人教版八年级数学下册课件:18.2.22
合集下载
人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件

(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1
八年级数学下册课件-18.2.2菱形[1]人教版
![八年级数学下册课件-18.2.2菱形[1]人教版](https://img.taocdn.com/s3/m/8fd52b5c76232f60ddccda38376baf1ffc4fe39b.png)
(1)图中有哪些相等的线段?
相等的角?
4
(2)图中有哪些特殊的三角形?
A
(3)两条对角线AC,BD有什么
5
特殊的位置关系?
B
(4)菱形是轴对称图形吗?它有几条对称轴?
分别是什么?
说一说 猜一猜
相等的线段: AB=BC=CD=AD
D
87
猜想: 菱形的四条边都相等
相等的角: ∠1=∠2=∠5= ∠6,
A
1 2
O
34
6 5
C
∠3=∠4=∠7=∠8
B
猜想:每一条对角线平分一组对角
菱形对角线的位置关系: AC⊥BD
猜想:菱形的对角线互相垂直
特殊的三角形: 直角三角形:△AOD,△DOC,△AOB,△BOC; 等腰三角形:△ADB,△BDC,△ADC,△ABC
活动二:
运用演绎推理证明你的猜想:
命题1:菱形的四条边都相等
你来当个小裁判
判断对错: 1、菱形的对角线相等。× 2、菱形的对角线互相平分。√ 3、菱形的每条对角线平分一组对角。 √ 4、菱形的四条边相等。√
三、学习致用、巩固新知
3cm 600
C
.
例1.已知如图,菱形ABCD中,E是AB的中点, 且DE⊥AB. ,AE=2。
求(1)∠ABC的度数 (2)对角线AC、BD的长 (3)菱形ABCD的面积。
有关菱形问题可转化为直角三角形 或等腰三角形的问题来解决
四、问题深入,面积探究
A
B
O
E
C
D
S菱形=BC× AE
菱形是特殊的平行四边形, 那么能否利用平行四边形 面积公式计算菱形的面积呢?
想一想:已知菱形的两条对角线的长,能求出它的面积吗?
人教初中数学八下 18.2.2《菱形》菱形的性质课件2 【经典初中数学课件汇编】

F D
C
E
A
B
27
28
• 教学反思: • 菱形的对角线很特别,要让学生利用它构
造 • 直角三角形 • 菱形的两条对角线互相垂直, • 并且每一条对角线平分一组对角;
29
19.2 一次函数
19.2.1 正比例函数
1.掌握正比例函数的概念和一般解析式; 2.掌握正比例函数的图象和简单性质; 3.会正比例函数的简单应用.
1996年,鸟类研究者在芬兰给一只燕鸥 (候鸟)套上标志环;大约128天后,人们 在2.56万千米外的澳大利亚发现了它. (1)这只百余克重的小鸟大约平均每天飞行多少千米?
【解析】 25 600÷128 = 200(千米).
(2) 这只燕鸥的行程y(单位:千米)与飞行时间x(单位:
天)之间有什么关系?
③菱形的对角线相等.④菱形的对角线互相垂直.
⑤菱形的一条对角线平分一组对角.⑥菱形的对角相
等.
4.菱形的面积公式:①
②
.
5.菱形既是
图形,又是
图形. 21
6.已知菱形的周长是12cm,那么它的
边长是__3_c_m__.
7.如下图:菱形ABCD中∠BAD=60
度,则∠ABD60=0 _______.
证明(∠1A)∵B四C 边形ABCD是菱
B
形∴DA=DC(菱形的定 义∵D) A=BC,AB=DC
∴DB⊥AC, DB平分∠ADC(三线合一)
∴AB=BC=DC=DA
同理: DB平分∠ABC;
(2)在△DAC中,又∵AO=CO AC平分∠DAB和∠DC15B
D
O
A
C
B
(1)菱形具有平行四边形的一切性质;
人教版八年级数学下册第十八章《18.2.2矩形复习巩固》公开课课件

18.2矩形复习巩固
回忆:矩形的性质?(具有平行四边形的所有性质)
1、边:对边平行且相等 2、角:四个角都是直角 3、对角线:对角线互相平分且相等 4、对称性:是轴对称图形也是中心对称图形 5、面积:
直角三角形的性质定理: 直角三角形斜边上的中线等于斜边的一半.
练习: 1、矩形的一条对角线与一边的夹角为30°,则 矩形两条对角线相交所得的四个角的度数分别 为、、、 .
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/272021/7/272021/7/272021/7/277/27/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月27日星期二2021/7/272021/7/272021/7/27
有三个角是直角的四边形是矩形 。
作业:书124页7.8题
回味:因式分解内容
•
完成《教与学》分层
练习: 2、已知,如图,点O是矩形ABCD对角线 A
的交点,AE平分∠BAD,∠AOD=1200, 求∠AEO的度数.
B
3、已知,如图,在矩形ABCD中, AB=8,对角线BD比AD长4,且 AE⊥BD,求AD及AE的长.
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/272021/7/272021/7/272021/7/27
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
回忆:矩形的性质?(具有平行四边形的所有性质)
1、边:对边平行且相等 2、角:四个角都是直角 3、对角线:对角线互相平分且相等 4、对称性:是轴对称图形也是中心对称图形 5、面积:
直角三角形的性质定理: 直角三角形斜边上的中线等于斜边的一半.
练习: 1、矩形的一条对角线与一边的夹角为30°,则 矩形两条对角线相交所得的四个角的度数分别 为、、、 .
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/272021/7/272021/7/272021/7/277/27/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月27日星期二2021/7/272021/7/272021/7/27
有三个角是直角的四边形是矩形 。
作业:书124页7.8题
回味:因式分解内容
•
完成《教与学》分层
练习: 2、已知,如图,点O是矩形ABCD对角线 A
的交点,AE平分∠BAD,∠AOD=1200, 求∠AEO的度数.
B
3、已知,如图,在矩形ABCD中, AB=8,对角线BD比AD长4,且 AE⊥BD,求AD及AE的长.
• 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/272021/7/272021/7/272021/7/27
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 • 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 • 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 • 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
菱形(2)+课件+2022—2023学年人教版数学八年级下册++

A.一组邻边相等的四边形是菱形
C.四条边相等的四边形是菱形
B.三条边相等的四边形是菱形
D.四个角相等的四边形是菱形
2. 对角线互相垂直且平分的四边形是(
A.矩形
B.一般的平行四边形
C.菱形
D.以上都不对
)
3. 如图,四边形ABCD的对角线AC,BD互相垂直,
则下列条件能判定四边形ABCD为菱形的是(
B.AB=BC
C.AC=BD
D.∠1=∠2
应用新知
菱形的判定
4. 把两张等宽的纸条交叉重叠在一起,重合部分的四边形
ABCD是一个菱形吗?为什么?
F
E
应用新知
例1
菱形的判定
如图, ▱ABCD 的对角线AC,BD相交于点O,且AB=5,
AO=4,BO=3.
求证: ▱ABCD 是菱形.
应用新知
菱形的判定
18.2.2 菱形
第二课时
第十八章
平
行
四
边
形
作业
8
D
6
5
B
××
4
3
作业
B
D
知识回顾
边
菱形的性质
菱形的对边平行
菱形的四条边都相等
角 菱形的对角相等、邻角互补
对角线
菱形的两条对角线互相垂直平分,
并且每条对角线平分一组对角.
学习新知
菱形的判定
有一组邻边相等的平行四边形是菱形 ∵ ▱ =
)
A.BA=BC
B.AC,BD互相平分
C.AC=BD
D.AB∥CD
作业
4.下列条件中,不能判定四边形ABCD为菱形的是(
)
C.四条边相等的四边形是菱形
B.三条边相等的四边形是菱形
D.四个角相等的四边形是菱形
2. 对角线互相垂直且平分的四边形是(
A.矩形
B.一般的平行四边形
C.菱形
D.以上都不对
)
3. 如图,四边形ABCD的对角线AC,BD互相垂直,
则下列条件能判定四边形ABCD为菱形的是(
B.AB=BC
C.AC=BD
D.∠1=∠2
应用新知
菱形的判定
4. 把两张等宽的纸条交叉重叠在一起,重合部分的四边形
ABCD是一个菱形吗?为什么?
F
E
应用新知
例1
菱形的判定
如图, ▱ABCD 的对角线AC,BD相交于点O,且AB=5,
AO=4,BO=3.
求证: ▱ABCD 是菱形.
应用新知
菱形的判定
18.2.2 菱形
第二课时
第十八章
平
行
四
边
形
作业
8
D
6
5
B
××
4
3
作业
B
D
知识回顾
边
菱形的性质
菱形的对边平行
菱形的四条边都相等
角 菱形的对角相等、邻角互补
对角线
菱形的两条对角线互相垂直平分,
并且每条对角线平分一组对角.
学习新知
菱形的判定
有一组邻边相等的平行四边形是菱形 ∵ ▱ =
)
A.BA=BC
B.AC,BD互相平分
C.AC=BD
D.AB∥CD
作业
4.下列条件中,不能判定四边形ABCD为菱形的是(
)
人教版八年级下册18.2.2 菱形 课件(共30张PPT)

D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
证明:∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
F
H
∴AC=BD.
∵点E、F、G、H为各边中点, B
G
C
E F G H 1B D , F G E H 1A C ,
2
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
【变式题】 如图,顺次连接对角线相等的四边形 ABCD各边中点,得到四边形EFGH是什么四边形?
拓展1 如图,顺次连接平行四边形ABCD各
边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
E
B
A
∵点E、F、G、H为各边中点,
F
E F G H 1 2 B D , F G E H 1 2A C , D
小刚的作法对吗? 猜想:四条边相等的四边形是菱形.
证一证 已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD;
B
∴AB=CD , BC=AD.
A
∴四边形ABCD是平行四边形.
C D
又∵AB=BC,
∴四边形ABCD是菱形.
归纳总结 菱形的判定定理:
解:四边形EFGH是菱形.
18.2.2 菱形(第2课时)
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
前
言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
18.2特殊的平行四边形
18.2.2菱形
(第2课时)
你知道如何判别菱形吗?
提示……
D
菱形
平行四边形
四边形
?
A B
O
C
?
菱形
(1)一组邻边相等的平行四边形是菱形. (2)四条边都相等的四边形是菱形.
(3)对角线互相垂直的平行四边形是菱形.
菱形的判定
定理:四条边都相等的四边形是菱形 已知:如图,在四边形ABCD中, D AB=BC=CD=DA.. A C 求证:四边形ABCD是菱形. 分析:利用菱形定义和两组对边分别相 B 等的四边形是平行四边形,可使问题得证. 证明: ∵AB=BC=CD=DA, ∴AB=CD,BC=DA. ∴四边形ABCD是平行四边形.. ∵AB=AD, ∴四边形ABCD是菱形.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
最新人教版数学初中八年级下册18.2.2《菱形》公开课课件
求证:(1)AB=BC=CD=DA.
(2)AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ADC和 ∠ABC. 证明: (2) ∵四边形ABCD是平行四边形,
∴OB=OD,
又∵AB=AD, ∴AO⊥BD,∠1=∠2.
即AC⊥BD,AC平分∠BAD.
同理可证,AC平分∠DCB,BD平分∠ADC和∠ABC.
二、折纸实验 研究性 质:
2. 猜想菱形性质并推理证明: 从菱形的边、角、对角线等方面进行研究,菱形还有以下性质: 性质1:菱形的四条边都相等. 符号语言: ∵四边形ABCD是菱形, ∴AB=BC=CD=DA.
二、折纸实验 研究性 质:
2. 猜想菱形性质并推理证明: 性质2:菱形的两条对角线互相垂直,并且每一条对角线平分一 组对角. 符号语言: ∵四边形ABCD是菱形, ∴AC⊥BD,AO=CO,BO=DO, ∠ABD=∠CBD,∠ADB=∠CDB, ∠BAC=∠DAC,∠BCA=∠DCA.
二、折纸实验 研究性 质:
3. 应用性质探究菱形的面积. 方法一:利用平行四边形的面积公式 S菱形=BC·AE.
方法二:把菱形的面积看成四个小直角三角形的面
1 1 1 1 1 4 OA OB 4 AC BD AC BD 2 2 2 2 2 S菱形ABCD=4S△AOB=
积,
二、折纸实验 研究性 质:
3. 应用性质探究菱形的面积.
你有什么发现? 菱形的面积等于两条对角线乘积的一半, 数学语言表示:
1 1 1 1 1 4 = OA OB 4 AC BD AC BD S菱形ABCD 2 2 2 2 2
二、折纸实验 研究性 质:
例1
[教材P56例3] 如图,菱形花坛ABCD的边长为20
人教版八下数学课件第18章18.2.2第1课时菱形的性质
灿若寒星
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.
人教版八年级数学下册第十八章 平行四边形18.2.2菱形 课件(2课时共64张)
A∴S△AOFra bibliotek=1 2
OA·OB=
1 2
×5×12=30,
∴S菱形ABCD=4S△AOB=4×30=120.
B
O
D
∵ AB AO2 BO2 52 122 13,
C
又∵菱形两组对边的距离相等,
∴S菱形ABCD=AB·h=13h,∴13h=120,得h= 11230.
课堂检测
能力提升题
求证:∠AFD=∠CBE. 证明:∵四边形ABCD是菱形, ∴CB=CD, CA平分∠BCD. ∴∠BCE=∠DCE.
B
F
C
EA
又 CE=CE,∴△BCE≌△DCE(SAS).
D
∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,
∴∠AFD=∠EDC.∴∠AFD=∠CBE.
课堂小结
边
菱
形 的
角
性
O
C
形
的
菱形的两组对角分别相等 角
性
菱形的邻角互补
质
B
怎样判断一 个四边形是 菱形?
菱形的两条对角线互相平分
对角线 菱形的两条对角线互相垂直平分,
并且每一条对角线平分一组对角。
素养目标
2. 经历菱形判定定理的探究过程,渗透类比 思想,体会研究图形判定的一般思路. 1. 掌握菱形的三种判定方法,能根据不同的已 知条件,选择适当的判定定理进行推理和计算 .
B
O
D
C
= AC(BO+DO)
= AC·BD. 菱形的面积 = 底×高 = 对角线乘积的一半
探究新知 素养考点 1 利用菱形的面积公式解答问题
例3 如图,菱形花坛ABCD的边长为20m,∠ABC=60°, 沿着菱形的对角线修建了两条小路AC和BD,求两条小路的 长和花坛的面积(结果分别精确到0.01m和0.1m2).
OA·OB=
1 2
×5×12=30,
∴S菱形ABCD=4S△AOB=4×30=120.
B
O
D
∵ AB AO2 BO2 52 122 13,
C
又∵菱形两组对边的距离相等,
∴S菱形ABCD=AB·h=13h,∴13h=120,得h= 11230.
课堂检测
能力提升题
求证:∠AFD=∠CBE. 证明:∵四边形ABCD是菱形, ∴CB=CD, CA平分∠BCD. ∴∠BCE=∠DCE.
B
F
C
EA
又 CE=CE,∴△BCE≌△DCE(SAS).
D
∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,
∴∠AFD=∠EDC.∴∠AFD=∠CBE.
课堂小结
边
菱
形 的
角
性
O
C
形
的
菱形的两组对角分别相等 角
性
菱形的邻角互补
质
B
怎样判断一 个四边形是 菱形?
菱形的两条对角线互相平分
对角线 菱形的两条对角线互相垂直平分,
并且每一条对角线平分一组对角。
素养目标
2. 经历菱形判定定理的探究过程,渗透类比 思想,体会研究图形判定的一般思路. 1. 掌握菱形的三种判定方法,能根据不同的已 知条件,选择适当的判定定理进行推理和计算 .
B
O
D
C
= AC(BO+DO)
= AC·BD. 菱形的面积 = 底×高 = 对角线乘积的一半
探究新知 素养考点 1 利用菱形的面积公式解答问题
例3 如图,菱形花坛ABCD的边长为20m,∠ABC=60°, 沿着菱形的对角线修建了两条小路AC和BD,求两条小路的 长和花坛的面积(结果分别精确到0.01m和0.1m2).