多次相遇问题练习题
小学数学行程专题 多次相遇与追及问题 PPT+课后作业 带答案

Байду номын сангаас题4
小芳和小俞老师分别从一段长200米的马路的两端同时相向出发,做往返运动。小芳每分 钟走40米,小俞老师每分钟走60米。20分钟后,两人停止运动。 (1)在这期间,小芳和小俞老师迎面相遇多少次? (2)在这期间,小俞老师从后面追上小芳多少次? (3)在这期间,小俞老师和小芳迎面相遇和追及相遇一共多少次?
从后面追上
甲
同向追上
A
B
乙
迎面相遇可不算哦!
甲、乙两人同时从A、B两地出发,在A、B两地之间来回散步。 (1)当甲第一次从后面追上乙时,甲比乙多走__1___个全程。 (2)甲从第一次从后面追上到第二次从后面追上乙时,甲比乙又多走__2___个 全程。 (3)甲从第二次从后面追上到第三次从后面追上乙时,甲比乙又多走__2___个 全程。
答:经过2个小时,甲车第一次从后面追上乙车。 (2)路程差:2个全程
追及时间:35×2÷(75-40)=2(小时) 答:再经过2个小时,甲车第二次从后面追上乙车。
例题3
甲、乙两车分别从 A、B 两地同时出发,相向而行,在 A、B 两地之间不停往返行驶。当 甲车行驶了12 个全程时, 乙车行驶了 4 个全程,那么甲车从后面追上乙车多少次?
(1)从开始出发到第一次从后面追上,路程差为1个全程 追及时间:200÷(120-70)=4(小时) 答:经过4小时,小汽车第一次从后面追上大巴。
(2)从第一次追上到第二次从后面追上,路程差为2个全程 追及时间:200×2÷(120-70)=8(小时) 答:再经过8小时,小汽车第二次从后面追上大巴。
相邻两次同向追及之间,两者的路程差都是2个全程; 从出发到第1次同向追及,两者的路程差是2个全程; 从出发到第2次同向追及,两者的路程差是4个全程; 从出发到第3次同向追及,两者的路程差是6个全程; 从出发到第n次同向追及,两者的路程差是2n个全程。
六年级奥数多次相遇练习试题解答【三篇】

六年级奥数多次相遇练习试题解答【三篇】 分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.
解答:(汽车速度-自行车速度)×10=(自行车+步行)×10, 即:汽车速度-自行车速度=自行车速度+步行速度. 汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍, 所以汽车速度=(2×3+1)×步行速度=步行速度×7. 故答案为:7. 点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和.
【第二篇】 王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇.相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回.两人第二次相遇后()小时第三次相遇.
考点:多次相遇问题. 分析:由题意知道两人走完一个全程要用1.2小时.从开始到第三次相遇,两人共走完了三个全程,故需3.6小时.第一次相遇用了一小时,第二次相遇用了40分钟,那么第二次到第三次相遇所用的时间是:3.6小时-1.2小时-45分钟据此计算即可解答. 解答:解:45分钟=0.75小时, 从开始到第三次相遇用的时间为: 1.2×3=3.6(小时); 第二次到第三次相遇所用的时间是: 3.6-1.2-0.75 =2.4-0.75, =1.65(小时); 答:第二次相遇后1.65小时第三次相遇. 故答案为:1.65. 点评:本题主要考查多次相遇问题,解题关键是知道第三次相遇所用的时间.
【第三篇】 1.甲乙同时从东西两镇相向步行,在距离西镇20千米处相遇,相遇后两人继续前进,甲至西镇,乙至东镇后立即返回,两人又在距东镇15千米处相遇,求东西两镇的距离?
小学奥数——多次相遇问题专项练习一【含解析】

小学奥数——多次相遇问题专项练习一【含解析】1.甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒跑2米.如果他们同时从他们两端出发,跑了10分钟.那么,在这段时间内,甲、乙两人共迎面相遇了多少次?1.解:10分钟=600秒;两人第一次相遇用时:90÷(2+3)=90÷5,=18(秒);第一次相遇后又相遇:(600﹣18)÷[90×2÷(2+3)]=582÷[180÷5],=582÷36,=16(次)…6秒.共相遇:16+1=17(次).答:甲、乙两人共迎面相遇了17次2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?2.解:设东西两镇间的路程有x米,由题意列方程得=2,=2,x=2,x=2×285×9,x=5130;答:东西两镇间的路程有5130千米3.兄、弟两人往返于A、B两市之间,兄和弟的速度比为4:3,两人同时由A市出发30分钟后,弟以原速的2倍开始跑,兄正好由B 市返回.这两人由A地出发后,经过多少分钟又相遇?3.解:设兄的速度为4,弟的速度为3.(30×4﹣30×3)÷(3×2+4)+30=(120﹣90)÷(6+4)+30,=30÷3+30,=3+30,=33(分钟).答:两人由A地出发后,经过33分钟又相遇4.甲从A地往B地,乙、丙两人从B地往A地,三人同时出发,甲首先在途中与乙相遇,之后15分钟又与丙相遇,甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,问:A、B两地相距多少米?4.解:(70+50)×15÷(60﹣50)×(70+60)=1800÷10×130,=23400(米).答:A、B两地相距23400米5.两地相距1800米,甲乙两人同时从两地相向而行,12分钟相遇(甲速>乙速),如果每人每分钟多走25米,此次相遇地点与上次相遇点相距33米,甲乙两人的速度各是多少?5.解:甲、乙增速后相遇时间为:1800÷(1800÷12+25×2),=1800÷200,=9(分钟);设甲速度为每分钟x米,据题得:12x﹣9(x+25)=33,12x﹣9x﹣225=33,3x﹣225+225=33+2253x=258;x=86,则乙的速度为:1800÷12﹣86=64(米);答:甲的速度是每分钟86米,乙的速度是每分钟64米6.甲、乙两地相距120千米,客车和货车同时从甲地出发驶向乙地,客车到达乙地后立即沿原路返回,在途中的丙地与货车相遇.之后,客车和货车继续前进,各自到达甲地和乙地后又马上折回,结果两车又恰好在丙地相遇.已知两车在出发后的2小时首次相遇,那么客车的速度是每小时多少千米?6.解:120÷3=40(千米),(120+40)÷2,=160÷2,=80(千米);答:客车的速度是每小时80千米7.甲、乙两人分别从A、B两地相向而行,相遇时离A地350米,两人又继续前进,到达B、A两地后立即返回,第二次相遇离A地150米,求AB两地距离是多少米?7.解:根据题意可得:甲从开始到第二次相遇走的路程是:350×3=1050(米);AB两地飞距离:(1050+150)÷2=600(米).答:AB两地距离是600米8.甲、乙两人同时从A地出发,在直道A、B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距80米,求A、B两地相距多少米?8.解:80÷2=40(米),40×5=200(米);答:A、B两地相距200米9.甲、乙两车从A、B两地相向而行,将在距A地270千米的C地相遇,如果乙车速度提高20%,则两车在距C地30千米的D地相遇.实际甲车在行驶一段后因事返回,两车仍在D点相遇,问AB两地全程是多少?9.解:270:(270﹣30)=9:8,9﹣8=1,1÷20%=5,8﹣5=3,270÷(),=270,=720(千米);答:A、B两地全程的距离是720千米10.甲、乙两人沿铁路边相对而行,速度一样.一列火车开来,整个列车从甲身边驶过用8秒钟.再过5分钟后又用7钞钟从乙身边驶过.问还要经过多少时间,甲、乙两人才相遇?10.(1)解法一:设车速为每秒x米,人速为每秒y米,车长a米,则有:a=8(x﹣y)=7(x+y),故x=15y.火车5分钟(300秒)的路程为300x,故甲乙相遇时间为:300x÷(y+y)=300×15y÷2y=2250(秒).(2)解法二:设火车速度为a,人的速度为b.。
小学四年级行程多次相遇问题

多次相遇问题1.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.小张和小王行走时的速度?2.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3500米处第一次相遇,在离乙村2000米处第二次相遇,问他们两人第四次相遇的地点离乙村多少米?(相遇指迎面相遇)3.甲乙二人分别从A、B两地同时出发,在A、B之间往返跑步.甲每秒跑3米,乙每秒跑7米,如果他们第四次迎面相遇点与第五次迎面相遇点之间相距150米,求A、B间相距多少米?4.甲乙两地之间有一条公路,李明从甲地出发步行往乙地;同时张平从乙地出发骑摩托车往甲地,80分后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分张平在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去,当李明到达乙地时,张平追上李明的次数是多少?5.甲乙二人分别从A、B两地同时出发,并在两地间往返行走。
第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?6.甲乙两人分别从AB两地相向往返而行,第一次相遇在离A地92米处,第二次相遇在离B地63米处,求全程。
7.湖中有A、B两岛,甲、乙二人都要在两岛间游一个来回。
两人分别从A、B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。
问:两岛相距多远?8.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇。
他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇。
求两次相遇地点的距离。
9.甲乙丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米。
有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三辆车相遇。
六年级数学多次相遇和追及问题含答案

多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 2倍。
解:如下图所示,因为每次相遇都共行一个来回,所用时间相等,所以乙车两次相遇走的路程相等,即2AC CB =,推知23AC AB =.第一次相遇时,甲走了43AB BC AB +=,乙走了23AC AB =,所以甲车速度是乙车的2倍。
【答案】2倍【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
多次相遇问题(解析版)

多次相遇问题(解析版)一、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差【例 1】 小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?【解析】 第一次相遇时,两人共跑完了一个全程,所用时间为:1006410÷+=()(秒).此后,两人每相遇一次,就要合跑2倍的跑道长,也就是每20秒相遇一次,除去第一次的10秒,两人共跑了126010710⨯-=(秒).求出710秒内两人相遇的次数再加上第一次相遇,就是相遇的总次数.列式计算为:1006410÷+=()(秒),1260101023510⨯-÷⨯=()(),共相遇35136+=(次)。
注:解决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.【例 2】 A 、B 两地间有条公路,甲从A 地出发,步行到B 地,乙骑摩托车从B 地出发,不停地往返于A 、B 两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B 地时,乙追上甲几次?【解析】第一次追上第一次相遇乙甲F E B由上图容易看出:在第一次相遇与第一次追上之间,乙在1008020-=(分钟)内所走的路程恰等于线段FA 的长度再加上线段AE 的长度,即等于甲在(80100+)分钟内所走的路程,因此,乙的速度是甲的9倍(18020=÷),则BF 的长为AF 的9倍,所以,甲从A 到B ,共需走80(19)800⨯+=(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB 全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB 全程,因此,追及时间也变为200分钟(1002=⨯),知识精讲所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.【例 3】(难度等级3)甲、乙两人分别从A、B两地同时出发相向而行,乙的速度是甲的23,二人相遇后继续行进,甲到B地、乙到A地后立即返回.已知两人第二次相遇的地点距第三次相遇的地点是100千米,那么,A、B两地相距千米.【解析】由于甲、乙的速度比是2:3,所以在相同的时间内,两人所走的路程之比也是2:3.第一次相遇时,两人共走了一个AB的长,所以可以把AB的长看作5份,甲、乙分别走了2份和3份;第二次相遇时,甲、乙共走了三个AB,乙走了236⨯=份;第三次相遇时,甲、乙共走了五个AB,乙走了2510⨯=份.乙第二次和第三次相距10-6=4(份)所以一份距离为:100÷4=25(千米),那么A、B两地距离为:5×25=125(千米)【巩固】(难度等级※※※)小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米.【解析】由于两人同时出发相向而行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以两人第二次相遇可能为迎面相遇,也可能为同向追及.①如果第二次相遇为迎面相遇,如下图所示,两人第一次在A处相遇,第二次在B处相遇.由于第一次相遇时两人合走1个全程,小王走了3千米;从第一次相遇到第二次相遇,两人合走2个全程,所以这期间小王走了326⨯=千米,由于A、B之间的距离也是3千米,所以B与乙地的距离为(63)2 1.5-÷=千米,甲、乙两地的距离为6 1.57.5+=千米;李王乙甲甲王李乙②如果第二次相遇为同向追及,如上图,两人第一次在A处相遇,相遇后小王继续向前走,小李走到甲地后返回,在B处追上小王.在这个过程中,小王走了633-=千米,小李走了639+=千米,两人的速度比为3:91:3=.所以第一次相遇时小李也走了9千米,甲、乙两地的距离为9312+=千米.所以甲、乙两地的距离为7.5千米或12千米.【巩固】(难度级别3)A,B两地相距540千米。
多次相遇追击问题

多次相遇问题分析两人一次相遇问题例1:甲乙二人分别从相距若干公里的A、B两地同时出发相向而行,相遇后各自继续前进,甲又经1小时到达B地,乙又经4小时到达A地,甲走完全程用了几小时?【江苏A2006】A. 2 B. 3 C. 4 D. 6┃------------------┊----------┃A C B楚香凝解析:设相遇时间为T,在AC段甲乙的时间比=T:4,所以甲乙速度比=4:T;在CB 段甲乙的时间比=1:T,所以甲乙的速度比=T:1;可得4:T=T:1,解得T=2;所以甲走完全程需要的时间=2+1=3小时,选B例2:甲、乙两位运动员分别从M、N两地均速骑车相向而行,两人相遇时,甲比乙多走了18千米,甲继续向N地前进,从相遇时到N地用了4.5小时。
乙继续向M地前进,从相遇到M 地用了8小时。
问M、N两地距离多少千米?A.124B.125C.126D.127┃------------------┊----------┃M O N楚香凝解析:设相遇时间为T,在MO段甲乙的时间比=T:8,所以甲乙速度比=8:T;在ON 段甲乙的时间比=4.5:T,所以甲乙的速度比=T:4.5;可得8:T=T:4.5,解得T=6;所以甲走MN需要的时间=6+4.5=10.5小时,乙走MN需要的时间=6+8=14小时,甲乙时间比=10.5:14=3:4,所以速度比=4:3(这里可以根据7因子直接锁定答案C);路程比为4:3,差一份=18千米,总共走了7份=18*7=126,选C两人两次相遇问题核心公式:单岸型:s=(3s1+s2)/2 双岸型:s=3s1-s2例1:货车A由甲城开往乙城,货车B由乙城开往甲城,它们同时出发并以各自恒定的速度行驶。
在途中第一次相遇时,它们离甲城为35千米。
相遇后两车继续以原来的速度行驶至目的城市后立即折返,途中再一次相遇,这时它们离乙城为25千米。
则甲乙两城相距( )千米。
【2014广州】A. 80B. 85C. 90D. 95楚香凝解析:双岸型,s=3*35-25=80,选A例2:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。
多次相遇追击问题

多次相遇追击问题多次相遇问题分析两人一次相遇问题基准1:甲乙二人分别从距离若干公里的a、b两地同时启程并肩而行,碰面后各自继续前进,甲又经1小时抵达b地,乙又经4小时抵达a地,甲步上全程用了几小时?【江苏a2021】a.2b.3c.4d.6┃------------------┊----------┃acb楚香凝解析:设立碰面时间为t,在ac段甲乙的时间比=t:4,所以甲乙速度比=4:t;在cb段甲乙的时间比=1:t,所以甲乙的速度比=t:1;只须4:t=t:1,Champsaurt=2;所以甲步上全程须要的时间=2+1=3小时,挑选b例2:甲、乙两位运动员分别从m、n两地均速骑车相向而行,两人相遇时,甲比乙多走了18千米,甲继续向n地前进,从相遇时到n地用了4.5小时。
乙继续向m地前进,从相遇到m地用了8小时。
问m、n两地距离多少千米?a.124b.125c.126d.127┃------------------┊----------┃mon楚香凝解析:设相遇时间为t,在mo段甲乙的时间比=t:8,所以甲乙速度比=8:t;在on段甲乙的时间比=4.5:t,所以甲乙的速度比=t:4.5;可得8:t=t:4.5,解得t=6;所以甲走mn需要的时间=6+4.5=10.5小时,乙走mn需要的时间=6+8=14小时,甲乙时间比=10.5:14=3:4,所以速度比=4:3(这里可以根据7因子直接锁定答案c);路程比为4:3,差一份=18千米,总共走了7份=18*7=126,选c两人两次碰面问题核心公式:单岸型:s=(3s1+s2)/2双岸型:s=3s1-s2基准1:货车a由甲城驶往乙城,货车b由乙城驶往甲城,它们同时启程并以各自恒定的速度高速行驶。
在途中第一次碰面时,它们距甲城为35千米。
碰面后两车稳步以原来的速度高速行驶至目的城市后立即调头,途中再一次碰面,这时它们距乙城为25千米。
则甲乙两城距离()千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多次相遇问题练习题
1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B 地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?
2、甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?
3、小明和小军同时从学校和少年宫出发相向而行,小明每分钟走90米,两人相遇后,小明再走4分钟到达少年宫,小军再走270米到达学校。
小军每分钟走多少米?
4、甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶。
已知甲车的速度是15千米/时,乙车的速度是25亲密/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。
求A、B两地的距离。