地铁通风空调系统

合集下载

地铁通风空调的结构和原理ppt课件

地铁通风空调的结构和原理ppt课件
板式过滤器
送风机
通风空调风系统(续)
三、空调系统末端设备和零部件
装配式空调机组
通风空调风系统(续)
三、空调系统末端设备和零部件
装配式空调机组
吊顶式空调机组
立式空调机组
卧式空调机组
通风空调风系统(续)
三、空调系统末端设备和零部件
风机盘管
经处理的新风通过新风送风管送到房间,室内的风通过回风口与送入的新风混合再经过风机盘管处理,达到要求后再送入房间
表冷段
风机送风段
风量调节阀、板式过滤器
送风机
通风空调系统的分类
一、按处理设备的情况分类
1、集中式空调(各车站)
空气处理设备和送、回风机等集中设在空调机房内,通过送、回风管道与被调节的空调场所相连,对空气进行集中处理和分配
通风空调系统的分类(续)
2、半集中式空调(多联机)
送入空调房间的新风由空调机房集中处理,空调房间内的空气由分散在房间内的装置处理的系统
2、 全水式空调系统(盘管风机)
全部由经过处理的水负担室内热湿负荷 ,利用冷冻机处理后的冷冻水送往空调房间的风机盘管中对房间的温度、湿度进行处理。
通风空调系统的分类(续)
3、 空气-水式空调系统(盘管风机+新风)
由经过处理的空气和水共同负担室内热湿负荷 ,典型装置是风机盘管加新风系统
4、 制冷剂式空调系统(多联机)
通风空调风系统(续)
通风空调风系统(续)
三、空调系统末端设备和零部件
空调系统末端设备包括装配式空调机组和风机盘管,其主要的零部件包括风机机组,表冷器,加湿器,除湿器,空气过滤器,空气分配器等
通风空调风系统(续)
三、空调系统末端设备和零部件

地铁车站通风空调系统节能策略研究

地铁车站通风空调系统节能策略研究

地铁车站通风空调系统节能策略研究摘要:随着我国城镇化建设的快速发展,地铁已成为我国大城市公共交通重要组成部分之一。

为了给乘客提供健康、舒适和安全的环境,地铁车站基本都配备了通风空调系统。

已有地铁系统能耗数据分析表明,通风空调系统的能耗占地铁车站总能耗比例高达40%,且车站冷负荷受人员影响波动较大,通风空调系统相比其他系统具有较大的节能潜力。

因此,通风空调系统的节能措施对地铁车站总能耗的降低具有重大意义。

为了提高地铁车站通风空调系统节能水平,本文首先简单阐述地铁车站通风空调系统,然后从变频技术、智能技术等先进技术在车站通风空调中的节能措施进行探讨。

关键词:地铁车站;通风空调;系统节能前言:近年来,各种节能控制技术的不断发展为地铁通风空调系统的节能改造提供了硬件基础。

越来越多的学者侧重于对地铁站通风空调系统进行整体优化控制,即在已有的环境与设备监控系统(BAS)的基础上,根据系统特点采取合适的节能控制技术与策略。

目前,地铁站一般都会配置 BAS对通风空调系统设备进行监控和管理,甚至还为水泵、风机设置变频装置。

然而,大多数情况下BAS仅仅满足了灾害工况下的联动需求及正常工况下的远程操控需求,而水泵、风机也一般以工频运行。

因此很多地铁站的热环境没有得到很好的控制,且系统能耗较高。

1.地铁车站通风空调系统简述地铁车站公共区域是车站建筑室内人员所处的主要空间。

由实测负荷可知,出口进风、站内照明和设备这2种负荷占比最大。

而车站的动态负荷特性与室外温湿度及人流量的动态特性有关。

在为地铁车站公共区域设计节能通风空调方案时,要解决的一个主要问题是列车运动引起的活塞效应加强了室外新风和隧道与站内公共区域的换热。

此外,列车的启停和列车的空调设备会产生大量热量,因此通常会设置通风系统以冷却隧道环境,该系统主要由通风竖井、风机和风口组成。

同时,站台下方会安装排气口与排气通道,由排热风机驱动隧道内的热空气排至室外,也有从隧道周围土壤吸收热量进行回收的排热方式,称为排热系统。

地铁通风空调系统的运行现状和节能措施研究

地铁通风空调系统的运行现状和节能措施研究

地铁通风空调系统的运行现状和节能措施研究地铁通风空调系统是确保地铁站和车厢内环境舒适、通风、干燥、清洁的重要设备,其中包括通风机组、空调机组、送风管道等设备。

目前地铁通风空调系统的运行现状大致可以分为以下几个方面:1. 基础建设存在不足。

随着城市轨道交通的快速发展,地铁通风空调系统的建设逐渐跟不上,出现了很多短板。

如一些地铁站缺乏合理的换气系统,导致空气流通不足,影响乘客的出行体验。

2. 运行难度大。

地铁环境相对密闭,人流量大,通风空调系统需要不断运转,以保证车站和车厢内的空气质量。

特别是在高温、高湿、空气污染等不利条件下,地铁通风空调系统需要承担更多的工作负荷。

3. 能源消耗大。

地铁通风空调系统的运行,需要消耗大量的能源,如电力、水等,并且设备本身也需要大量的维护和保养,增加了系统的整体成本。

4. 管理不规范。

地铁通风空调系统需要经常检修和维护,但由于管理机制不完善,导致一些设备长期处于“脱管状态”,或者管理责任不明确,造成管理的混乱和纷争。

1. 加强基础建设。

应加快地铁通风空调系统的基础建设,补齐短板,确保系统在极端环境下的正常运行。

2. 优化运行策略。

通过加强运行管理和优化运行策略,降低能源消耗,减轻设备负荷,延长设备使用寿命。

可以采取一些技术手段,如智能运维、数据分析等,提高系统运行效率,进一步减少资源浪费。

3. 推广新能源技术。

应积极推广新能源技术,利用光伏发电、储能系统等技术,为系统提供可再生能源,减少系统的电力消耗,达到节能减排的目的。

4. 强化管理机制。

应建立和健全地铁通风空调系统的管理机制,明确管理的责任和义务,建立完善的工作制度和检查机制,提高管理的效率和科学性。

结论地铁通风空调系统是地铁交通运营中的非常重要的一部分,对于城市居民的出行体验和健康安全至关重要。

当前,地铁通风空调系统的维护和运营面临一系列的新问题和挑战。

因此,我们应该采取有效的措施,加强基础建设、优化运行策略、推广新能源技术、强化管理机制,从而提高地铁通风空调系统的运行效率,保障城市居民的正常出行。

地铁通风空调系统设计技术PPT

地铁通风空调系统设计技术PPT





区间隧道通风系统
空 调
隧道通 风系统
车站隧道排热系统(屏蔽门)
隧道降温系统(需要时)

系 统

组 成

公共区通风空调系统(大系统)

车站通风
设备管理用房通风空调系统(小系统)
空调系统
空调冷冻水系统(水系统)
地 铁
四、地铁通风空调系统的组成


隧道通风系统包括:区间隧道通风机(TVF,车站和隧道中 间)、车站隧道排热风(TEF,屏蔽门)、射流(推力)风机

(长隧道、双线隧道、渡线等辅线)、工况转换风阀、消声器、

活塞风道、机械风道、迂回风道(开闭式)及对应风井、风亭。
公共区通风空调系统(大系统):与其他建筑风系统空调的不

同点是采用双风机系统(回/排风机)并设最小新风机

设备管理用房通风空调系统(小系统)

通常采用双风机一次回风系统。

集成闭式系统:将隧道通风系统与车站通风空调系统进行有机

屏蔽门 车站的环境品质好;车站空 必须设置活塞风井;非空调季不

系统
调设备容量及机房小;不必 可以利用活塞风冷却车站; 设置迂回风道


条“当活塞风对车站有明显 影响时,应在车站的两端设 置活塞风泄流风井或活塞风
迂回风道”
条“站台和站 厅的瞬时风速 不宜大于5m/s”
地下车站公共区空气 中可吸入颗粒物的日
地 铁 通隧道通风系统 风双活塞 空 调
根 底 知 识
单活塞
五、 地铁风机盘管应用介绍
地铁 通风
工作原理
空调

地铁通风空调系统组成与变频技术的应用

地铁通风空调系统组成与变频技术的应用

地铁通风空调系统组成与变频技术的应用摘要:变频技术是一项世界领先的科学技术,在各种工程项目中应用变频器技术能够达到节省电能,增长机械设备寿命,减少噪声,改善环境质量的目的。

结合地铁环控系统的特性,对环控系统的主要功能、型式、构成及其中变频调压技术在地铁环控系统中的运用,作出了简要的说明与解析。

关键词:地铁;通风空调系统;变频技术引言:轨道交通中的空气调节的冷却设备处于正常冷却温度(制冷温度高于-120℃),其目的在于利用冷却系统向空调设备供给适当的冷冻水量,以便使冷气设备良好的工作在轨道交通列车的大小系统,以便为旅客带来满意的舒适感和为设备的良好工作提供适当的温湿度的保证。

一、地铁中通风空调系统的组成地铁环控网络系统为屏蔽门设计,因此月台采取空气/机械通气形式,而区间道路则采取隧道通气的形式。

该环控网络系统主要由如下组件构成。

区间道路通气控制系统(隧洞发动机TVF控制系统):隧洞发动机、推力风机、射流风机、风阀及消防阀。

月台道路排热通气控制系统(道路排发动机TEF控制系统):道路排发动机、风阀及其消防阀。

列车公共区中央空调、通气兼排出控制系统(列车中央空调大控制系统):综合中央空调发动机、新发动机、回排发动机、排出发动机及其风阀。

站场设施管理使用中央空调、通气兼排出控制系统(列车中央空调小控制系统):小中央空调柜机、风机、风阀及其消防阀。

车站冷暖空调水管理系统(空调水管理系统):冷水机组、冷却水塔、散热器,或者水阀等管路配件。

二、地铁环控系统的目的与功能轨道交通空气管理的主要目的在于:运用通风和空调的措施,将站台和区间内轨道的热环境限制在规定范围内,并提供了一种舒适的人工场地,以适应旅客和员工在生理和心理上对所处环境中气体的温度、湿度、质量、速度、噪音等多种要素的综合需求,同时保证了轨道车厢以及其他机械设备的顺利地运行。

地铁环控系统的主要作用包括:在正常工作状态时,利用空调或通风系统的方式排出余热、余湿,给铁路旅客提供一个往返于从地面或站台至铁路车厢间的过渡性舒适环境,以最大程度的吸纳旅客;为适应地方轨道交通列车内各种设施和运行用房的工艺和业务需要创造合理的气温和湿度环境,以确保轨道内的人员和运行设施都有一个良好的运行条件,以保证轨道内交通列车正常安全运行;将地方高铁列车封闭在区间轨道内,在闭塞范围内供给适当的送、排风量,以确保列车空调冷凝器的继续工作;当地高铁内出现大火后,对撤离的乘客进行迎面新风,以引导旅客安全疏散,同时也具有排烟作用,以避免旅客和人员被热窒息。

一种地铁通风空调系统节能改造方案

一种地铁通风空调系统节能改造方案

一种地铁通风空调系统节能改造方案地铁作为城市交通的重要组成部分,每天运送着大量的乘客。

然而,由于地下环境的封闭和乘客的集中,地铁车厢内常常出现拥挤、闷热的情况,给乘客带来不便和不舒适。

为了改善地铁车厢的通风和空调系统,提高乘客的出行体验,同时减少能源消耗,需要进行节能改造。

一、提升通风系统效能我们可以改进地铁车厢的通风系统,以提高通风效果。

通过增加通风口的数量和布局,可以实现更充分的空气流通。

同时,合理设置通风口的位置,使其能够覆盖到车厢内的每一个角落,避免出现死角。

此外,可以考虑在通风口处安装风扇,增加气流的流动性,提高通风效果。

二、改善空调系统效能除了通风系统的改进,地铁车厢的空调系统也需要进行节能改造。

首先,可以采用高效的空调设备,如变频空调和节能型压缩机,以提高能源利用率。

其次,可以增加车厢内的空气循环设备,使冷风更加均匀地分布到每个角落。

此外,还可以在车厢顶部安装太阳能板,利用太阳能进行空调制冷,减少对传统电网能源的依赖。

三、优化能源管理除了改进通风和空调系统本身的效能,还可以通过优化能源管理来进一步实现节能。

首先,可以安装智能能源管理系统,实时监控车厢内的能源消耗情况,及时调整空调的运行模式和温度设定,以达到最佳的节能效果。

其次,可以设置车厢内的照明系统和空调系统的自动开关功能,根据乘客的实际需求来灵活调整能源的使用。

此外,还可以采用余热回收技术,将车厢内排出的热量进行回收利用,减少能源的浪费。

四、加强维护和保养除了改进系统本身,地铁通风空调系统的节能改造还需要加强维护和保养。

定期清洗空调设备和更换滤芯,可以提高设备的工作效率,减少能源的消耗。

此外,还需要加强设备的巡检和维修,及时发现和解决故障,避免能源的浪费。

地铁通风空调系统的节能改造方案包括提升通风系统效能、改善空调系统效能、优化能源管理和加强维护和保养。

通过这些措施,可以有效减少能源的消耗,提高地铁车厢内的舒适度,为乘客提供更好的出行体验。

地铁通风空调系统改造分析报告

地铁通风空调系统改造分析报告

地铁通风空调系统改造分析报告一、引言地铁作为城市交通的重要组成部分,其运行和服务质量关系到市民的出行体验和安全。

而通风空调系统则是地铁车厢内部环境的重要组成部分,直接影响乘客的乘坐舒适度以及健康状况。

随着城市发展和地铁旅客流量的增加,地铁通风空调系统的改造成为必要的工程,以提升车厢内部环境的质量和服务水平。

本报告将对地铁通风空调系统的改造进行分析,并提出相应建议。

二、改造目标1.提升车厢内的通风效果:地铁车厢往往容易产生拥挤和闷热的情况,需要通过改造通风系统来提升车厢内的空气质量和流动性,确保乘客的出行舒适度。

2.增加系统的制冷和制热能力:在不同季节,地铁车厢内的温度会有较大的差异,通风空调系统需要具备相应的制冷和制热能力,以保障车厢内的温度适宜。

3.提高系统的能效:地铁通风空调系统每天需要持续运行,因此能效是改造中需要考虑的重要因素。

通过改进设备、优化系统设计、采用智能控制等措施,降低能耗,提高系统的能效。

三、改造方案1.硬件设备升级:根据地铁运行情况,对通风系统中的风机、换气设备、空调机组等硬件设备进行升级。

采用高效节能设备,提高系统的能效,并可以根据车厢人数的变化自动调节通风量。

2.通风系统改进:通过改良通风系统的设计,增加通风口的数量和位置,提高空气流通性,减少车厢内的局部死角。

采用新型的通风材料和过滤装置,提高车厢内的空气质量。

3.智能控制系统:引入智能控制技术,通过车厢内的传感器实时监测温度、湿度和二氧化碳浓度等参数,调节空调和通风设备的运行参数,使其自动适应车厢内的人数和天气变化,提高整个系统的能效和服务水平。

4.强调维护管理:改造后的地铁通风空调系统需要加强维护和管理工作,建立完善的巡检机制和维修体系,确保设备的正常运行和及时维修。

四、投资回报分析地铁通风空调系统改造虽然需要一定的投资成本,但通过提高车厢内的通风质量和服务水平,可以吸引更多乘客选择地铁出行,提高收入。

同时,改造后的系统能效更高,能够减少能源消耗和运维成本,从长期来看也能带来较高的经济回报。

地铁通风空调系统介绍

地铁通风空调系统介绍

地铁通风空调系统介绍摘要:目前,随着社会的不断进步与发展,许多大中型城市,地铁已经成为人们出行的主要交通工具。

随着人们生活水平的提高,地铁建设的不断推进,关于地铁舒适度的要求越来越高,作为车站舒适度的重要指标之一的通风空调系统,也在不断的优化和改进。

关键词:地铁通风;空调系统;介绍地铁空调系统在地铁中应用的主要作用就是加强对空气湿度、空气质量、温度以及流速的控制,进而为人们提供舒适的人工环境,提升舒适度,满足顾客的实际需求。

在地铁运行中,会产生一定的活塞效应,这样就会直接的增加地铁的负荷水平。

如果在地铁中出现一些重大的安全事故,就会诱发严重的后果,对此,强化对地铁通风空调系统的研究,可以在根本上提升我国交通发展,对于地铁清洁优化、设备的正常运行有着重要的作用。

1概述地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。

根据设计范围的不同,一般车站设计范围包括车站范围内的公共区、出入口、设备区、车站轨行区,本站所辖的相邻区间以及车站与其相邻建筑的连接设备管廊与人行通道(简称连接通道)。

主要系统划分如下:1)区间隧道(含辅助线)活塞/机械通风兼排烟系统(简称隧道通风系统); 2)车站轨行区排热通风兼排烟系统(简称排热通风系统)3)车站公共区通风空调及排烟系统(简称大系统)4)设备管理用房通风、空调及排烟系统(简称小系统)5)车站空调冷源及冷冻水系统6)连接通道通风、空调、防排烟系统1.1开式系统开式系统是应用机械或“活塞效应“的方法使地铁内部与外界交换空气,它是利用活塞风井、车站出入口及两端峒口与室外空气相通,进行通风换气的方式。

这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。

主要用于北方,我国采用该系统的有最早的北京地铁1号线和环线。

1.1.1活塞通风当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁通风空调系统 【摘要】简述了地铁通风空调系统和设备控制模式 【关键词】地铁 通风空调系统 控制模式

1概述 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1.1 开式系统 开式系统是应用机械或“活塞效应“的方法使地铁内部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1.1.1 活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以内、风道面积大于10㎡时,有效换气量较大。在隧道 顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全“活塞通风系统”只有早期地铁应用,现今建设的地铁多设置活塞通风与机械通风的联合系统。 1.1.2 机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2.1 闭式系统 闭式系统使地铁内部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的“活塞效应”携带一部分车站空调冷风来实现。 这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间内每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。 2.2 屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以内时,应采用空调或其他有效的降温方法。 安装屏蔽门后,车站成为单一的建筑物,它不受区间隧道行车时活塞风的影响。车站的空调冷负荷只需计算车站本身设备、乘客、广告、照明等发热体的散热,及区间隧道与车站间通过屏蔽门的传热和屏蔽门开启时的对流换热。此时屏蔽门系统 的车站空调冷负荷仅为闭式系统的22%~28%,且由于车站与行车隧道隔开,减少了 运行噪声对车站的干扰,不仅使车站环境较安静、舒适,也使旅客更为安全。 地铁环控系统一般采用屏蔽门制式环控系统或闭式环控系统。屏蔽门制式系统即:站台和轨行区分开,车站为独立的制冷、除湿区、因此有安全、节能和美观等优点。由于屏蔽门的隔断,屏蔽门制式环控系统形成了两个相对独立的系统——车站空调通风系统和隧道通风系统。 2.2.1 车站空调通风系统区分为: (1)车站公共区空调通风系统(兼排烟系统),简称大系统; (2)车站设备管理用房空调通风系统(兼排烟系统),简称小系统; (3)车站制冷空调循环水系统,简称水系统; 2.2.2 隧道通风系统区分为: (1)区间隧道活塞风与机械通风系统(兼排烟系统),简称TVF系统; (2)车站范围内、屏蔽门外站台下排热和车行道顶部排热系统,简称UPE/OTE系统。 2.2.3 隧道通风系统 (1)活塞风和机械通风TVF系统 区间隧道活塞风与机械通风系统(TVF系统),简称区间隧道通风系统(兼排烟、阻塞工况通风和早晚换气、排除空气异味、改善空气质量)。列车正常运行时,利用列车产生的活塞风与室外空气进行置换,排除区间隧道内余热、余湿。对不设隔墙 的两站区间,正常运行工况也需采用机械通风方式,从车站两端的活塞风井进风,使用TVF风机排风。当发生火灾时,列车停在区间隧道内。则开启火灾区两端的TVF风机、射流风机,提供新风,诱导乘客撤离火灾现场。根据列车火灾部位决定排烟方向,最小的气流速度为2m3/s。当列车被阻塞在区间隧道时,视情况开启TVF风机,保证列车空调器能正常工作。正常情况下,每日地铁运营前0.5h和运营结束后0.5h运作风机,作早晚清洁通风用,排除空气异味,改善空气质量。 (2)站台排热系统 站台层公共区每端设备两根送风管,风管布置在吊顶内,通过风口向下送风,站台层排风由列车顶排风和站台下排风组成。列车顶排风布置在车行道上方,列车顶排风口与列车空调冷凝器位置对应;站台下排风为土建风道,站台下排风口与列车下发热位置对应,列车顶排风管兼作排烟风管,气流组织为上送/下回方式。 2.3 排烟系统 2.3.1 排烟系统按车站站厅和站台、区间隧道及设备管理用房分别设置。 (1)站厅、站台的排烟系统。一般是正常通风的排风系统兼用的。该系统应满足正常排风及火灾时排烟的要求; (2)区间隧道的排烟系统宜用纵向一送一排的推拉式系统。排烟设施最好与平时的隧道通风兼顾。一般在车站的两个端部各设机房,一台风机对一孔隧道,二台风机互为备用,亦可并联运行。见机为可逆式轴流风机,正转可排烟。反转时的风量与风压应满足排烟要求; (3)设备管理用房的排烟设计是根据管理用房的要求设置的,应根据相同的使用要求划分在一个系统中。最好与平时排风系统兼用; 2.3.2 排烟系统的运行应根据地下铁道防灾系统的指令进行,由防灾中心统一安排。一般是根据不同的火灾地点决定不同的运行方式,分为: (1)车站站台着火时,应在站台排烟,由站厅送风,使站台的楼梯口处形成一股由站厅流向站台的气流,其速度应大于3m/s。乘客由站台向站厅方向撤离; (2)站厅着火时,由站厅排烟,站台送风,使站台保持一定的正压。新鲜空气由站厅的出入口进入站厅,乘客迎着新鲜空气流进方向,由出入口向地面撤离; (3)列车在区间隧道内着火时,应尽可能将列车驶至车站,让乘客撤离。此时由该车站站端的风机排烟,并按站台着火的方式运行。一旦列车不能驶至车站,出现下列3种情况时,采取不同的运行方式: ①列车头部着火时:列车因故停留在单线区间隧道内时,乘客不可能从列车的侧向撤出,只能由尾部安全门进入隧道向出站方向的车站撤离。此时由列车进站方向的事故风机排烟,由出站方向的事故风机送风引导乘客迎着新风撤离; ②列车尾部着火时:乘客的撤离方向与排烟的运行模式恰好与列车头着火时相反; ③列车中部的车厢着火:此时乘客由车头和车尾的安全门同时进入隧道。排烟运行方式为:进站方向的事故风机送风、出站方向的事故风机排烟。从车头安全门下车的乘客迎着新风迅速向车站撤离。从车尾安全门下车的乘客要顺着烟气流动的方向迅速撤到连通两孔隧道的联络通道处,由联络通道进入另一孔隧道,迎着送风方向撤离。虽然有一小段路程乘客的撤离方向与烟气流动方向相同,有被烟气熏倒的可能,但由于着火的初期,隧道中心区域尚未被烟气侵入,只要有组织的、争分夺秒的、争取在烟气充满隧道前撤离,就不会被烟气熏倒,否则就相当危险。 从上可见,适当设置联络通道是非常重要的。根据规定,联络通道的距离最好 不大于300m。

2.4工程特点 2.4.1

地铁环境特点: (1)地铁的车站和区间隧道除出入口(地面线和高架线除外)等极少部位与外界相通外,基本上与外界隔绝,长年不见阳光,通风条件差,潮湿、多粉尘、行车震动大、空间狭小、小昆虫自由出入、人员密集,只有用人工气候才能满足乘客的要求; (2)列车各种设备的运行和乘客都将释放出大量的热,若不及时排除,将使本站和区间温度上升,是乘客在此环境中难以忍受; (3)地下铁道是狭长的地铁建筑物,列车及各种设备运行产生的噪音不易消除,对乘客影响较大; (4)地铁运行时产生“活塞效应”,局部与瞬间空气流速较大,会干扰车站气流组织,使乘客感觉到不舒适,并影响车站负荷; (5)当发生事故,尤其是发生火灾事故时,将导致环境恶化,不易救援,要采取有效措施。 2.4.2系统设备特点: 系统设备数量多,专业、技术、管理涉及面广,种类接口多。 通风空调系统主要有车站通风系统和隧道通风系统两大部分组成。系统主要设备包括:冷水机组、空调机组、冷冻冷却水泵、冷却塔、空气处理机组、种类风机、消声器组合风阀等。系统设备内部设备与设备之间,设备与土建结构之间,设备与EMS、FAS等监控系统之间,设备工程与安装工程,装修工程之间,存在诸多技术方面的接口,如:各类设备的安装方式、基础、预留安装孔洞的要求及尺寸、用电负 荷、启动方式、连锁关系、控制模式功能和内容。 2.4.3专业工程特点: 地铁施工现场场地狭窄,净空不高、各系统的各种管式均要在有限的空间内敷设交叉碰撞经常发生,协调存在客观难度。 受外界影响比较大,包括地区环境,季节气候,人员流动和建筑物用途等,而且一年四季空调负荷随时变化,要设置一个健康舒适的空调系统。适用于不同的环境,气候要求和空调负荷变化,不仅系统的组成要合理,系统功能相应转换,而且配套的控制系统同样要反映准确。 系统是用电大户,有必要采用一定的节能措施,有效的办法是采用变频调速技术。系统设置受环保规范强制约束,降噪手段必须严格,有效。

3 系统设备配置与运行控制模式

3.1 通风空调系统设备配置

相关文档
最新文档