初二数学第一次月考试题

合集下载

华师大版数学八年级下册第一次月考试卷及答案

华师大版数学八年级下册第一次月考试卷及答案

华师大版数学八年级下册第一次月考试题一、单选题(每小题3分,共30分)1.下列有理式12,2,,22x x x x -+中,是分式的共有( ) A .1个 B .2个C .3个D .4个 2.在平面直角坐标系中,点M (﹣2,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.将分式2x x y+中的x 、y 的值同时扩大3倍,则扩大后分式的值( ) A .扩大3倍B .扩大9倍C .保持不变D .缩小到原来的13 4.下列计算错误的是( )A .1a b a b a b -=--B .1b a a b a b-=--- C .221x y x y x y +=-+ D .11y x x y xy--= 5.下列等式是四位同学解方程2111x x x x -=--过程中去分母的一步,其中正确的是( ) A .12x x -=B .12x x -=-C .12x x x --=-D .12x x x -+=- 6.分式方程12023x x -=+的解为( ) A .3 B .2 C .1 D .1- 7.轮船由A 地到达B 地顺流航行40km ,然后又返回A 地,已知水流速度为每小时2km ,设轮船在静水中的速度为每小时xkm ,则轮船往返共用的时间为( ) A .80h x B .2802h x - C .2804h x - D .2804x h x - 8.如图,在55⨯的方格纸中,每个小正方形的边长都是1,点,,O A B 都在方格纸的交点(格点)上,建立如图所示的平面直角坐标系,在x 轴下方的格点上找点C ,使ABC 的面积为3,则这样的点C 共有( )A .6个B .5个C .4个D .3个9.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s (米)与散步所用时间t (分)之间的函数关系,根据图象,下列信息错误的是( )A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟10.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x =20 C .36+91.5x -36x =20 D .36x +36+91.5x =20二、填空题11.人体中的红细胞的直径约为0.0000077m ,用科学记数法表示这个数______. 12.若分式21x x +-有意义,则x 的取值范围是______. 13.计算()()233a ab --,并把结果化为只含正整数指数幂的形式为_______.14.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程()y m 与时间(min)t 的图像,则小明回家的速度是每分钟步行________m .15.已知224000a ab b a b ++=≠≠(,),则代数式 b a a b+的值为_______.三、解答题16.计算: (1)()22011(2019)2π-⎛⎫---+ ⎪⎝⎭. (2)2225103621x y y y x x ⎛⎫⋅÷ ⎪⎝⎭.17.先化简再求值:221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =-.18.情境a :小芳离开家去学校上学,走了一段路后,发现自己作业本忘家里了,于是返回家里找到作业本,然后又赶快去学校;情境b :小明从家出发去图书馆还书,走了一段路程后,发现时间有点紧张,便以更快的速度前进.(1)情境,a b 所对应的函数图象分别是_______,_______(填写序号);(2)请你为剩下的函数图象写出一个适合的情景.19.列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.已知等腰三角形的周长为20cm ,腰长()y cm 是底边长()x cm 的函数.(1)写出这个函数关系式;(2)求函数值y 的取值范围.21.若13x x+=,求: (1)221x x+的值; (2)1x x-的值; (3)221x x -的值.22.已知分式52x x -+,试解答下列问题: (1)分式52x x -+有意义的条件是 ,分式502x x -=+的条件是 ; 阅读材料:若分式a b 的值大于0,则00a b >⎧⎨>⎩或00a b <⎧⎨<⎩, (2)根据上面这段阅读材料,若分式502x x ->+,求x 的取值范围; (3)根据以上内容,自主探究:若分式502x x -≤+,求x 的取值范围(要求:写出探究过程).23.综合与探究:在平面直角坐标系中,已知点()2,1P --,点(),0T t 是x 轴上的一个动点.自主探究:(1)点P 到x 轴的距离是_______,到原点的距离是 .(2)点P 关于y 轴的对称点坐标为________,关于原点的对称点的坐标为 . 探索发现:(3)当t 取何值时,PTO 是等腰三角形?参考答案1.A【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】2x -,2x ,2x 中的分母中均不含有字母,因此它们是整式,而不是分式, 12x +的分母中含有字母,因此是分式. 故选:A .【点睛】本题考查了分式的定义,分母中含有字母的式子是分式.2.B【解析】∵点P 的横坐标为负,纵坐标为正,∴该点在第二象限.故选B .3.A【解析】【分析】根据x 、y 的值同时扩大3倍后求出分式的值,和原来比较求出结果.【详解】 ∵2x x y+中的x 、y 的值同时扩大3倍, ∴23x 3x 3y +=32x yx +. 所以扩大了3倍.故选A .【点睛】本题考查分式的基本性质,关键是算出x ,y 都扩大后的结果和原来比较即可求解. 4.C【分析】根据分式的加减运算法则计算后,再进行判断即可.【详解】 A.()1a a a b b a b a b a b---==---,正确,不符合题意; B. 1b a b a a b a b a b --==----,正确,不符合题意; C. 221()()x y x y x y x y x y x y++==-+--,错误,符合题意; D. 11y x x y xy--=,正确,不符合题意; 故选:C .【点睛】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式. 5.D【解析】【分析】去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.【详解】方程的两边同乘()1x -,得:()12x x x --=-,即12x x x -+=-,故选:D .【点睛】本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项. 6.C【解析】【分析】方程两边都乘最简公分母()23x x +,化为整式方程求解,结果要检验.方程两边都乘()23x x +,得3220x x +-⨯=,解得:1x =.检验:当1x =时()230x x +≠.∴1x =是原方程的解.故选:C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.D【解析】【分析】设轮船在静水中的速度为每小时x 千米,则顺水速度为每小时()2x +km ,逆水速度为每小时()2x -km ,根据“时间=路程÷速度”即可求出轮船往返共用的时间.【详解】设轮船在静水中的速度为每小时x 千米, 根据题意得:2404080224x x x x +=+--. 故选:D .【点睛】本题考查了列代数式(分式)的应用,关键利用基本数量关系:时间=路程÷速度,即可列式求解.8.A【解析】【分析】根据点A 、B 的坐标判断出AB ∥x 轴,然后根据三角形的面积求出点C 到AB 的距离,再判断出点C 的位置即可.【详解】根据题意可知,AB∥x轴,且AB=3,设点C到AB的距离为a,则ABC 133 2S a=⨯=,解得:2a=,则C在到AB的距离是2,且与AB平行是直线上,又在x轴下方,如图,x轴下方的六个点满足条件,∴满足条件的格点有6个.故选:A.【点睛】本题考查了坐标与图形性质,三角形面积,判断出AB∥x轴是解题的关键.9.A【解析】试题分析:根据题意和图象,对各选项进行分析:A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报,小明看报用时8﹣4=4分钟,本项错误;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选A.考点:1.阅读理解型问题;2.函数的图象的分析.10.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【详解】解:设原计划每亩平均产量x 万千克,由题意得:36369201.5x x+-=, 故选A .【点睛】本题考查列分式方程,掌握题目数量关系是解题关键.11.67.710-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000077=7.7×10-6,故答案为:7.7×10-6 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.12.1x ≠【解析】【分析】根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∵分式21x x +-有意义, ∴10x -≠,解得:1x ≠.故答案为:1x ≠.本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.13.931a b【解析】【分析】先根据幂的乘方和积的乘方运算,同底数幂的乘法计算,最后根据负整数指数幂的运算法则计算即可得出答案.【详解】()()233a ab -- 633a a b ---=93a b --=931a b =. 故答案为:931a b . 【点睛】本题主要考查了是负整数指数幂以及幂的乘方和积的乘方、同底数幂的乘法,熟知负整数指数幂等于该数的正整数指数幂的倒数是解答此题的关键.14.80【解析】【分析】先分析出小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15-5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解. 15.4-【分析】由已知等式得出224a b ab +=-,再整体代入22b a a b a b ab ++=即可求解. 【详解】∵2240a ab b ++=,∴224a b ab +=-, 则2244b a a b ab a b ab ab+-+===-. 故答案为:4-.【点睛】本题主要考查了分式的加减,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.16.(1)4;(2)3279x y . 【解析】【分析】(1)根据平方、零指数幂和负整数指数幂的意义得到然后合并即可;(2)直接利用分式的乘法运算法则求出即可.【详解】(1)()2211(2019)2π-⎛⎫---︒+ ⎪⎝⎭ 114=-+4=; (2)2225103621x y y y x x⎛⎫⋅÷ ⎪⎝⎭ 22245219610x y x y x y=⋅⋅ 3279x y=.本题主要考查了分式的乘除运算和有理数的混合运算,正确掌握运算法则是解题关键. 17.3x x+;0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.【详解】221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭ ()()()()()()()()211111111x x x x x x x x x ⎡⎤+-+-=-⋅⎢⎥+-+-⎣⎦()()()()()()2111111x x x x x x x +--+-=⋅+- 221x x x+-+= 3x x+=; 当3x =-时, 原式3303-+==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(1)③,①;(2)见解析.【解析】【分析】(1)根据图象,分段分析,再逐一排除,即可得出答案;(2)把图象分为三部分,再根据离家的距离进行叙述,即可得出答案.【详解】(1)∵情境a :小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故答案为:③,①.(2)图象②分为3部分:小虎从家出发,外出散步,在一个报亭看了一会报,然后回家.【点睛】本题主要考查函数的图象的识别和判断,通过分析实际情况中离家距离随时间变化的趋势,找出关键的图象特征,运用数形结合思想对3个图象进行分析,即可得到答案.19.3.2克.【解析】【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【详解】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:40016020.8x x=⨯+,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意.答:A4薄型纸每页的质量为3.2克.【点睛】本题考查分式方程的应用,掌握题目中等量关系是关键,注意分式方程结果要检验.20.(1)1102y x=-+;(2)510y<<.【解析】【分析】(1)根据等腰三角形底边与腰的关系,可得函数解析式;(2)根据两边之和大于第三边,两腰的和小于周长,可得不等式组,即可求得答案.【详解】(1)∵等腰三角形周长为20,∴220y x +=,∴根据三角形周长公式可求得腰长y 与底边长x 的函数关系式为:1102y x =-+; (2)∵三角形两边之和大于第三边,两腰的和小于周长,∴2220y x y >⎧⎨<⎩, 解2y x >即2202y y >-,得:5y >;解220y <得10y <.∴函数值y 的取值范围为:510y <<.【点睛】本题考查了函数关系式、等腰三角形三边关系的性质、三角形三边关系定理,得出y 与x 的函数关系式是解题关键.21.(1)2217x x +=;(2)1x x -=(3)221x x -=±. 【解析】【分析】(1)利用完全平方公式对已知等式变形,即可求得答案;(2)利用(1)的结论运用配方法即可求得;(3)利用(2)的结论结合已知等式,运用平方差公式即可求解.【详解】(1)∵13x x+=, ∴219x x ⎛⎫+= ⎪⎝⎭, 整理,得,22129x x ++=, ∴2217x x +=;(2)由(1)知2217x x +=, ∴22125x x +-=,即215x x ⎛⎫-= ⎪⎝⎭,∴1x x-=(3)∵1x x -=13x x +=,∴11x x x x ⎛⎫⎛⎫-⋅+=± ⎪ ⎪⎝⎭⎝⎭即221x x -=±; 【点睛】本题考查了分式的化简求值,熟练掌握并灵活运用完全平方公式、平方差公式进行变形是解本题的关键.22.(1)25x x ≠-=,;(2)25x -<<;(3)5x ≥或2x <-.【解析】【分析】(1)根据分式有意义的条件及分式的值为零的条件即可求解;(2)根据除法法则得出两个不等式组,求出不等式组的解集即可;(3)根据除法法则得出两个不等式组,求出不等式组的解集即可.【详解】(1)当分母20x +≠,即2x ≠-时,分式52x x -+有意义; 当分子50x -=,且分母20x +≠,即5x =时,分式502x x -=+; 故答案为:25x x ≠-=,(2)由题意,得5020x x ->⎧⎨+>⎩或5020x x -<⎧⎨+<⎩, 解不等式组5020x x ->⎧⎨+>⎩得:52x x <⎧⎨>-⎩, ∴不等式组解集为:25x -<<,解不等式组5020x x -<⎧⎨+<⎩得:52x x >⎧⎨<-⎩,∴不等式组无解,综上, 502x x ->+的条件是25x -<<; (3)由(2)阅读材料,得5020x x -≥⎧⎨+<⎩,或5020x x -≤⎧⎨+>⎩, 解不等式组5020x x -≥⎧⎨+<⎩得:52x x ≤⎧⎨<-⎩, ∴不等式组解集为:2x <-,解不等式组5020x x -≤⎧⎨+>⎩得:52x x ≥⎧⎨>-⎩, ∴不等式组解集为:5x ≥, 综上,502x x -≤+的条件是:5x ≥或2x <-. 【点睛】本题考查了解不等式组的应用,分式有意义的条件及分式的值为零的条件,解此题的关键是能转化成两个不等式组.23.(1)1(2)()2,1-,()2,1;(3)t 的值为或4-或54-. 【解析】【分析】(1)根据坐标与图形性质得到点P 到x 轴的距离,根据勾股定理求出点P 到原点的距离;(2)根据坐标关于y 轴以及原点对称的特点即可得出点P 的对称点的坐标;(3)因为OP =OP OT =,PO PT =,TP TO =时,分三种情况分别讨论即可求得答案.【详解】(1)点P 的坐标为(-2,-1),点P 到x 轴的距离为:11-=,到原点的距离为:OP ==故答案为:1(2)关于y 轴对称,纵坐标不变,横坐标为相反数,∴点P(-2,-1)关于y 轴的对称点的坐标为(2,-1),关于原点对称,横、纵坐标都为其相反数,∴点P 关于原点的对称点的坐标为(2,1),故答案为:(2,-1),(2,1);(3)∵OP =①当OP OT =时,PTO 为等腰三角形,OT =,若动点T 在原点左侧,则有()1T ;若动点T 在原点右侧,则有2)T ;②如图1,当PO PT =时, PTO 为等腰三角形,过点P 作PQ x ⊥轴于点Q ,则点T 与点O 关于直线PQ 对称,则有()34,0T -;③如图2,当TP TO =时,PTO 为等腰三角形,过点P 作PQ x ⊥轴于点Q ,则1,2PQ OQ ==,在Rt TQP 中,222QT PQ PT +=,即()22221TO TO -+=,解得:54TO =,∴ 45,04T ⎛⎫- ⎪⎝⎭.综上所述,当t 的值取4-或54-时,PTO 为等腰三角形. 【点睛】本题考查的是坐标与图形性质、等腰三角形的性质、勾股定理、两点之间距离公式,在解决等腰三角形的问题时,注意分类讨论,防止遗漏.。

初二年级(上)数学第一次月考试题

初二年级(上)数学第一次月考试题

初二年级(上)数学第一次月考试题考号:姓名:得分:一、填空题(每题3分,共24分)1、如图1,△ACD≌△ABE,∠C=∠B,则对应边有,对应角有。

2、如图2,AD=AE,∠1=∠2,BD=CE,则≌。

3、如图3,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,应添加的条件是。

(添加一个条件即可)。

4、已知:如图4,△OAD≌△OBC,且∠O=700,∠C=250,则∠AEB=。

5、如图5,∠1=∠2,∠C=∠E,CB=ED,则可用公理证明△ABC≌△ADE。

6、如图6已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A∶∠C=5∶3,则∠DBC=。

7、如图7,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD=BD,则AF + DC=。

8、如图8,已知,∠C=900,∠1=∠2,若BC=8,BD=5,则D到AB的距离是。

二、选择题(每小题3分,共30分)1、如图1,AD⊥BC,D为BC中点,那么下列结论错误的是()A、△ABD≌△ACDB、∠B=∠CC、AD是角平分线D、△ABC是等边三角形2、如图2,∠1=∠2,∠C=∠D,AC、BD相交于点E,下列结论错误的是()A、∠DAE=∠CBEB、△DEA与△CEB不全等C、CE=DED、△EAB是等腰三角形3、如图3,已知△ABD和△ACE是等边三角形,那么△ADC≌△AEB的根据是()A、SSSB、SASC、ASAD、AAS4、△ABC的三条外角平分线所在的直线相交构成的三角形是()A、直角三角形B、锐角三角形C、钝角三角形D、都可能5、AD是△ABC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是()A、DE=DFB、AE=AFC、BD=CDD、∠ADE=∠ADF6、如图4,在△ABC和△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC=DF;④∠A =∠D;⑤∠B=∠E;⑥∠C=∠F,以其中三个条件作为已知,不能判断△ABC与△DEF全等的是()A、①⑤②B、①②③C、④⑥①D、②③④7、如图5,△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=300,∠ACB=∠AED=1100,∠DAC=100,则∠DFB=()A、500B、550C、600D、6508、如图6,在长方形ABCD中,E为CD的中点。

初二(下)数学第一次月考试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

初二(下)数学第一次月考试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-

初二(下)数学第一次月考试卷-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------八年级(下)第一次月考(数学)班级姓名学号一、精心选一选(每题2分,共20分)1、下列各式中不是二次根式的是()A、B、C、D、2、下列式子中,计算正确的是()。

A、B、(C、D、3、x取什么值时,()A 、x>B、x<C、x≥D、x≤4、请判别下列哪个方程是一元二次方程()A、B、C、D、5、方程(3x-1)(x+2)=0,则该方程的解为()。

A、,2B、,-2C、1,-2D、-,-26、用配方法将方程x2+6x-11=0变形为()A、(x+3)2=20B、(x-3)2=20C、(x+3)2=2D、(x-3)2=27、若成立。

则x的取值范围为:()A 、x≥2B、x≤3C、2≤x≤3D、2<x<38、某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨。

若平均每月增率是,则可以列方程();A、B、C、D、9、计算:÷×的结果是()。

A、B、1C、6D、10、若,则的值为:()A 、0B、1C、-1D、2二.专心填一填(每题3分,共30分)11、计算:①②③12、方程的解是13、的二次项系数是,一次项系数是,常数项是。

14、关于的一元二次方程的一般形式是。

15、,16、当x≤-3时,化简。

17、如果+│b-2│=0,那么以a,b为边长的等腰三角形的周长为。

18、当m时,关于的方程为一元二次方程。

19、已知方程的一个根是1,则另一个根是,的值是。

20、观察分析,探求出规律,然后填空:,2,,,,,……,(第n个数)。

三:耐心做一做21:计算(每题4分,共16分)(1),(2),(3)(4)÷,22、解下列方程(每题5分,共20分)①3x2-7x=O;②2x(x+3)=6(x+3)③④23、(7分)某公司八月份售出电脑200台,十月份售出242台,求这两个月平均每月增长率。

(通用版五套试卷)初中数学八年级上学期第一次月考试卷(已排版、适合打印、最实用)

(通用版五套试卷)初中数学八年级上学期第一次月考试卷(已排版、适合打印、最实用)

初中数学八年级上学期第一次月考试卷(一)一、选择题(本大题共10小题,每小题3分,共30分.) 1. 一个数的平方根与它的立方根相等,则这个数是( )A .0B .1C .0或1D .0或±1 2.下列图案中是轴对称图形的有( )A .4个B .3个C .2个D .1个3.在平面直角坐标系中,点A 的坐标为A (1,2),点A 与点A '的关系关于x 轴 对称,则点A '的坐标是( )A .(-2,1)B .(-1,2)C .(-1,-2)D .(1,-2) 4. 估算43的值应在( )A.5.0~6.0之间 B.6.0~6.5之间 C.6.5~7.0之间 D.7.0~7.5之间5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的 是( )A . AM =CNB . N M ∠=∠C .AB =CD D .AM ∥CN 6.如图,把长方形ABCD 沿EF 折叠使两部分重合,若∠1=50°,则∠AEF=( )A .110°B .115°C .120°D .130° 7.等腰三角形两边长分别为8㎝和17㎝,则等腰三角形的周长为( )A.35㎝B.42㎝C.35㎝或42㎝ D 以上都不对8.如图,在ΔABC 中,D 、E 分别是边AC 、BC 上的点,若ΔADB ≌ΔEDB ≌ΔEDC ,则∠C的度数为( )A.15° B.20° C.25° D.30°第5题 第6题 第8题9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )10.如图是一只停泊在平静水面上的小船,它的"倒影"应是图中的( )二、填空题(本大题共8小题,每小题3分,共24分) 11.81的平方根是_____________.12.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.第12题 第13题13.如图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC=8cm ,BD=5cm ,那么D 点到直线AB 的距离是 cm 。

人教版八年级数学上册第一次月考测试题(含答案)

人教版八年级数学上册第一次月考测试题(含答案)

八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。

初二上册第一次月考数学试题

初二上册第一次月考数学试题

1、若a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a + b)/m + m - cd的值。

A. 3B. 1C. -1D. -3(答案)B解析:由于a、b互为相反数,所以a + b = 0;c、d互为倒数,则cd = 1;m的绝对值是2,意味着m可以是2或-2。

但当m为2或-2时,(a + b)/m均为0,m - cd分别为1或-3,所以整体表达式值为1。

2、下列哪个选项中的两个角是互补角?A. 60°和30°B. 90°和100°C. 75°和105°D. 45°和45°(答案)C解析:互补角的定义是两个角的度数和为180°。

只有75°和105°相加等于180°,所以选C。

3、下列哪个数既是2的倍数又是3的倍数?A. 12B. 15C. 18D. 21(答案)C解析:一个数如果既是2的倍数又是3的倍数,那它必须是6的倍数。

选项中只有18能被6整除。

4、一个正方形的边长为a,如果它的边长增加2,面积将增加:A. 2B. 4aC. 4a + 4D. a2 + 4(答案)C解析:原面积为a2,边长增加2后,新面积为(a+2)2 = a2 + 4a + 4,面积增加了4a + 4。

5、下列哪个不等式表示x大于-5且小于3?A. x > -5B. x < 3C. -5 < x < 3D. x > -5 或 x < 3(答案)C解析:表示x同时大于-5且小于3的不等式应写为-5 < x < 3。

6、若一个三角形的两边长分别为5和8,则第三边的长度可能是:A. 2B. 3C. 12D. 14(答案)C解析:根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

所以第三边长度应在3(8-5)和13(5+8)之间,只有12满足条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档