植物硫代谢

合集下载

含硫次生代谢物

含硫次生代谢物

含硫次生代谢物含硫次生代谢物是一类由生物合成的化合物,其中包含硫原子。

这些化合物在生物体内起着重要的生理和生态作用。

下面将介绍一些常见的含硫次生代谢物。

1.硫化氢(H2S):硫化氢是一种有毒且有气味的气体,同时又是一种重要的生理信号分子。

它参与神经传导、血管舒张和细胞凋亡等过程。

此外,硫化氢还具有抗氧化和抗炎作用,能够保护细胞免受损害。

2.硫醇:硫醇是一类含有硫原子的醇化合物。

它们常见于蛋白质、酶和细胞膜中,对维持细胞功能至关重要。

硫醇还具有抗氧化和解毒作用,能够降低细胞中有害物质的浓度。

3.硫萜类化合物:硫萜类化合物是一类具有丰富生物活性的有机硫化合物。

它们常见于植物、海洋生物和微生物中。

硫萜类化合物具有多种生理功能,如抗菌、抗肿瘤、抗炎和抗氧化等。

其中,大蒜素(allicin)是一种具有明显抗菌活性的硫萜类化合物。

4.甲硫醚:甲硫醚是一种含有甲基和硫原子的化合物。

它们常见于某些食物中,如洋葱和大蒜。

甲硫醚具有独特的风味和香气,并对人体健康有益。

例如,它们可以增加饮食中的抗氧化物质,有助于降低血液中的胆固醇和血糖水平。

5.硫代谢物:硫代谢物是一类在细胞内由硫氮循环(thionitrogen cycle)产生的化合物。

它们包括硫酸、硫酸盐和含有硫原子的氨基酸等。

这些化合物在细胞的代谢过程中发挥重要的作用,如代谢废物的排泄、代谢产物的转化和信号传递等。

总结起来,含硫次生代谢物对生物体的生理和生态功能具有重要影响。

它们参与多种生物过程,并具有抗菌、抗氧化和解毒等多种生物活性。

研究含硫次生代谢物的生物合成和代谢机制,有助于深入了解生物体的适应性和抗病能力,为开发天然药物和改良农作物提供理论依据。

土壤中硫含量的标准

土壤中硫含量的标准

土壤中硫含量的标准土壤中的硫是植物生长所需的重要营养元素之一,它对植物的生长发育和产量质量具有重要影响。

因此,合理掌握土壤中硫含量的标准对于农业生产具有重要意义。

本文将就土壤中硫含量的标准进行详细介绍,希望能对相关领域的研究和实践提供一定的参考价值。

一、土壤中硫的作用。

硫是植物体内的必需元素之一,它参与了植物体内的多种生物化学反应,对植物的生长发育具有重要影响。

硫是蛋白质、维生素和酶类的组成成分,对植物的光合作用、呼吸作用、氮代谢、碳代谢等过程都起着重要作用。

因此,土壤中的硫含量直接影响着作物的生长和产量。

二、土壤中硫含量的标准。

根据《土壤环境质量标准》(GB15618-1995)的规定,我国土壤中的硫含量标准如下:1. 土壤pH值在6.5-7.5范围内时,土壤中的全硫含量应在0.2-0.4g/kg之间;2. 土壤pH值在5.5-6.5范围内时,土壤中的全硫含量应在0.3-0.5g/kg之间;3. 土壤pH值在4.5-5.5范围内时,土壤中的全硫含量应在0.4-0.6g/kg之间;4. 土壤pH值在3.5-4.5范围内时,土壤中的全硫含量应在0.5-0.7g/kg之间。

根据土壤pH值的不同,土壤中的硫含量标准也有所不同,这是因为土壤pH 值对硫的有效性和植物对硫的吸收利用有着重要影响。

在实际生产中,我们需要根据土壤的具体情况,合理调整土壤中的硫含量,以满足作物对硫的需求。

三、土壤中硫含量的调整方法。

1. 使用硫肥,在土壤中缺乏硫元素时,可以通过施用硫肥的方式来增加土壤中的硫含量。

常见的硫肥有硫酸铵、硫酸钾等,可以根据土壤的具体情况选择合适的硫肥进行施用。

2. 有机质的应用,有机质中含有丰富的有机硫,可以通过施用有机肥的方式来增加土壤中的硫含量。

在土壤中施用有机肥,不仅可以提高土壤的肥力,还可以增加土壤中的硫含量,有利于作物的生长。

3. 调整土壤pH值,土壤的pH值对硫的有效性有着重要影响,因此可以通过调整土壤的pH值来影响土壤中硫的有效性。

植物产生的硫代葡萄糖

植物产生的硫代葡萄糖

植物产生的硫代葡萄糖植物能够从空气和土壤中吸收和利用多种元素和营养物质,包括多种矿物质、氮、磷和硫等。

其中硫元素在植物的生长和发展中也起着重要的作用。

硫代葡萄糖是一种由植物产生的重要硫代谷氨酸二聚体,是硫元素在植物中的主要储存形式。

它不仅对于植物的生长发育和环境逆境的适应性有着重要的作用,还对动物和人类的生理功能产生着至关重要的影响。

植物的硫代葡萄糖合成过程类似于人体中的葡萄糖异构化酶反应,是一种重要的糖代谢途径。

硫代葡萄糖能够在植物细胞中稳定地存在,并且在胞质中和胞器中都有储存。

植物中硫元素的来源主要是来自外界土壤和空气中的硫化物和二氧化硫,其转化过程主要活动在植物的根部和叶片。

植物在吸收了土壤中的硫元素之后,利用一系列酶类对其进行代谢作用,最终合成硫代葡萄糖。

首先,硫元素会被转变成无机硫酸,通过进入植物的细胞中,再经铵基硫酸合成酶催化反应,将硫酸与谷氨酸结合形成硫代谷氨酸单体。

在胞质中,硫代谷氨酸单体可以与同样由谷氨酸衍生而来的另外一个硫代谷氨酸单体结合形成硫代葡萄糖二聚体。

植物中的硫代葡萄糖起着许多重要的作用,在植物的生长和发展中有着重要的影响。

例如,硫代葡萄糖能够作为植物的抗氧化剂,保护植物免受紫外线和环境应激的伤害。

同时,它还能够作为植物认识环境中硫化物的化学信号物质,参与植物对环境的感应与适应。

此外,硫代葡萄糖还通过植物根系和微生物之间的互动,参与了植物与微生物共生固氮和抗真菌感染等生理过程。

它还可以作为储存有机硫的重要储存形式,随着植物生长发育并被用于植物的新陈代谢中。

对于人类和动物来说,植物中的硫代葡萄糖也有着很大的意义。

硫代葡萄糖可以作为植物的食物成分被人类和动物摄入,同时也被用于人类和动物的医学领域中,作为一种天然的抗氧化剂和解毒剂。

总之,植物中的硫代葡萄糖是一种重要的硫元素储存形式,起着重要的生物学作用。

植物在硫代葡萄糖的合成过程中,不仅利用了外界环境中的硫元素,同时也促进了植物的生长和发育。

几种植物对硫的富集特性分析

几种植物对硫的富集特性分析


4 . 90
4 . 85
4 . 80 4 . 75
排 污 口距 离 ( ) m
报 道 。笔 者 研究 了农 用 化 学 品 厂 废 水 排 出 口优 势 植 物 的 硫 含 量变化 , 以期 筛 选 出 适 于 硫 污染 修 复 的 植 物 。

。目前 , 硫废水已成 为我 国化工行业污染 大户之一 。 利用植物及其根 际微 生物 的代谢 活动吸收 、 积累或 降解
口距离相关 系数为 一 . 9 , 0 9 6 线性 关 系为硫离 子含量 (, = ) )
10 9 00 8 , 中 为 排 污 口距 离 。 5 . 2— . 8 x 式
大面积低浓度的污染 物处理 , 因此 自2 0世纪 7 0年代 以来 , 以 植物为核心 的污水处 理和水体修复 的生态技术被广泛研究和 应 用 J 。试验证 明, 物修 复对有机废 水 中氮 和磷 的去除 植 具有很 明显 的效果 , 但植物修 复对硫 的去 除效 果则鲜 见
22 .

采集四川绵 阳利尔化工有限公 司农 药污水道的水样和 3 种 优 势植 物 : 白茅 、 牙 根 、 尾 草 , 采 集 森林 公 园 的渠 水 和 狗 狗 并
上 述 3种 植 物 为 对 照 , 好标 记 , 类 混 合 , 样 分 析 。 做 分 取
1 2 硫含 量 的测 量 .
硫量仅为对照区植物的 10 22 .6— .6倍 。对照区植物 富集系数

46 一 6
江苏农业科学
2 1 第 3 第 4期 0 1年 9卷
李明银 , 陈
娟, 曾 茂, 等.几种植物对硫的富集特性分析[ ] J .江苏农业科学,0 13 ( :6 2 1 ,9 4)4 6—4 8 6

植物的新陈代谢的知识

植物的新陈代谢的知识

植物的新陈代谢的知识植物的新陈代谢的知识植物的新陈代谢一、水分代谢植物水分代谢包括水分的吸收、运输和排出三个过程。

?1.水分的吸收?(1)细胞的渗透性吸水水分移动需要能量作功,自由能是可用于作功的能量。

通常用水势来衡量水分所含自由能的高低。

纯水的自由能最大,水势也最高。

由于溶液中的溶质分子吸引水分子,降低了水的自由能,因此,溶液中的自由能要比纯水低。

如果将纯水的水势定为0,溶液的水势就为负值。

溶液越浓,水势越低。

水分由水势高处流到水势低处。

水分从水势高的系统通过半透膜向水势低的系统移动的现象,称为渗透作用。

细胞吸水情况决定于细胞水势。

典型植物细胞水势(Ψw)由三部分组成:Ψw=Ψm+Ψs+Ψp(ψm为衬质势,Ψs为渗透势,Ψp为压力势),渗透势,溶质势Ψ是由于溶质颗粒引起的纯水水势的变化,为负值。

压力势是由于细胞壁等压力的存在而增加的水势。

当细胞吸水而膨胀时,对细胞壁产生一种压力,即膨压。

这时细胞壁会对原生质产生反作用力,它正向作用于细胞,使细胞溶掖自由能增加,因此,压力势往往是正值。

但质壁分离时,压力势为零;剧烈蒸腾时,细胞壁表面蒸发水多于原生质体蒸发水,细胞壁随着原生质体的收缩而收缩,压力势会呈负值。

衬质势是细胞胶体物质亲水性和毛细管对水束缚而引起水势降低的值,为负值。

已形成液泡的细胞,其衬质势很小,通常省略不计,上述公式可简化为:Ψ w=Ψ丌+Ψ P。

图1—2-25表明细胞水势、渗透势和压力势在细胞不同体积中的变化。

在细胞初始质壁分离时,Ψp=0,Ψw=Ψ丌。

当细胞完全膨胀时,IΨ丌l=IΨPI,但符号相反,因此,Ψw=0,不吸水。

当叶片在剧烈蒸腾时,由于压力势为负值,水势低于渗透势。

2)细胞的吸胀作用细胞在形成液泡之前的吸水主要靠吸胀作用。

由于细胞没有液泡,Ψ丌=0,Ψp=0,所以Ψw=Ψm。

吸胀作用的大小就是衬质势的大小。

2.根系吸水的动力根系吸水有两种动力:蒸腾拉力和根压。

由于蒸腾作用使水分沿导管上升,使根吸水的力量称为蒸腾拉力。

植物的代谢名词解释

植物的代谢名词解释

植物的代谢名词解释植物是地球上最古老、最重要的生物之一,在地球的生态系统中扮演着至关重要的角色。

作为自养生物,植物通过代谢过程来获取能量和营养物质,维持生命的正常运转。

在这篇文章中,我将为您介绍一些与植物代谢相关的名词解释,以帮助您更好地了解植物的生命活动。

光合作用光合作用是植物利用光能将二氧化碳和水转化为有机物质的过程。

在这个过程中,植物通过叶绿素等色素吸收光能,将其转化为化学能,用于合成葡萄糖等有机物。

光合作用是维持地球生态平衡的重要过程,同时也是动物和人类获取能量和氧气的来源。

呼吸作用呼吸作用是植物将有机物质分解为能量和二氧化碳的过程。

与动物的呼吸类似,植物通过呼吸作用释放能量,并产生二氧化碳作为废物排出。

尽管呼吸作用与光合作用相反,但这两个过程在植物的生命中共同存在,用以维持生命活动的平衡。

糖分配与储存植物通过糖分配与储存来调节能量和营养物质的利用。

在光合作用过程中,植物产生的葡萄糖会被用于维持生命活动,如呼吸作用和生长发育。

同时,植物还会将多余的葡萄糖转化为淀粉或其他形式的糖类,以便在需要时储存和利用。

糖的分配和储存对植物的生长和生殖起着重要的调节作用。

氮素代谢氮素代谢是植物中最为重要的代谢过程之一。

氮素是构成蛋白质和核酸等生物分子的关键元素,因此,植物需要从土壤中吸收氮素,并通过一系列酶促反应将其转化为氨基酸等有机形式,用于合成蛋白质。

同时,植物还会通过氨基酸代谢将多余的氮素转化为尿素等次生代谢产物,以减少氮素的浪费和溶解度。

抗氧化剂抗氧化剂是植物体内用于抵抗氧化应激的化学物质。

植物在代谢过程中会产生一系列活性氧物质,如超氧自由基和过氧化氢等,这些物质具有氧化损伤生物分子的能力。

为了保护自身免受氧化应激的损害,植物体内存在多种抗氧化酶和小分子抗氧化物质,如抗坏血酸和硫代谢物质等,它们能够中和活性氧物质并保持细胞的正常功能。

次生代谢产物次生代谢产物是植物在维持基本生命活动之外产生的化学物质,它们对植物的生长发育和适应环境起着重要的调节作用。

深圳市园林植物叶片含硫量的特点

深圳市园林植物叶片含硫量的特点
深圳市园林植物叶片含硫量的特点
深圳市是一个城市,由于它在冬期间具有湿润的气候,植物的生长在
这里非常适宜。

因此,深圳市的园林植物占有很大的比例。

叶片含硫
量也是检测植物健康的重要指标之一,下面就由我们来看看深圳市园
林植物叶片含硫量的特点。

一、深圳市园林植物叶片中的硫含量
1、硫含量较低:多数植物物种,叶片中的硫含量较低,绝大多数园林
植物硫含量低于1毫克/克,即舍弃值为0.3毫克/克。

2、有些植物硫含量较高:存在部分植物物种叶片含硫量高于一般范围,这些植物的硫含量的范围介于1毫克/克到2毫克/克,甚至更高。

二、硫含量对植物体内及环境的影响
1、新陈代谢:硫是真核生物代谢过程中必须的元素之一,硫含量较低
会影响植物体内新陈代谢(氮、磷、钾等营养素的代谢),导致植物
营养不良。

2、对环境污染:硫含量过高会对植物周围环境造成污染,使环境变得
脏乱无章,从而影响植物的生长及其周围生物的生存环境。

三、深圳市园林植物叶片的相关管理
1、检测与控制:应定期对园林植物叶片中硫含量进行检测,并根据实际情况进行控制或处理;
2、调整园林植物:应进行合理种植,不能同时种植过于大量硫含量高的植物;
3、施肥管理:应选择低硫施肥,并合理使用施肥,有助于控制硫含量平衡;
4、加强管理:应加强制定植物维护的检测标准,以有效保证深圳市园林植物叶片含硫量的良好状态。

总之,深圳市园林植物叶片含硫量的检测和管理,是控制园林植物新陈代谢及保护环境污染的重要措施之一。

因此,相关领导和管理者一定要重视这一方面的工作,切实做好园林植物叶片含硫量的检测和管理工作。

微生物硫代谢目前的研究进展 Microsoft Word 文档

微生物硫代谢目前的研究进展硫是所有生物体必需的化学元素,它的重要性不仅在于硫能够作为结构组分而且还能在新陈代谢中发挥特定功能的作用。

硫存在于含硫氨基酸,多肽,维生素和辅因子(生物素,CoA和SAM)中,并且许多次级代谢产物中也含有硫元素。

两个半胱氨酸残基形成的二硫键能够维持蛋白质的空间结构;谷胱甘肽在重金属解毒,抗衰老等方面发挥作用;某些含硫次级代谢物不仅具有抵抗病原菌的作用,而且还能够作为细胞的信号分子传递信息。

在大肠杆菌中,与硫代谢有直接关系的基因超过一百多个,但仅对其中少数进行了详细研究。

硫代谢一般分为三个明显不同的部分:含硫氨基酸(半胱氨酸和甲硫氨酸)以及含硫辅酶或辅基的合成;含硫分子库的分解代谢和平衡;甲硫氨酸的循环(因为几乎所有的初始蛋白质的第一个氨基酸残基都是甲硫氨酸)[1]。

但是近年来对硫代谢的研究除了这些方面以外,还涉及了其它许多方面。

下面主要简介最近几年关于硫代谢的研究情况。

在对硫酸盐同化形成半胱氨酸的路径中,Sarwar Hussaina等人注意到乙酰丝氨酸转移酶(Serine acetyltransferase)能够催化丝氨酸和乙酰-CoA形成氧-乙酰丝氨酸,这一路径在一些微生物中存在,而在哺乳动物体内则不存在,因此半胱氨酸合成途径可以成为一些新型化疗药物的靶标[2]。

硫代谢与结核分枝杆菌的毒力和氧化还原防御有十分紧密的联系,半胱氨酸合成途径是一种调节结核杆菌感染的正向模式,并且在此路径中提供了抗结核菌药物的靶标,为人类治疗结核病带来了新的治疗思路[3]。

在许多微生物和植物体内,含硫物质往往能够发挥特殊的功能。

含硫防御化合物(Sulfur-containing defence compounds简称SDCs)包含元素S0, H2S, 谷胱甘肽以及含硫次级代谢物和富硫蛋白质,SDCs可以为生物提供多样性的防御平台,在面对生物胁迫和非生物胁迫方面建立防护屏障。

硫酸盐同化途径的通路和基因的调控易受氧化胁迫,缺硫以及重金属干扰,在一些生物中,谷胱甘肽能够与重金属螯合,从而降低重金属的危害[4]。

链霉菌代谢特点

链霉菌是一种常见的真菌,广泛存在于自然环境中,特别是土壤和植物表面。

链霉菌具有丰富的代谢途径,其中硫代谢是其重要的生物化学过程之一。

硫是生物体中不可或缺的元素,参与多种重要的生物化学反应和代谢过程,链霉菌通过硫代谢途径来合成含硫化合物,维持生命活动的正常进行。

链霉菌的硫代谢主要包括硫源吸收、硫氧化还原反应和硫化合物的合成。

首先,链霉菌通过细胞膜吸收环境中的硫源,包括无机硫(如硫酸盐)和有机硫(如氨基酸)。

然后,链霉菌通过一系列的生物化学反应将硫源转化为含硫化合物,如谷胱甘肽、硫氧还蛋白等。

这些含硫化合物在链霉菌的代谢过程中发挥着重要的角色,如参与氧化还原反应、调节细胞生长和分化等。

此外,链霉菌的硫代谢还与氧化应激反应密切相关。

在某些条件下,链霉菌会暴露于氧化应激环境中,如暴露于过氧化氢等氧化剂。

此时,链霉菌通过激活硫代谢途径来应对氧化应激,如合成抗氧化剂谷胱甘肽等。

这些抗氧化剂可以清除细胞内的活性氧自由基,保护细胞免受氧化损伤。

总之,链霉菌的硫代谢是其重要的生物化学过程之一,对于链霉菌的生命活动和适应性具有重要的意义。

硫在土壤中的转化

3、硫酸钙(CaSO4)。在石灰性土壤中,硫酸根与土壤中钙离子生成不易溶解的硫酸钙(石膏)。硫酸钙过多会造成土壤板结,所以,使用硫酸根肥料要适量并且与农家肥、碱性磷肥和石灰配合,降低酸性。
1)植株外观植株矮小,瘦弱、分蘖少,开花延迟,结果少。
2)叶片颜色叶片褪绿黄化,叶色浅、叶片比较直立,叶缘向上卷曲。
3)发生部位幼嫩、最新的叶片出现。
4)植物类型禾本科:还青慢、分蘖少,植株矮小,叶色淡绿;
大豆:新叶失绿,后期老叶黄化,出现棕色斑点,植株瘦弱,根瘤不发达。
四.硫的吸收和同化
1)硫的吸收
当APS的硫酰基转移到某一载体(带有胱氨酸残基的三肽谷胱甘肽)的硫基(-SH)上时,-SH基即被活化。随着有铁氧还蛋日参与,把新形成的-SH转移给乙酰丝氨酸,接着它分解成乙酸和半胱氨酸。半胱氨酸是同化的硫酸盐还原过程中第一个稳定的产物,它是合成所有其他含硫有机化合物,也是其他生物合成途径如形成第二信使依稀的前体。
1、硫酸(H2SO4)。肥料中的硫酸根离子吸收土壤水分,生成硫酸,増加土壤酸性,腐蚀作物根系(如寿光近两年丝瓜和辣椒在生长期,都会出现不同程度的不明死棵和萎蔫,作物根系内部有发黑症状,即为受腐蚀的表现),同时,多余的硫酸根离子存在下土壤中活性铝、铁含量升高,加剧了对作物的毒害。
2、硫化氢(H2S)。在旱田中,硫化氢不会直接对农作物造成危害,但硫化氢可以在土壤形成厌氧层(又称隔氧层),破坏好氧有益菌的生存环境,使大量厌氧真菌,如镶刀菌(猝倒病、根腐病的病原菌)得以繁殖,造成土传病害的泛滥;在水田中,过多的硫酸根会被细菌还原生成硫化氢,使根系生长发育受阻,白根少,根系短,呈黄褐色,甚至黑色,严重时发生根腐。或者硫化氢与重金属反应而生成高度不溶性的硫化物,如果土壤系统后来被氧化,这些硫化物氧化成元素硫,再通过生物氧化过程转化为H2SO4,引起土壤酸化。在实践中应结合排水晒田措施,改善通气状况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Review ArticleAbstract:Sulfur metabolite levels and sulfur metabolism have been studied in a significant number of herbaceous and woody plant species.However,only a limited number of datasets are comparable and can be used to identify similarities and differ-ences between these two groups of plants.From these data,it appears that large differences in sulfur metabolite levels,as well as the genetic organization of sulfate assimilation and me-tabolism do not exist between herbaceous plants and trees.The general response of sulfur metabolism to internal and/or exter-nal stimuli,such as oxidative stress,seems to be conserved be-tween the two groups of plants.Thus,it can be expected that, generally,the molecular mechanisms of regulation of sulfur me-tabolism will also be similar.However,significant differences have been found in fine tuning of the regulation of sulfur me-tabolism and in developmental regulation of sulfur metabolite levels.It seems that the homeostasis of sulfur metabolism in trees is more robust than in herbaceous plants and a greater change in conditions is necessary to initiate a response in trees. This view is consistent with the requirement for highly flexible defence strategies in woody plant species as a consequence of longevity.In addition,seasonal growth of perennial plants ex-erts changes in sulfur metabolite levels and regulation that cur-rently are not understood.In this review,similarities and differ-ences in sulfur metabolite levels,sulfur assimilation and its reg-ulation are characterized and future areas of research are iden-tified.Key words:Adenosine5′-phosphosulfate reductase(APR),cell differentiation,compartmentation,cysteine,genetic engineer-ing,glutathione,methionine,plant development,protein, ozone,oxidative stress,sulfate,sulfate assimilation,transgenic poplar.IntroductionTrees differ from herbaceous plants not only in size and lon-gevity,but also in numerous features of nutrient acquisition and use in growth and development.Nutrient uptake of trees is largely uncoupled from seasonal growth of vegetative and generative organs.In many tree species,reproductive tissues are developed when uptake processes are strongly limited by low temperatures in the soil(Kozlowski,1971).Other tree spe-cies,like European beech,develop their leaves entirely in early spring,when unfavourable conditions for nutrient uptake from the soil prevail.Also,root growth of trees may take place under such conditions in spring and autumn(Kozlowski, 1971).As a consequence,developmental processes in trees that rely on the availability of a significant amount of nu-trients,depend on storage and mobilization processes rather than actual nutrient availability and acquisition(Millard et al.,2006),with the primary site of storage differing between conifers(needles)and deciduous trees(stem and roots). Exploitation by trees of nutrients in the soil is strongly im-proved by association with mycorrhizal fungi,most important-ly with ectomycorrhizal fungi.This symbiosis enables the oc-cupation of nutrient-poor environments by trees(Vitousek and Howarth,1991),in particular,growth on soils low in nitro-gen and/or phosphorus(Smith and Read,1997),and also im-proves sulfur nutrition of trees(Rennenberg,1999).In many temperate forest trees,ectomycorrhizal association maintains the preference for ammonium compared to nitrate uptake that is also found in non-mycorrhizal roots of trees(Kreuzwieser et al.,1997a;Geßler et al.,1998).However,organic nitrogen com-pounds liberated from leaf litter,decaying roots and microbial biomass are also thought to contribute considerably to nitro-gen nutrition of trees(Chalot and Brunn,1998).Also,organic sulfur can be taken up by the roots of trees(Seegmüller and Rennenberg,2002),but the significance of organic sulfur up-take for sulfur nutrition has not been elucidated.It appears that growth and development of trees is connected with general differences in acquisition and metabolism of nu-trients,compared to herbaceous plants.This review focuses on such differences in the metabolism of sulfur,the fifth most abundant element in plants,that is not only involved in pro-tein structure and function,redox regulation,and chloroplast membrane structure,but also in biotic and abiotic stress de-Sulfur Metabolism in Plants:Are Trees Different?H.Rennenberg1,C.Herschbach1,K.Haberer1,and S.Kopriva1,21Institute of Forest Botany and Tree Physiology,Chair of Tree Physiology,University of Freiburg,Georges-Köhler-Allee053/054,79110Freiburg,Germany2Present address:John Innes Centre,Norwich,Norfolk,NR47UH,UKReceived:January15,2007;Accepted:March23,2007Plant Biol.9(2007):620–637©Georg Thieme Verlag KG Stuttgart·New York DOI10.1055/s-2007-965248ISSN1435-8603Dedicated to Prof.Dr.L.Bergmann at the occasion of his80th birthday.620fence(Benning,1998;Rausch and Wachter,2005;Ströher and Dietz,2006).Sulfur Metabolite Levels in Herbaceous andPerennial PlantsThe most abundant sulfur metabolites in plants,i.e.,sulfate, cysteine,and glutathione,have been determined in a large number of plant species(Tables1–3).The herbaceous species analyzed include plants that are rich in sulfur due to the syn-thesis of secondary sulfur metabolites,such as Arabidopsis and Brassica that produce significant amounts of glucosino-lates(Fahey et al.,2001;Wittstock and Halkier,2002).How-ever,most herbaceous species and all tree species investigated do not possess such secondary sulfur metabolites.The range in which sulfate was found in plants varied between less than1 and more than30μmol g–1fresh weight in roots and less than 1and more than100μmol g–1fresh weight in leaf tissues.For a given species,root and leaf sulfate levels are comparable,and general differences between herbaceous and woody species were not found.High levels of sulfate were found in roots and leaves of Brassica oleracea,Populus sp.,and Quercus ilex as well as in needles of Pinus sylvestris(Table1).Similar observations were made for the glutathione levels of leaves and roots that, for most plant species,varied between50and400nmol g–1 fresh weight in roots and25and800nmol g–1fresh weight inTable1Sulfate levels in lateral roots,mature leaves,xylem,and phloem of herbaceous plants,conifers,and deciduous treesLateral roots(μmol g–1tissue fw)Mature leaves(μmol g–1tissue fw)Xylem(μmol l–1)Phloem(nmolμmol–1sucrose)Arabidopsis thaliana 2.5–1017Brassica oleracea8–161113–4311Brassica napus0.0005–0.00096 Allium cepa 5.3–7.216 2.8–3.216Nicotiana tabacum6–7.315Spinacea oleracea0.4–1.1100.6–1.310Lemna minor–1–2013Solanum tuberosum 2.3–2.514 1.4–2.014Fagus sylvatica2–513–6110–3702Populus sp.15–33310–203100–300310–807 Quercus robur280–7009Quercus ilex12–1888–148Picea abies0.3–3.1420–2805Pinus sylvestris40–110121Kreuzwieser et al.,1997b;2Rennenberg et al.,1994a;3Herschbach et al.,2000; 4Schupp and Rennenberg,1992;5Köstner et al.,1998;6Lappartient and Tour-aine,1996;7Herschbach,unpublished;8Schulte et al.,2002;9Rennenberg,1999;10Poortinga and De Kok,2000;11De Kok et al.,1997;12Polle et al.,1994; 13Kopriva et al.,2002;14Hopkins et al.,2005;15calculated from Matityahu et al., 2006;16Durenkamp and De Kok,2004;17Loudet et al.,2007.Table2Cysteine levels in lateral roots,mature leaves,xylem,and phloem of herbaceous plants,conifers,and treesLateral roots (nmol g–1tissue fw)Mature leaves(nmol g–1tissue fw)Xylem(μmol l–1)Phloem(nmolμmol–1sucrose)Arabidopsis thaliana30–501010–4010Brassica oleracea40175–3017Brassica napus20–80890–110220.005–0.0098 Nicotiana tabacum15–2758–125Spinacea oleracea40–501520–6015Lemna minor–ca.218Solanum tuberosum6–8195–1919,20Fagus sylvatica2–1218–2410.05–1.22,3Populus sp.7–1142–1040–4.04,130.2–1.59 Quercus pubescens n.d.5–1511Quercus ilex4–81230–4112Quercus robur 1.5–2.614Picea abies10–9060.25–1.257,21Pinus sylvestris60–100161Kreuzwieser et al.,1997b;2Rennenberg et al.,1994;3Schupp et al.,1991; 4Herschbach et al.,2000;5Herschbach and Rennenberg,1994;6Schupp and Rennenberg,1992;7Köstner et al.,1998;8Lappartient and Touraine,1996; 9Herschbach,unpublished;10Vauclare et al.,2002;11Schulte et al.,1997;12Schulte et al.,2002;13Schneider et al.,1994b;14Rennenberg,1999;15Poor-tinga and De Kok,2000;16Polle et al.,1994;17Westerman et al.,2000;18Kopriva et al.,2002;19Hopkins et al.,2005;20Harms et al.,2000;21Blaschke et al.,1996; 22Ruiz and Blumwald,2002.Sulfur Metabolism in Trees Plant Biology9(2007)621leaves.Exceptionally high levels of glutathione were found in the roots of Brassica sp.(550to1800nmol g–1fresh weight) und high levels of glutathione in leaves were measured in Pi-nus sylvestris(1700nmol g–1fresh weight).Root and leaf levels of glutathione were similar in most herbaceous plants,where-as most tree species contained significantly higher glutathione levels in the leaves than in roots.However,clear-cut differ-ences in glutathione levels between herbaceous and woody plants were not found for roots or for leaves(Table3).In most herbaceous species analyzed,cysteine levels of roots were higher(15to50nmol g–1fresh weight)than in woody plants (2–11nmol g–1fresh weight).Cysteine levels of leaves varied between2and100nmol g–1fresh weight,with peak values measured in conifer needles.Clear-cut differences between herbaceous and woody plants were not observed;for a given species,leaf and root levels of cysteine were similar in most cases(Table2).In the comparison of sulfur metabolite levels in Tables1–3, only fully expanded,mature leaves and needles were consid-ered.However,sulfur metabolite levels show a strong varia-tion with season and lifetime.Mature conifer needles,for ex-ample,had highest cysteine and glutathione levels during winter(Schupp and Rennenberg,1992).The high glutathione levels in one-year-old conifer needles not only protect against oxidative damage,mediated in winter by high-light intensities at low temperatures(Esterbauer and Grill,1978),but also function as a storage pool of reduced sulfur for the new needle generation in the following year(Schupp et al.,1992;Schnei-der et al.,1994a;Blaschke et al.,1996).Glutathione from one-year-old needles must,therefore,be transported in spring ei-ther in the phloem or in the xylem to the developing needle generation(Schupp et al.,1992;Schneider et al.,1994a).As a consequence,the already high glutathione level at budburst is maintained during initial needle development(Schupp and Rennenberg,1992).High glutathione levels are also found in young,developing leaves of tobacco(Herschbach and Rennen-berg,1994)and poplar(Herschbach,unpublished results)and these high levels may also originate from high glutathione lev-els present in buds and/or from glutathione transported to the developing leaves.The latter is unlikely for poplar,since sul-fate rather than reduced sulfur is allocated from mature to developing leaves in this species(Hartmann et al.,2000).In beech,seasonally high glutathione levels were not only found in young,developing leaves in spring,but also during early stages of leaf senescence in autumn(Luwe,1996;Herschbach, unpublished results).Apparently,glutathione synthesis and export also contribute to the removal of nutrients from senes-cing beech leaves and transport to storage tissues in living bark and wood.There is little information about sulfur composition and levels in saps of the long-distance transport pathways in xylem and phloem.Sulfur levels of xylem saps from several herbaceous plants were investigated(for examples see:Teyker et al., 1991;Sato et al.,1998;do Amarante et al.,2006),but these studies did not distinguish reduced sulfur and sulfate.Data from perennial plants indicate that sulfate is the dominant sul-fur compound in xylem sap and that glutathione and cysteine levels are at least one order of magnitude lower(Tables1–3). Whether glutathione or cysteine constitutes the most abun-dant reduced sulfur compound in xylem sap depends on the species analyzed.In beech,cysteine is the most abundant re-duced sulfur compound(Rennenberg et al.,1994),whereas in Quercus ilex,Q.robur(Rennenberg,1999;Schulte et al.,2002), and Picea abies(Köstner et al.,1998)glutathione dominates the reduced sulfur pool of the xylem sap.Peak values of both sulfate and reduced sulfur compounds were found during spring,before bud break in deciduous trees(Schupp et al., 1991;Rennenberg et al.,1994;Schneider et al.,1994b),and during development of the new needle generation in conifer-ous trees(Köstner et al.,1998).The increasing cysteine concen-Table3Glutathione levels in lateral roots,mature leaves,xylem,and phloem of herbaceous plants,conifers,and deciduous treesLateral roots (nmol g–1tissue fw)Mature leaves(nmol g–1tissue fw)Xylem(μmol l–1)Phloem(nmolμmol–1sucrose)Arabidopsis thaliana130–28014,15220–37014,15Brassica oleracea600–70011,21500–60021Brassica napus900–180012700–800260.16–0.3512 Allium cepa220–38024260–60024Nicotiana tabacum200–3005200–3005Spinacea oleracea50–3006,1025–2506,10Lemna minor–ca.50025Solanum tuberosum250–40022175–45022,23Fagus sylvatica50–2001250–8001,200.02–0.42,3Populus sp.100–3501,4400–7001,43–124,190.1–3.713 Quercus pubescens n.d.175–30016Quercus ilex50–10018300–47518Quercus robur100–2001150–28015–801Picea abies200–45070.05–49,17Pinus sylvestris200–170081Herschbach and Rennenberg,2001;2Rennenberg et al.,1994a;3Schupp et al., 1991;4Herschbach et al.,2000;5Herschbach and Rennenberg,1994;6Hersch-bach et al.,1995;7Schupp and Rennenberg,1992;8Taulavuori et al.,1999; 9Köstner et al.,1998;10Poortinga and De Kok,2000;11Westerman et al.,2001; 12Lappartient and Touraine,1996;13Herschbach,unpublished;14Vauclare et al.,2002;15Howden et al.,1995a,b;16Schulte et al.,1997;17Blaschke et al.,1996; 18Schulte et al.,2002;19Schneider et al.,1994b;20Luwe,1996;21Westerman et al.,2000;22Hopkins et al.,2005;23Harms et al.,2000;24Durenkamp and De Kok;2004,25Kopriva et al.,2002;26Ruiz and Blumwald,2002.Plant Biology9(2007)H.Rennenberg et al. 622tration in xylem sap collected in April with increasing height in beech trunks may also be a consequence of mobilization of cysteine from storage pools(Rennenberg et al.,1994).These findings clearly indicate that,in spring,sulfur is remobilized from storage tissues and loaded into the xylem.Feeding ex-periments with2-year-old beech seedlings proved this.35S-sulfur from sulfate fed to a leaf accumulated in the stem in living bark and wood tissues as soluble and insoluble sulfur during winter.In spring,the stored radiolabelled sulfur was mobilized before bud break and accumulated in the newly de-veloped leaves(Herschbach and Rennenberg,1994).Sulfur compounds in the phloem have been preferentially an-alyzed in perennial plants.Few data are available from herba-ceous plants but,due to different experimental approaches, data are often not directly comparable.In phloem exudates from wheat,S-methylmethionine was the predominant re-duced sulfur compound,followed by glutathione(Bourgis et al.,1999),but sulfate was not measured in these samples.In other herbaceous plants,sulfate levels of phloem exudates were negligible compared to reduced sulfur compounds(Lap-partient and Touraine,1996;Kuzuhara et al.,2000).In con-trast,the phloem sap of poplar was dominated by sulfate and reduced sulfur was present in considerably lower amounts, with glutathione as the most abundant reduced sulfur com-pound(Herschbach et al.,1998,2000;Herschbach and Ren-nenberg,2001).Whether relatively high sulfate levels and a high contribution of glutathione to the reduced sulfur fraction are general features for phloem exudates of woody plants re-mains to be elucidated.The reduced sulfur level in phloem exudates from poplar was found to be higher than from Bras-sica(Tables2,3;Lappartient and Touraine,1996).However, analyses of phloem exudates generally lack completeness.No single study in herbaceous or perennial plants has analyzed the whole set of sulfur compounds identified in phloem exudates,i.e.,sulfate,cysteine,glutathione,methionine and S-methylmethionine.Cellular and Subcellular Compartmentation of Glutathione Most investigations have analyzed sulfur levels at the level of organs and have not considered cell-specific differences or compartmentation within the cells.Subcelluar compartmen-tation of glutathione has been discussed for many years(Ren-nenberg,1982),and different experimental approaches have revealed conflicting findings(Noctor et al.,2002).From isolat-ed chloroplasts,it was calculated that the plastidic glutathione fraction ranged from5to65%of total cellular glutathione and could amount to several mM(Noctor et al.,2002).However, the different methods used for chloroplast isolation may have resulted in different amounts of glutathione retained in this organelle.Recently,glutathione was localized in cells of Cucur-bita pepo by immunogold cytochemistry(Müller et al.,2004). According to this study,the main proportion of glutathione was in mitochondria.Since glutathione levels in mitochondria have never been studied by other approaches,further studies are required to test these results.A new technique for glutathione determination at the cellular level uses confocal laser scanning microscopy after in situ la-belling with monochlorobimane(Sánchez-Fernández et al., 1997;Gutiérrez-Alcaláet al.,2000;Fricker et al.,2000;Meyer and Fricker,2000,2002;Meyer et al.,2001;Hartmann et al.,2003;Gómez et al.,2004a).However,it is important to note that only the cytosolic glutathione fraction is marked by in situ labelling with monochlorobimane.This has been demonstrat-ed with poplar leaves(Hartmann et al.,2003),where the plas-tidic glutathione pool did not undergo short-term exchange with the cytosolic GSH pool.From these first in situ measure-ments of glutathione in photosynthetically active tissues,a cy-tosolic glutathione concentration of0.2to0.3mM was calcu-lated for poplar leaves(Hartmann et al.,2003).This value is one order of magnitude lower than previous reports for herba-ceous plants(reviewed in Noctor et al.,2002).Noctor et al. (2002)calculated a cytosolic glutathione concentration of1to 2mM in wheat leaves,and Fricker et al.(2000)found cytosolic glutathione concentrations of2to3mM in most cell types of Arabidopsis roots.Since the glutathione levels determined by HPLC in wheat(Noctor et al.,2002),Arabidopsis(Table3)and poplar are similar,10to20times higher glutathione levels may be assumed for plastids or mitochondria of poplar than for wheat or Arabidopsis cells.Certainly further studies are re-quired to test this assumption and to address the question why glutathione is not readily transported from these organelles into the cytosol in poplar cells,even with such a high concen-tration gradient.Glutathione Levels in Plant Tissues Interact withCell Differentiation and Plant DevelopmentGlutathione levels in leaves depend on the age of the leaf.In poplar,the highest glutathione level was found in the apex and decreased with increasing leaf age(Herschbach,unpub-lished results).A high glutathione level in the apex or in young leaves was also observed for tobacco leaves(Herschbach and Rennenberg,1994)and for spruce(Schupp and Rennenberg, 1992),Scots pine needles,and bilberry leaves(Taulavuori et al.,1999).In the monocot Lolium perenne,the glutathione level was highest in the leaf base,the growing zone of these leaves, and decreased with increasing distance from the base of the leaf(Piquery et al.,2002).Apparently,glutathione levels are high in growing and developing leaves or leaf sections.In pop-lar,sulfate assimilation and glutathione synthesis in develop-ing leaves,but not GSH transport to these leaves,is responsible for the high glutathione level(Hartmann et al.,2000;Hersch-bach,2003).Whether these observations are a special feature of poplar or of more general significance remains to the eluci-dated.Not only cells of different age,but also different cell types con-tain different glutathione levels.In epidermal cells of Arabi-dopsis leaves glutathione levels of trichome cells were higher than of trichome basement cells or the epidermal cells them-selves(Gutiérrez-Alcaláet al.,2000).Other leaf cell types from Arabidopsis were not investigated.In poplar,a uniform distri-bution of glutathione was found in transverse leaf sections. Epidermal,palisade,spongy mesophyll,and guard cells had similar cytosolic glutathione levels(Hartmann et al.,2003). Since comparable data from the leaves of other perennial or herbaceous species are not available,more general conclusions on the distribution of glutathione between different types of leaf cells cannot be established.Since the activity of the key enzyme of sulfate assimilation, adenosine5′-phosphosulfate reductase(APR),in Zea mays roots decreased with increasing distance from the root tip(Ko-Sulfur Metabolism in Trees Plant Biology9(2007)623priva et al.,2001),decreasing glutathione levels from the root tip to older root sections may be assumed.Indeed,in situ label-ling of glutathione and detection of glutathione-bimane conju-gates by confocal laser scanning microscopy(CLSM)showed that glutathione decreased along Arabidopsis roots with in-creasing distance from the root tip(Sánchez-Fernández et al., 1997;Espunya et al.,2006).Also,trichoblasts and atrichoblasts of Arabidopsis roots were shown by CLSM to possess different levels of glutathione,with the latter being significantly bright-er after labelling with monochlorobimane(Meyer and Fricker, 2000).As meristematic cells showed very low fluorescence from glutathione-bimane derivatives,it seems that these cells contain only low glutathione levels(Sánchez-Fernández et al., 1997;Meyer and Fricker,2000).In addition,Vernoux et al. (2000)found that glutathione accumulation is induced during the G1to S transition in root cell development.More recently, transcriptional profiling showed a high abundance of the gshII gene in the cells of the quiescent centre of Arabidopsis roots (Nawy et al.,2005).Apparently,a high rate of GSH synthesis is necessary to control cell division.This assumption is sup-ported by findings with the Arabidopsis mutant rml1that con-tains a mutation in the gene forγ-glutamylcysteine synthetase, the first enzyme of glutathione biosynthesis(Vernoux et al., 2000).This mutant was unable to establish an active post-em-bryonic meristem in the root apex,but feeding with gluta-thione partially restored the observed phenotype.On the other hand,a complete disruption ofγ-glutamylcysteine synthetase (γ-ECS)led to embryo lethality(Cairns et al.,2006).In this con-text,it is interesting that glutathione levels in the cytosol and the nucleus are higher in roots compared to leaves(Müller et al.,2004).However,Espunya et al.(2006)showed that external glutathione supplied to wild-type Arabidopsis roots reduced root growth.Since Sánchez-Fernández et al.(1997)demon-strated that feeding with glutathione resulted in an increased root hair,but a reduced trichoblast,length,it appears that a balanced glutathione level is necessary for optimal root growth.Such a regulatory mechanism may adapt root growth to a changing environment(Sánchez-Fernández et al.,1997). Poplar roots with secondary growth show higher glutathione levels than fine roots(Herschbach,unpublished results),but this may be the consequence of GSH storage in ray and pith cells(Hartmann et al.,2000).However,detailed analyses of GSH levels in fine roots are not available for poplar or other tree species,so that a comparison between herbaceous and perennial plants is not possible.Glutathione levels also play a crucial role in tracheary element development.In cultured mesophyll cells of Zinnia elegans,ox-idized glutathione(GSSG)rather than reduced glutathione (GSH)initiates cell differentiation(Henmi et al.,2001).Also, in wild-type Arabidopsis,tracheary development was promot-ed by application of GSSG(Henmi et al.,2005).When gluta-thione reductase was over-expressed in Zinnia cells and Arabi-dopsis,tracheary development was delayed in a similar way as observed with GSH treatment.Apparently,tracheary element development is subject to redox control by glutathione.Al-though over-expression of glutathione reductase in poplar did not result in a visible phenotype(Foyer et al.,1995),nothing is known about vessel development in these transgenic plants. Flowering also seems to be dependent on glutathione levels (Ogawa et al.,2001,2004).The cad2-1mutant of Arabidopsis with reduced activity ofγ-ECS(Cobbett et al.,1998)exhibits delayed flowering.This effect can be counteracted by GSH treatment(Ogawa et al.,2001).Together,these results clearly indicate that glutathione levels and the redox state of gluta-thione are involved in the control of cell and tissue develop-ment in various plant organs.A lack of data for perennial plants,however,prevents any conclusions about differences between herbaceous and woody species.Consequences of Genetic Engineering forGlutathione LevelsGlutathione levels have been altered in plants using several manipulation strategies(Table4).The first transgenic poplars with increased glutathione levels were produced by over-ex-pressing the gene for bacterial glutathione reductase(GR,gor; Foyer et al.,1995).The level of glutathione was not affected when the gene product was targeted to the cytosol,but foliar glutathione levels doubled when GR was targeted to plastids. These transgenic poplars showed increased resistance to pho-toinhibition and had a higher capacity to withstand oxidative stress mediated by methylviologen treatment(Foyer et al., 1995).Poplar plants over-expressing bacterialγ-glutamylcys-teine synthetase(γ-ECS,gsh1),but not poplar plants over-expressing bacterial glutathione synthetase(GSHS,gsh2), showed enhanced glutathione levels,irrespective of whether the proteins were targeted to the cytosol or to the plastids (Strohm et al.,1995;Arisi et al.,1997;Noctor et al.,1998).Sim-ilar results were obtained by transformation of other plant species(Table4).Arabidopsis plants over-expressing theγ-ECS gene from Arabidopsis(Table4;Xiang et al.,2001)showed in-creased glutathione levels in the transformants,indicating that the origin ofγ-ECS is not a decisive factor for the increase in glutathione level.Reduced or negligible glutathione levels were found in Arabidopsis mutants inγ-ECS gene cad2,rml2, and rax1(Cobbett et al.,1998;Vernoux et al.,2000;Ball et al., 2004).These data clearly identifyγ-ECS activity as a key factor in glutathione synthesis.Tobacco plants over-expressing the bacterial gsh1or gsh2had increased GSH levels,which were significantly greater when both genes were over-expressed simultaneously(Table4; Creissen et al.,1999).Targeting of the gsh1to plastids,but not to the cytosol,caused symptoms of oxidative stress in trans-genic tobacco plants(Creissen et al.,1999).Symptoms of oxi-dative stress were not observed in other plant species when gsh1was targeted to the cytosol(Noctor et al.,1998;Xiang et al.,2001),even after prolonged growth(Herschbach,unpub-lished results).Contrary to results from tobacco,Brassica seed-lings(Zhu et al.,1999a)and young poplar plants(Noctor et al., 1998)targeting gsh1to plastids did not cause a visible pheno-type.But,after prolonged growth(4to5months),transgenic poplar over-expressing gsh1in the plastids had similar symp-toms of injury to tobacco plants(Creissen et al.,1999),such as reduced growth,premature senescence,and,occasionally,the development of side branches(Herschbach,unpublished re-sults).However,transgenic tobacco over-expressing maize gsh1targeted to chloroplasts did not showed any visible symp-toms of oxidative stress(Gómez et al.,2004b).Whether these differences are a result of plant versus bacterial gsh1over-ex-pression,or a result of different expression levels of the trans-gene remains to be elucidated.Plant Biology9(2007)H.Rennenberg et al. 624。

相关文档
最新文档