高中数学复习笔记

高中数学复习笔记
高中数学复习笔记

高中数学复习笔记

一、函数图象

1、对称:

y=f(x)与y=f(-x)关于y轴对称,例如:

与()关于y轴对称

y=f(x)与y= —f(x)关于x轴对称,例如:

与关于x轴对称

y=f(x)与y= —f(-x)关于原点对称,例如:

与关于原点对称

y=f(x)与y=f(x)关于y=x对称,例如:

y=10与y=lgx关于y=x对称

y=f(x)与y= —f(—x)关于y= —x对称,如:y=10与y= —lg(—x)关于y= —x对称注:偶函数的图象本身就会关于y轴对称,而奇函数的图象本身就会关于原点对称,例如:

图象本身就会关于y轴对称,的图象本身就会关于原点对称。

y=f(x)与y=f(a—x)关于x=对称()

注:求y=f(x)关于直线x y c=0(注意此时的系数要么是1要么是-1)对称的方程,只需由x y+c=0解出x、y再代入y=f(x)即可,例如:求y=2x+1关于直线x-y-1=0对称的方程,可先由x-1=2(y+1)整理即得:x-2y-3=0

2、平移:

y=f(x)y= f(x+)先向左(>0)或向右(<0)平移||个单位,再保持纵坐标不变,横坐标压(x)则先保持纵坐标不变,横坐标压缩或伸长为原来的倍,再将整个图象向右(>0)或向左(<0)平移||个单位,即与原先顺序相反)

y=f(x)y= f先保持纵坐标不变,横坐标压缩或伸长为原来的||倍,然后再将整个图象向左(>0)或向右(<0)平移||个单位,(反之亦然)。

3、必须掌握的几种常见函数的图象

1、二次函数y=a+bx+c(a)(懂得利用定义域及对称轴判断函数的最值)

2、指数函数()(理解并掌握该函数的单调性与底数a的关系)

3、幂函数()(理解并掌握该函数的单调性与幂指数a的关系)

4、对数函数y=log x()(理解并掌握该函数的单调性与底数a的关系)

5、y=(a为正的常数)(懂得判断该函数的四个单调区间)

6、三角函数y=sinx、y=cosx、y=tanx、y=cotx(能根据图象判断这些函数的单调区间)

注:三角中的几个恒等关系

sin x+ cos x=1 1+tan x=sec x 1+cot x=csc x tanx=1

利用函数图象解题典例

已知分别是方程x +10=3及x+lgx=3的根,求:

分析:x +10=3可化为10=3—x,x+lgx=3可化为lgx=3—x,故此可认为是曲线

y=10、y= lgx与直线y=3—x的两个交点,而此两个交点关于y=x对称,故问题迎刃而解。

答案:3

4、函数中的最值问题:

1、二次函数最值问题

结合对称轴及定义域进行讨论。

典例:设a∈R,函数f(x)=x2+|x-a|+1,x∈R,求f(x)的最小值.

考查函数最值的求法及分类讨论思想.

【解】(1)当x≥a时,f(x)=x2+x-a+1=(x+)2-a+

若a≤-时,则f(x)在[a,+∞]上最小值为f(-)=-a

若a>-时,则f(x)在[a,+∞)上单调递增

f

=f(a)=a2+1

min

(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+

若a≤时,则f(x)在(-∞,单调递减,f min=f(a)=a2+1

当a>时,则f(x)在(-∞,上最小值为f()=+a

综上所述,当a≤-时,f(x)的最小值为-a

当-≤a≤时,f(x)的最小值为a2+1

当a>时,f(x)的最小值为+a

2、利用均值不等式

典例:已知x、y为正数,且x=1,求x的最大值

分析:x==(即设法构造定值x=1)==故最大值为

注:本题亦可用三角代换求解即设x=cos,=sin求解,(解略)

3、通过求导,找极值点的函数值及端点的函数值,通过比较找出最值。

4、利用函数的单调性

典例:求t的最小值(分析:利用函数y=在(1,+)的单调性求解,解略)

5、三角换元法(略)

6、数形结合

例:已知x、y满足x,求的最值

5、抽象函数的周期问题

已知函数y=f(x)满足f(x+1)= —f(x),求证:f(x)为周期函数

证明:由已知得f(x)= —f(x —1),所以f(x+1)= —f(x)= —(—f(x —1))

= f(x —1)即f(t)=f(t —2),所以该函数是以2为最小正周期的函数。

解此类题目的基本思想:灵活看待变量,积极构造新等式联立求解

二、圆锥曲线

1、离心率

圆(离心率e=0)、椭圆(离心率0

e>1)。

2、焦半径

椭圆:PF=a+ex、PF=a-ex(左加右减)(其中P为椭圆上任一点,F为椭圆左焦点、F为椭圆右焦点)

注:椭圆焦点到其相应准线的距离为

双曲线:PF= |ex+a|、PF=| ex-a|(左加右减)(其中P为双曲线上任一点,F

为双曲线左焦点、F为双曲线右焦点)

注:双曲线焦点到其相应准线的距离为

抛物线:抛物线上任一点到焦点的距离都等于该点到准线的距离(解题中常用)

圆锥曲线中的面积公式:(F、F为焦点)

设P为椭圆上一点,=,则三角形F PF的面积为:b

注:|PF| |PF|cos=b为定值

设P为双曲线上一点,=,则三角形F PF的面积为:b

注:|PF| |PF|sin=b为定值

附:三角形面积公式:

S=底高=absinC==r(a+b+c)=(R为外接圆半径,r为内切圆半径)=(这就是著名的海伦公式)

三、数列求和

裂项法:若是等差数列,公差为d()则求时可用裂项法求解,即=()=

求导法:(典例见高三练习册p86例9)

倒序求和:(典例见世纪金榜p40练习18)

分组求和:求和:1-2+2-4+3-8+4-16+5-32+6-…分析:可分解为一个等差数列和一个等比数列然后分组求和

求通项:构造新数列法典例分析:典例见世纪金榜p30例4——构造新数列即可

四、向量与直线

向量(a,b),(c,d)垂直的充要条件是ac+bd=0

向量(a,b),(c,d)平行的充要条件是ad—bc=0

附:直线A x+B y+C=0与直线A x+B y+C=0垂直的充要条件是A A+ B B=0 直线A x+B y+C=0与直线A x+B y+C=0平行的充要条件是A B-A B=0

向量的夹角公式:

cos=

注1:直线的“到角”公式:到的角为tan=;“夹角”公式为tan=||

(“到角”可以为钝角,而“夹角”只能为之间的角)

注2:异面直线所成角的范围:(0,]

注3:直线倾斜角范围[0,)

注4:直线和平面所成的角[0,]

注5:二面角范围:[0,]

注6:锐角:(0,)

注7:0到的角表示(0,]

注8:第一象限角(2k,2k+)

附:三角和差化积及积化和差公式简记

S + S = S C

S + S = C S

C + C = C C

C — C = — S S

五、集合

1、集合元素个数的计算

card(A)=card(A)+ card(B)+ card(C)—card(A)—card()—card(C A)速)

2、从集合角度来理解充要条件:若A B,则称A为B的充分不必要条件,(即小的可推出大的)此时B为A的必要不充分条件,若A=B,则称A为B的充要条件

经纬度

六、二项展开式系数:

C+C+C+...C=2(其中C+ C+ C+...=2;C+C+ C+ (2)

例:求(2+3x)展开式中

1、所有项的系数和

2、奇数项系数的和

3、偶数项系数的和

方法:只要令x为1或—1即可

七、离散型随机变量的期望与方差

E(a+b)=aE+b;E(b)=b

D(a+b)=a D;D(b)=0

D=E—(E)

特殊分布的期望与方差

(0、1)分布:期望:E=p;方差D=pq

二项分布:期望E=np;方差D=npq

注:期望体现平均值,方差体现稳定性,方差越小越稳定。

八、圆系、直线系方程

经过某个定点()的直线即为一直线系,可利用点斜式设之(k为参数)

一组互相平行的直线也可视为一直线系,可利用斜截式设之(b为参数)

经过圆f(x、y)与圆(或直线)g(x、y)的交点的圆可视为一圆系,可设为:

f(x、y)+g(x、y)=0(此方程不能代表g(x、y)=0);或f(x、y)+g(x、y)=0 (此方程不能代表f(x、y)=0)

附:回归直线方程的求法:设回归直线方程为=bx+a,则b=

a=-b

相关主题
相关文档
最新文档