹣1)2+10,∴顶点D(1,10),由图象得:当0≤x≤1时,y随x的增大而增大,当1≤x≤3时,y随x的增大而减小,∴当x=3时,即m=3,P的纵坐标最小,y=﹣2(3﹣1)2+10=2,此时S△PAB=×2AB=×2×3=3,当x=1时,即m=1,P的纵坐标最大是10,此时S△PAB=×10AB=×10×3=15,∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤15;故答案为:3≤S≤15.12.(2分)(2021•岳麓区开学)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有①③⑤.(填序号)【思路引导】由抛物线的对称轴为直线x=2可得a与b的关系,从而判断①,由x=﹣3时y>0可判断②,由抛物线经过(﹣1,0)及a与b的关系可判断③,由抛物线对称轴及开口方向可判断④,由x=2时y取最大值可判断⑤.【完整解答】解:∵抛物线对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,①正确.由图象可得x=﹣3时,y=9a﹣3b+c<0,∴9a+c<3b,②错误.∵抛物线经过(﹣1,0),∴a﹣b+c=a+4a+c=5a+c=0,∵抛物线开口向下,∴a<0,∴3a+c=5a+c﹣2a>0,③正确.由图象可得x<2时,y随x增大而增大,∴④错误.∵x=2时,函数取最大值,∴4a+2b+c≥am2﹣bm+c,即4a+2b≥am2﹣bm,⑤正确.故答案为:①③⑤.13.(2分)(2020•天心区开学)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为②⑤.(注:只填写正确结论的序号)【思路引导】根据二次函数的图象与系数的关系即可求出答案.【完整解答】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(﹣,0)代入函数表达式得:a﹣2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=﹣=1,即b=﹣2a,故2a+b=0,故③错误,不符合题意;④由②③得:a﹣2b+4c=0,b=﹣2a,则c=﹣,故2c﹣3b=>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.14.(2分)(2019秋•浏阳市期末)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a﹣b+c<0;⑤3a+c>0.其中正确结论的序号是①④⑤.【思路引导】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=﹣1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【完整解答】解:∵图象和x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,∴①正确;∵从图象可知:a>0,c<0,﹣=﹣1,b=2a>0,∴abc<0,∴②错误;∵b=2a>0∴2a+b=4a>0,∴③错误;∵x=﹣1时,y<0,∴a﹣b+c<0,∴④正确;∵x=1时,y>0,∴a+b+c>0,把b=2a代入得:3a+c>0,选项⑤正确;故答案为①④⑤.15.(2分)(2019•雨花区校级开学)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为 2 .【思路引导】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【完整解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.16.(2分)(2021春•雨花区期末)如图,P是抛物线y=x2﹣2x﹣3在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为.【思路引导】设P(x,x2﹣2x﹣3)根据矩形的周长公式得到C=﹣2(x﹣)2+.根据二次函数的性质来求最值即可.【完整解答】解:设P(x,x2﹣2x﹣3),∵过点P分别向x轴和y轴作垂线,垂足分别为A、B,∴四边形OAPB为矩形,∴四边形OAPB周长=2PA+2OA=﹣2(x2﹣2x﹣3)+2x=﹣2x2+6x+6=﹣2(x2﹣3x)+6,=﹣2+.∴当x=时,四边形OAPB周长有最大值,最大值为.故答案为.17.(2分)(2019秋•天心区校级月考)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.【思路引导】根据轴对称,可以求得使得△PAB的周长最小时点P的坐标,然后求出点P到直线AB的距离和AB的长度,即可求得△PAB的面积,本题得以解决.【完整解答】解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△PAB的面积是:=,故答案为:.18.(2分)(2019秋•浏阳市期中)已知抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),则y1、y2、y3的大小关系是y2<y3<y1.【思路引导】把三点的坐标分别代入可求得y1、y2、y3,再比例其大小即可.【完整解答】解:∵抛物线y=ax2+2ax+m(a>0)经过点(﹣4,y1)、(﹣2,y2),(1,y3),∴y1=16a﹣8a+m=8a+m,y2=4a﹣4a+m=m,y3=a+2a+m=3a+m,∵a>0,∴m<3a+m<8a+m,即y2<y3<y1,故答案为:y2<y3<y1.19.(2分)(2017秋•开福区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是①②③⑤.【思路引导】根据二次函数的图象与性质即可求出答案.【完整解答】解:①由图象可知:x=1时,y<0,∴y=a+b+c<0,故①正确;②由图象可知:Δ>0,∴b2﹣4ac>0,故②正确;③由图象可知:<0,∴ab>0,又∵c=1,∴abc>0,故③正确;④由图象可知:(0,0)关于x=﹣1对称点为(﹣2,0)∴令x=﹣2,y>0,∴4a﹣2b+c>0,故④错误;⑤由图象可知:a<0,c=1,∴c﹣a=1﹣a>1,故⑤正确;故答案为:①②③⑤20.(2分)(2015春•长沙校级期中)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0;其中正确的个数有 2 个.【思路引导】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【完整解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故答案是:2.三.解答题(共7小题,满分60分)21.(6分)(2021春•岳麓区校级期末)已知二次函数如图所示,M为抛物线的顶点,其中A(1,0),B(3,0),C(0,3).(1)求这个二次函数的解析式及顶点坐标M的坐标.(2)求直线CM的解析式.【思路引导】根据待定系数法求二次函数解析式、一次函数解析式.【完整解答】解:(1)设二次函数解析式为y=a(x﹣1)(x﹣3),将C(0,3)代入得:3=a(0﹣1)(0﹣3),∴a=1,∴y=(x﹣1)(x﹣3)=x2﹣4x+3,∴顶点坐标M(2,﹣1),(2)设直线CM的解析式为y=kx+b,将C(0,3)、M(2,﹣1)代入得:,∴.∴y=﹣2x+3.22.(8分)(2021春•天心区校级月考)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.【思路引导】(1)利用待定系数法即可求出直线的解析式;(2)分x在对称轴右侧和左侧两种情况,分别求解即可;(3)分a<0、a>0两种情况,分别求解即可.【完整解答】解:(1)把点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.23.(8分)(2020秋•长沙月考)已知抛物线y=(2m﹣1)x2+(m+1)x+3(m为常数).(1)若该抛物线经过点(1,m+7),求m的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求满足条件的最大整数m;(3)将该抛物线向下平移若干个单位长度,所得的新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,当﹣5≤x≤3时,点P是该部分函数图象的最低点,求m的取值范围.【思路引导】(1)将点(1,m+7)代入函数解析式即可;(2)设符合题意的两点分别是(x0,y0),(﹣x0,﹣y0),代入解析式,两式相加即可得到2(2m﹣1)x02+6=0,根据二次函数的性质即可求得;(3)当﹣5≤x≤3时,点P是该图象的最低点,①当2m﹣1>0时,﹣≤﹣5②当2m﹣1<0时,﹣>1.【完整解答】解:(1)抛物线经过点(1,m+7),∴m+7=2m﹣1+m+1+3,∴m=2;(2)设抛物线上关于原点对称且不重合的两点坐标分别是(x0,y0),(﹣x0,﹣y0),代入解析式可得:,∴两式相加可得:2(2m﹣1)x02+6=0,化简得:x02=﹣,又∵x0≠0,∴﹣>0,∴2m﹣1<0,∴m<,故满足条件的最大整数m=0;(3)∵新抛物线经过P(﹣5,y1),Q(7,y2)(其中y1<y2)两点,∵当﹣5≤x≤3时,点P是该图象的最低点,①当2m﹣1>0时,﹣≤﹣5,∴<m≤,②当2m﹣1<0时,﹣>1,∴<m<;综上所述:<m≤且m≠;24.(8分)(2017春•雨花区校级期末)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【思路引导】(1)直接把A点和C点坐标代入y=﹣x2+mx+n得m、n的方程组,然后解方程组求出m、n即可得到抛物线解析式;(2)先利用抛物线对称轴方程求出抛物线的对称轴为直线x=﹣,则D(,0),则利用勾股定理计算出CD=,然后分类讨论:如图1,当CP=CD时,利用等腰三角形的性质易得P1(,4);当DP =DC时,易得P2(,),P3(,﹣);(3)先根据抛物线与x轴的交点问题求出B(4,0),再利用待定系数法求出直线BC的解析式为y=﹣x+2,利用一次函数图象上点的坐标特征和二次函数图象上点的坐标特征,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),则FE=﹣x2+2x,由于△BEF和△CEF共底边,高的和为4,则S△BCF =S△BEF+S△CEF=×4×EF=﹣x2+4x,加上S△BCD=,所以S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),然后根据二次函数的性质求四边形CDBF的面积最大,并得到此时E点坐标.【完整解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=×4×EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).25.(8分)(2021秋•雨花区期末)如图,已知抛物线y=x2﹣2x﹣3的顶点为A,交x轴于B、D两点,与y轴交于点C.(1)求线段BD的长;(2)求△ABC的面积;(3)P是抛物线对称轴上一动点,求PC+PD的最小值.【思路引导】(1)分别求出D(﹣1,0),B(3,0),则可求BD;(2)连接AO,求出顶点坐标为(1,﹣4),C(0,﹣3),再由S△CAB=S△OAB+S△OCA﹣S△OCB即可求解;(3)连接BC交对称轴与点P,由题意可知B点与D点关于对称轴x=1对称,则当P、B、C三点共线时,PC+PD的值最小,求出BC=3即为所求.【完整解答】解:(1)当y=0,则0=x2﹣2x﹣3,则(x﹣3)(x+1)=0,解得:x1=﹣1,x2=3,∴D(﹣1,0),B(3,0),∴BD=4;故答案为:4.(2)连接AO,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4),当x=0时,y=﹣3,∴C(0,﹣3),∴S△CAB=S△OAB+S△OCA﹣S△OCB=×3×4+×3×1﹣×3×3=3;故答案为:3.(3)连接BC交对称轴与点P,∵y=(x﹣1)2﹣4,∴对称轴为直线x=1,∵B点与D点关于对称轴x=1对称,∴DP=PB,∴PC+PD=PC+BP≥BC,∴当P、B、C三点共线时,PC+PD的值最小,∵B(3,0),C(0,﹣3),∴BC=3,∴PC+PD的最小值即BC=.26.(10分)(2021•岳麓区开学)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的定顶抛物线,如:y=x2+1是y=x+1的定顶抛物线.(1)若y=x2﹣4是y=﹣x+p的定顶抛物线,求p的值;(2)若二次函数y=﹣x2+4x+7是经过点(1,3)一次函数y=kx+t(k≠0)的定顶抛物线,求直线y=kx+t(k≠0)与两坐标轴围成的三角形的面积;(3)若函数y=mx﹣3(m≠0)的定顶抛物线y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【思路引导】(1)由抛物线解析式可得顶点坐标,将顶点坐标代入直线解析式求解.(2)由抛物线解析式可得顶点坐标,由抛物线顶点坐标及(1,3)可得直线解析式,进而求解.(3)由线y=x2+2x+n可得抛物线对称轴为直线x=﹣1,由抛物线与x轴两个交点间的距离为4可得抛物线与x轴交点坐标,进而可得n的值,将抛物线顶点坐标代入直线解析式可得m的值.【完整解答】解:(1)∵抛物线y=x2﹣4的顶点坐标为(0,﹣4),∴(0,﹣4)在直线y=﹣x+p上,∴p=﹣4.(2)∵y=﹣x2+4x+7=﹣(x﹣2)2+11,∴抛物线顶点坐标为(2,11),将(2,11),(1,3)代入y=kx+t得,解得,∴一次函数解析式为y=8x﹣5.将x=0代入y=8x﹣5得y=﹣5,将y=0代入y=8x﹣5得0=8x﹣5,解得x=,∴一次函数与坐标轴交点坐标为(0,﹣5),(,0),∴直线y=8x﹣5与坐标轴围成的三角形面积为×=.(3)∵y=x2+2x+n,∴抛物线对称轴为直线x=﹣=﹣1,∵抛物线与x轴的两个交点之间距离为4,﹣1+2=1,﹣1﹣2=﹣3,∴抛物线经过(1,0),(﹣5,0),将(1,0)代入y=x2+2x+n得0=1+2+n,解得n=﹣3.∴y=x2+2x﹣3=(x+1)2﹣4,∴抛物线顶点坐标为(﹣1,﹣4),将(﹣1,﹣4)代入y=mx﹣3得﹣4=﹣m﹣3,解得m=1.27.(12分)(2021春•长沙期末)如图①,抛物线y=ax2+bx+c与x轴交于A,B,与y轴交于点C,若OA=OC=2OB=2.(1)求抛物线的解析式及过点B、C的直线的解析式;。
2019中考数学一轮综合复习同步讲义第21课二次函数(一)
第21课 二次函数一 图像性质1.已知二次函数y=ax 2+bx+c (a,b,c 是常数,且a ≠0)的图象如图所示,则一次函数abcx y 2+=与反比例函数xaby =在同一坐标系内的大致图象是( )2.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )3.已知二次函数y=ax 2+bx+c 中,其函数y 与自变量x 之间的部分对应值如下表所示:点A(x 1,y 1)、B(x 2,y 2)在函数的图象上,则当1<x 1<2,3<x 2<4时,y 1 与y 2的大小关系正确的是( ) A.y 1>y 2 B.y 1<y 2 C.y 1≥y 2 D.y 1≤y 24.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )5.如图,在矩形ABCD 中,O 是对角线AC 的中点,动点P 从点C 出发,沿DC 方向匀速运动到终点C .已知P ,Q 两点同时出发,并同时到达终点,连接OP ,OQ.设运动时间为t,四边形OPCQ 的面积为S,那么下列图象能大致刻画S 与t 之间的关系的是( )6.已知二次函数y=ax 2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是如图所示的( )7.关于函数y=2x 2-8x,下列叙述中错误的是( )A.函数图象经过原点B.函数图象的最低点是(2,-8)C.函数图象与x 轴的交点为(0,0),(4,0)D.函数图象的对称轴是直线x=-28.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论正确的是( ) A.a <0 B.b 2﹣4ac <0C.当﹣1<x <3时,y >0D.12-=ab第8题图 第9题图 第10题图9.已知二次函数y=ax 2+bx+c (a,b,c 为常数,a ≠0)图象如图所示,有下列结论:①abc >0;②b 2-4ac <0;③a-b+c >0;④4a-2b+c <0,其中正确结论的个数是( )A.1B.2C.3D.4 10.已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果:①b 2>4ac;②abc >0; ③2a+b=0;④a+b+c >0;⑤a-b+c <0,则正确的结论是( )A.①②③④B.②④⑤C.②③④D.①④⑤11.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2﹣4ac >0;②a >0;③b >0; ④c >0;⑤9a+3b+c <0,则其中结论正确的个数是( )A.2个B.3个C.4个D.5个第11题图 第12题图12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,在下列五个结论中:①2a-b <0;②abc <0; ③a+b+c <0;④a ﹣b+c >0;⑤4a+2b+c >0,错误的个数有( ) A.1个 B.2个 C.3个 D.4个 13.已知抛物线y=5x 2+(m-1)x+m 与x 轴的两个交点在y 轴同侧,它们的距离平方等于4925,则m 的值为 ( ) A.-2 B.12 C.24 D.48 14.抛物线y=ax 2+2ax 的所有信息中,你能确定的是_____________________ 15.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点个数是______个交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九数上期专题复习资料五 第 1页(共 10页) 第 2页 (共 10页) 九年级数学上期专题复习资料 五
二次函数解析式的求法例谈
注:本复习资料以求二次函数的解析方法介绍式为主. 编制:赵化中学 郑宗平 待定系数法求函数解析式的一般步骤: 1.设出解析式的形式; 2.代入坐标并列出方程或方程租; 3.解答方程或方程组得到待定系数的值; 4.返回并对应所设写出解析式(通常要化为一般形式). 记住四个关键字:设 → 代 → 解 → 写.
一.一般式(常用) 基本步骤:
设成2yaxbxc→代入坐标列成方程组→解方程组求出待定系数abc、、的值→返回对应写出解析式. 例.已知二次函数的图象经过1,20,12,0、、三个点, ⑴.求此二次函数的解析式; ⑵.x在什么范围,y随x的增大而减小. 解:⑴.设此二次函数为2yaxbxca0,根据题中三点坐标可列: abc2c14a2bc0 解得1a65b6c1 故这个二次函数的解析式为:215yxx166. ⑵.∵1a06 ∴当bx2a 即5x2时,y随x的增大而减小. 变式:已知二次函数的图象对称轴为直线x1,经过1,12,1、两个点,求此二次函数的解析式. 分析:本题可以看作“一般式”的变式题,若把解析式设为一般式2yaxbxca0然后两个点坐标代入并结合对称轴b12a(即b2a)列成方程组解答. 注:本题结合对称轴为直线x1设成2yax1n也易求解;请同学们用“一般式”解法的步骤完成解答. 追踪练习: 1.已知二次函数的图象经过1,10,21,3、、三个点,求此二次函数的解析式并写出该函数的顶点坐标和对称轴. 2.已知二次函数的图象对称轴为直线直线x2,经过0,45,0、两个点. ⑴.求此二次函数的解析式; ⑵. 说明x在什么范围,y随x的增大而增大? ⑶.x取什么值时, y 有最大值或是最小值?是多少? 二.顶点式(常用) 基本步骤: 设成2yaxmn →代入顶点坐标或过点的坐标列成方程 → 解方程求出待定系数a的值→返回对应写出解析式. 例.已知抛物线顶点M2,3,且过点N1,5,求此二次函数的解析式.
分析:根据题意的条件可知此函数图象抛物线的顶点坐标为2,2,可以设其解析式设为顶点式2yaxmn,然后代入坐标N1,5可求出a,问题解决. 解:根据抛物线的顶点坐标为M2,3,设其解析式设为顶点式2yaxmn, 所以抛物线可化为2yax23. 因为该抛物线过N1,5,所以2a1235 解得:2a9. 故此二次函数的解析式为22yx239.即22835yxx999. 变式:已知二次函数的x1时,y 有最大(或最小)值为2,且过点P1,2,求此二次函数的解析式. 略析:根据题意的条件“x1时,y 有最大(或最小)值为2”可知此函数图象抛物线的顶点
坐标为1,2,设其解析式设为顶点式2yaxmn .(请同学们完成解答)
追踪练习: 1..已知二次函数的图象顶点坐标为1,1 ,且过点M2,3,求此二次函数的解析式; 九数上期专题复习资料五 第 3页(共 10页) 第 4页 (共 10页)
2.已知抛物线的顶点2yaxbxca0)的顶点为A,且与 坐标轴交于BC、两点. ⑴.求此二次函数的解析式; ⑵.顺次连结点ABC、、,并求⊿ABC的面积..
三.交点式 基本步骤:
设成x2yaxxxx →代入抛物线与x轴交点的坐标12x,0x,0、列成方程 → 解方程求出待定系数a的值 → 返回对应写出解析式. 注:设成交点式来求抛物线的解析式,抛物线上的三点中须有两个点是与x轴的交点.
例.若抛物线过A3,0B2,0C1,6、、 三点,求此二次函数的解析式.
分析:由于过抛物线的已知点中,有含有两个点A3,0B2,0、是与x轴的交点,可以把此抛物线的解析式设为x2yaxxxx来解答. 解:设抛物线的解析式设为12yaxxxx ∵抛物线上有A3,0B2,0、 ∴yax3x2 又抛物线上有点C1,6 ∴a13126 解得:a3 故此二次函数的解析式为y3x3x2 即2y3x15x18.
追踪练习: 1.已知抛物线过A1,0B4,0C1,2、、 三点,求此二次函数的解析式; 2..二次函数的图象如图所示,请分小组讨论并用前面三种不同方式求其解析式.
四.特殊式 若抛物线的顶点为原点,可以将解析式设为2yax来解答;若抛物线的顶点在y 轴上,可以将解析式设为2yaxk来解答;若抛物线的顶点在x轴上,可以将解析式设为2yaxm
来解答;若抛物线过原点可以设为2yaxbx .其基本的解答程序仍然是:设 → 代 → 解 → 写. 例.1.若抛物线顶点在原点,且过A1,3B2,m、 ,求m的值.
2.若抛物线顶点在y轴上,且过A1,6B2,3、 ,求此二次函数的解析式. 略析: 1小题解析式设为2yax代入坐标列出方程来解答,求出解析式后,再返回求m的值;2小题将其解析式设为2yaxk,然后将坐标代入列成方程组解答. 解: 1.设抛物线的解析式设为2yax.根据题意:
由A1,3代入可得2a13 解得:a3.故此抛物线的解析式为2y3x . ∵B2,m ∴2m3212 . 2.把抛物线设为y2yaxk
∵抛物线过A1,6B2,3、 ∴ak64ak3 解得:a3k3. 故此抛物线的解析式为2y3x3 . 追踪练习: 1.若抛物线的顶点在x轴上,下列不符合条件的解析式是 ( )
A.2y3x B.2y2x1 C.2yx3 D.2yx4x4 2..根据下列条件,直接写出抛物线的解析式: ⑴.顶点为原点,且过点M2,4. ;
⑵.顶点在x 轴上,且过A0,3B1,2、. . 3.若抛物线顶点在x轴上,且过A2,0B0,8Cn,4、、 ,求n值. 4.如图,小强某次练习投篮恰好命中篮筐中心,篮球的运动路线是一条抛物线,篮球在离地面垂直距离1.7m处出手,篮球到达的最高点离地面3.5m;若以地平线为x轴,过篮球运动的最高点垂直于地平线的直线为y轴建立平面直角坐标系(其它条件见图中标示).
⑴.求篮球运动路线的函数解析式;
⑵.求小强与篮底的水平距离L是多少米? 九数上期专题复习资料五 第 5页(共 10页) 第 6页 (共 10页)
五.平移式(常用) 在平面直角坐标系的抛物线的平移只是改变位置(a值不变),根据平移规律可以采用算术方法来计算其解析式某些数值的变化(为了便于计算,可先把解析式改写成配方式即顶点式): ⑴.左右平移,自变量“左加右减”;上下平移,函数值“上加下减”; ⑵.顶点坐标的变化:左右平移,横坐标“左减右加”;上下平移,纵坐标“上加下减”. 例.把二次函数2yaxbxca0的图象向左平移两个单位,再向上平移3单位得到2yx2x3的图象,求bc、的值. 略析:把二次函数2yx2x3的配方成2yx12其顶点坐标12, ,然后逆推即可平移前的解析式,问题可解决. 略解: 把二次函数2yx2x3的配方成2yx12, 逆推即向右平移2个单位,再向下平移3个单位.其顶点坐标1,2逆推后顶点坐标为3,1. 故原二次函数的解析式为22yxbxcx31 ,即为2yx6x8 . ∴b6,c8 . 追踪练习: 1.把抛物线2y2x向左平移3个单位,再向下平移2个单位的解析式是 ( ) A.2y2x32 B.2y2x32 C.2y2x32 D.2y2x32 2.把抛物线1y的顶点坐标为2,1,先向右平移1个单位,再向下平移2个单位的抛物线2y的顶点坐标是 ( ) A.3,1 B.1,3 C.1,1 D.3,3 3..把抛物线2yx22向 平移 个单位,再向 平移 个单位得到解析式为2yx11. 4.已知下列函数:①.2yx;②.2yx; ③.2yx11其中图象平移可以得到2yx2x3的图象有 . (填序号) 5.把抛物线21yx2经过平移得到抛物线21yx2x2. ⑴.抛物线是如何平移的? ⑵.求出其对称轴与两段抛物线所围成的阴影部分的面积? (阴影部分见示意图) 六.对称式 1.抛物线关于x轴对称:解析式对应的各项系数及常数项均互为相反数. 2.抛物线关于y轴对称:解析式对应的二次项系数及常数项相同,而一次项系数互为相反数. 3.抛物线关于原点对称:解析式对应的二次项系数及常数项互为相反数,而一次项系数相同. 见下面示意图:
追踪练习: 1.抛物线2y2xx3关于x 轴对称的抛物线为 ; 2.抛物线2yx2x5关于y 轴对称的抛物线为 ; 3.抛物线2y2xx7关于原点轴对称的抛物线为 .
拓展提升: 例1.(《探究丛书》题)如图所示,已知抛物线与x轴交于A1,0B3,0、 两点,与y轴交于点C0,3. ⑴.求抛物线的解析式; ⑵.设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点 P,使得⊿PDC是以CD为一腰的等腰三角形?若存在,求出符合
条件的点P的坐标,若不存在,请说明理由. 略析: 本题的⑴问已知三个点的坐标,且有两个点是与x轴的交点,所以把解析式的形式设为“一般式”或者“交点式”均可求解. 本题的⑵问可先假设存在;由于⊿PDC的顶点D是抛物线的顶点,在对称轴上,所以利用抛物线的对称性可找出存在符合条件的P点的. 略解:
⑴.设抛物线的解析式设为x2yaxxxx .
由A1,0B3,0、代入可得yax1x3. 又因为抛物线与y轴交于点C0,3,所以a01033 解得:a1 故此二次函数的解析式为yx1x3 即2yx2x3.
x
yy = 12∙x2 2∙xy = 12∙x2