2014年九年级数学中考适应全真模拟试卷及答案

合集下载

2014年中考数学模拟试题(6)有答案

2014年中考数学模拟试题(6)有答案

2014年中考数学模拟试题学校 班级 姓名一、选择题:(本大题共14个小题.每小题4分;共56分.) 1.计算:16的平方根是 ( )A.4 B.±4 C.2 D.±22.我州大力实施环境污染整治,某医院锅炉房的一根燃煤大烟囱,是都匀城区污染源之一,州市政府及环保部门督促该医院对燃煤烟囱予以关停或达标排放。

该医院投资引进燃气对其锅炉进行改造,目前该燃煤锅炉成为清洁环保节能的燃气锅炉,污染没有了。

都匀城区每年可减少烟尘排放近11吨,将11吨用科学记数法表示为 ( )千克.A .11×10.B .1.1×103C .1.1×104D .1.1×1053.下列计算正确的是( ) A.( a3)2 = a 5B. 2 a 4 +a 2 =3 a 6C. (a - b)2= a 2 – b 2D. 8 +2 = 324.若关于x 的一元二次方程( k -2) x 2+ 2x -1 =0有实数根,则字母k 的取值范围是( )A.k ≤1B.k ≥1C. k ≥1且k ≠2D. k ≥1且 k ≠-25.因式分解4(x-1)2- 9的结果是( )A. 2(x+3)(x-3)B.(2x+1)(2x-5)C. (2x+3)(2x-3)D. 4(x+3)(x-3)6.如图,DE ∥BC ,且AD:DB=1:2,则ADE △与四边形DECB 的面积之比是( )A .1:2B .1:4C .1:9D .1:8第7题图7.如图,是由一些相同的小正方体搭成的几何体的三视图(依次为主视图、俯视图、左视图),搭成这个几何体的小正方体的个数有( ) A. 5个 B. 6个 C. 7个 D. 8个8.如图,△ABC 内接于⊙O ,∠A=50°,则∠OB C 的度数为( ) A .40° B. 50° C. 80° D. 100°9.王英要过生日了,她准备自己动手用纸板制作一个底面直径为20cm,高为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )A .10010πcm 2B .20013πcm 2C .600πcm 2D .650πcm 210、在平面直角坐标系中,若将某抛物线先向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线为y=2x 2-12x+17 ,则原抛物线为 ( )A 、y=2x 2-7x-1 B 、y=2x 2-4x-2 C 、y=2x 2-4x+20 D y= y=x 2-4x-111、下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式 C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差20.2S =甲,乙组数据的方差20.5S =乙,则乙组数据比甲组数据稳定12、关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是( )。

9年级中考-适应试卷附答案

9年级中考-适应试卷附答案

6题图2014年中考第三次适应性训练数学试题(卷)温馨提示:本试卷满分120分,考试时间120分钟。

共三大题,24题小题。

A .2-B.2C. 2-D. 2.A .532xxx =+B .()4222-=-x xC .23522x x x ∙= D .()743x x =4.某校九年级一班的十名同学进行定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( ) A .4,5 B .5,4 C .4,4 D .5,55.如图,在□ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为( ) A .4cmB .5cmC .6cmD .8cm6.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的正弦值是( ) A .12B .13C D 7.已知关于x 的二元一次方程组335-1xy m x y m +=-⎧⎨-=⎩,若x+y >3,则m 的取值范围是( )A .m >1B .m <2C .m >3D . m >5 8.如图,△ABC 的顶点坐标分别为A (4,4)、B (2,1)、C (5,2),将△ABC 经过平移得到△A ’B ’C ’,若点A 的对应点A ’的坐标是(3,5),那么点B 的对应点B ’的坐标是( ).A .(0,3)B .(1,2)C .(0,2)D .(4,1)9. 有下列四个命题:①直径是弦; ②经过三个点一定可以作圆;③ 三角形的外心到三角形三个顶点的距离都相等;④半径相等的两个半圆是等弧。

其中正确的有( )A .4个B .3个C .2个D .1个10.如图,如图,针孔成像问题,AB ∥A ′B ′,根据图中尺寸,物像长y 与物长x 之间函数关系的图象大致是( )二、细心填一填:(本大题共6小题,每小题3分,共18分,请把答案填在横线上.)11.单项式-5x 3y 2的次数是 .12.抛物线1)3(22+-=x y 的对称轴是 。

2014年九年级适应性考试数学试题

2014年九年级适应性考试数学试题

2014年九年级适应性考试数学试题命题人:黎 学 强一、选择题(,每小题3分,共24分)1.若3)2(⨯-=x ,则x 的倒数是( )A .61-B .16C .6-D .62.下列几何体中,同一个几何体的主视图与俯视图不同的是( )A. B. C. D. 3.下列运算正确的是( )A .(x +y 2)2=x 2+y 4B .-a 2+2a 2=a 2C .b 6÷b 2=b 3D .(2y )2×(-y )=-2y 34.为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm ),则该铁球的直径为( ) A .12cm B .8cm C .6cm D .10cm5.一次体育测试,某班5名同学的测试成绩依次为34,38,39,39,40.(单位:分)对这组数据下列说法错误的是( )A .平均数是38B .中位数是39C .众数是39D .方差是3 6.将一副三角板如图叠放,则△AOB 与△DOC 的面积比是( )A .33 B .21 C .31 D .237.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列4个结论, 其中正确的结论是( )A .0>abcB .c a b +<C .024>++c b aD . b c 32>8.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,两点同时出发,都到达时停止.设P ,Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论::①AD =BE =5cm ;②当0<t ≤5时;225y t =;③直线NH 的解析式为y =-25t +27;④当t =429s 时,△ABE ∽△QBP .其中正确的结论个数为( ) A .4 B . 3 C .2 D .1二、填空题(,每小题3分,共21分) 9.14-的相反数是_______. 10.分解因式:3654a a -=________.11.如果分式242--x x 的值为零,那么x =_____.12.如图,在平面直角坐标系中,四边形OABC 是平行四边形,O (0,0),A (1,-2),B (3,1)则C 点坐标为 .14.如图,矩形ABCD 沿对角线BD 折叠,已知长BC =8cm ,宽AB =6cm ,那么折叠后重合部分的面积是 cm 2.15.如图,AM ∥NP ,AM =4,MN =2,NP =2,∠AMN =150°,正方形ABCD 的边长为 2. 它沿着AM —MN —NP 作无滑动翻转,至它的一个顶点第一次与P 重合为止,则在此过程中,正方形的中心O 运动的路线长为 (不取近似值). 三、解答题(共75分)16.(5分)解方程组⎩⎨⎧=+=+.,42634y x y x第8题图第7题第6题图30°45°O DCB A 第4题图第12题图yxC B (3,1)A (1,-2)O第13题图 第15题图17.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:分数均为整数,A级:90分-100分;B级:75分-89分;C级:60分-74分;D级:60分以下)(1+1+2+2=6)(1)D级学生的人数占全班总人数的百分比是;(2)扇形统计图中C级所在的扇形圆心角的度数是;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有800人,请你估计这次考试中60分以上的学生共有多少人?18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.(1+3+1+1=6)19.(6分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于M,若MA=MC,求证:CD=AN.20.(6分)有10名菜农,每人能种甲种蔬菜3亩或乙种蔬菜2亩.已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,且10名菜农都安排种蔬菜,则最多只能安排多少人种植甲种蔬菜?21.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于A、B两点,与x轴交于C点,与y轴交于D点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.D23.已知:如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,∠PBA =∠C . (1)求证:PB 是⊙O 的切线;(2)若OP ∥BC ,且OP =8,BC =2.求⊙O 的半径.(8分)24.已知:加以两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地......的距离y (千米)与行驶时间x (小时)之间的函数图象. (1)求甲车离出发地的的距离y 甲(千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围; (2)它们出发29小时时,离各自出发地的距离相等,求乙车离出发地的的距离y 乙(千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间. (2+4+3=9分)25. (13分) 综合与探究:如图,抛物线y =ax 2+bx -4与x 轴交于A ,B 两点(点B 在点A 的右侧)与y 轴交于点C , 已知A (-2,0),且AB =10. F 为其顶点. 连接BC , 以BC 为一边,点O 为对称中心作菱形BDEC , 点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)请直接写出抛物线的解析式和点F 的坐标;(3分) (2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M ,N . 试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(4分)(3)当点P 在线段EB 上运动时,是否存在点 Q ,使△BDQ 成为以BD 为直角边的直角三角形,若存在,请求出点Q 的坐标;若不存在,请说明理由;(4分)⑷当点P 在线段EB 上运动时,连接PF ,请直接写出PF 的中点运动的路径长.(2分)4。

2014年九年级中考二模考试数学试题参考答案及评分建议

2014年九年级中考二模考试数学试题参考答案及评分建议

2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。

…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。

2014年九年级数学中考考前押题模拟试卷及答案

2014年九年级数学中考考前押题模拟试卷及答案

二〇一四年初中学生学业模拟考试数 学 试 题本试卷分选择题部分(60分)和非选择题部分(60分),满分120分,考试时间120分钟。

注意事项:1.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。

2.考试结束后,监考人员将本试卷和答题纸一并收回。

一、选择题:(本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.) 1.﹣2的绝对值等于A .2B .﹣2C .D .±2 2. 下列运算正确的是A .523x x x =⋅B .336()x x =C .5510x x x +=D .336x x x =-3.下列四个图形中,既是轴对称图形,又是中心对称图形是⑴ ⑵ ⑶ ⑷ A .⑴、⑵ B .⑴、⑶ C . ⑴、⑷ D .⑵、⑶4、抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移35、根据下图所示程序计算函数值,若输入的x 的值为5,则输出的函数值为A .32B .25C .425D .2546.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是A .m >0B .n <0C .mn <0D .m -n >07. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是A . 4cmB . 6cmC . 8cmD . 2cm8.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是.A B .C .D .9.已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为A .±2B . 2C .2D . 410.袋子中装有4个黑球2个白球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到黑球的概率是A .1 6 B . 12 C . 13 D . 23OBA(第7题图)5cmxx11. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12.如图12,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为A. 2010B. 201113.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是|A .3场B .4场C .5场D .6场 14.二次函数y=(2x-1)2+2的顶点的坐标是A .(1,2)B .(1,-2)C .( 2 1,2)D .(- 2 1,-2)15. 如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是 A .4 B .5 C .6 D .10 16. 已知∠I=40°,则∠I 的余角度数是A .150°B .140°C .50°D .60°17. 据统计,今年泰安市中考报名确认考生人数是96 200人,用科学记数法表示96 200为 A .49.6210⨯ B . 50.96210⨯ C .59.6210⨯ D .396.210⨯ 18.如果半径分别为2cm 和3cm 的两圆外切,那么这两个圆的圆心距是A .1cmB .5cmC .1cm 或5cmD .小于1cm. 19下列图形中,是正方体的平面展开图的是.A .. B.. C. D.20.如图,AB 是⊙O 的弦,OC 是⊙O 的半径,OC ⊥AB 于点D ,若 AB=8, OD=3,则⊙O 的半径等于x11题图12题图A .4B .5C .8D .10.二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题3分)21.计算013+=3⎛⎫-- ⎪⎝⎭____________.22.如图,AB 是⊙O 的直径,CD 是弦,DAB ∠=48︒,则ACD ∠= ︒. 23.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=,则下底BC 的长为 __________.24.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为22题图 23题图 24题图三、解答题(本大题共5小题,满分48分.解答要写出必要的文字说明、证明过程或演算步骤) 25. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(-1)2012-| -7 |+ 9 ×( 5 -π)0+( 1 5)-1;(2))化简:a a a a a -+-÷--2244)111(60°30°DCBADCBAOE26. (本题满分9分)已知:如图,在△ABC 、△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一直线上,连结BD. 求证:(1)△BAD ≌△CAE ;(2)试猜想BD 、CE 有何特殊位置关系,并证明.27.(本题满分10分)为了抓住世界杯商机,某商店决定购进A 、B 两种世界杯纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?28.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.29.(本题满分12分)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.参考答案一、参考答案:二、填空题:21.4 22. 42 23. 12 24. 32三、解答题:25.(1)原式=1-7+3+5=2.(2).解:()()22211442(1)1122a aa a a aa a a a aa--+--÷=⋅= -----26、(1)AB=AC,易证∠BAD=∠C AE ,AD=AE,所以△BAD≌△CA E(SAS)。

安徽省淮南市2014届九年级中考模拟考试数学试题(扫描版)

安徽省淮南市2014届九年级中考模拟考试数学试题(扫描版)

数学参考答案及评分标准 一、选择题:(本大题共10小题,每小题4分,满分40分) 题号1 2 3 4 5 6 7 8 9 10 答案 A A B C C D C A B C二、填空题(本大题共4小题,每小题5分,满分20分) 11.(4)(4)a a a +- 12.4π 13. 3 14. ①、③和④三、(本大题共2小题,每小题8分,满分16分)15.解:原式=22b a b a a b a b+-÷-+ ……………………2分 =22b b a b a b÷-+ ……………………4分 =()()b a b a b a b b +⨯+- ……………………6分 =1a b- ……………………8分 16.解:(1)设每轮传染中平均每人传染了x 人,则1+x+x (x+1)=64 ……………………3分 解得:x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人; ……………………5分(2)64×7=448(人).答:第三轮将又有448人被传染. ……………………8分四、(本大题共2小题,每小题8分,满分16分)17.解;(1)如图所示: ……………………2分(2)如图所示: ……………………4分(3)如图所示:作出A 1关于x 轴的对称点A′,连接A′C 2,交x 轴于点P ,……………………6分可得P 点坐标为:8(,0)3……………………8分18. 表格中分别填8,11 ……………………4分(1)答案不唯一,正确即可 ……………………6分(2)S a 2b 1=+(﹣). ……………………8分五、(本大题共2小题,每小题10分,满分20分)19. 解:(1)如图,在Rt ABC ∆中,52sin 45()2AC AB m =⋅=o ……………………2分 在Rt ACD ∆中,521525 1.417.05()sin3022AC AD m ==÷=≈⨯≈o ………………4分 7.055 2.1AD AB ∴-=-≈m . ……………………5分 即改善后的台阶坡面会加长2.1m .(2)如图,在Rt ABC △中,, 52cos 45 3.53()2BC AB m =⋅=≈o ………………6分 在Rt ACD ∆中,523 6.10()tan 3023AC CD m ==÷≈o ………………8分 6.10 3.53 2.6()BD CD BC m ∴=-=-≈ …………………9分 即改善后的台阶多占2.6.长的一段水平地面. ……………………10分20.解:(1)九(1)班的学生人数为:12÷30%=40(人), 喜欢足球的人数为:40-4-12-16=40-32=8(人),补全统计图如图所示; ……………………2分(2)10;20;72; ……………………5分(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,所以,P (恰好是1男1女)61122== ……………………10分六、(本题满分12分)21.(1)连接CE∵直角三角形的中线等于斜边的一半∴CE=1/2AB=AE又∵△ACD是等边三角形∴AD=CD又∵DE=DE∴△ADE≌△CDE ∴∠1=∠2……………………4分(2) ∵△ACD是等边三角形∴∠ADE=∠CDE=30°∴∠DCB=150°即DE∥CB……………………8分(3)∵∠DCB=150°若四边形DCBE是平行四边形则DC∥BE∴∠DCB+∠B=180°∴∠B=30°Rt△ACB中,sinB=AC/BCsin30°=AC/BC=1/2∴AB=2AC∴当AB=2AC时,四边形DCBE是平行四边形……………………12分七、(本题满分12分)22. 解:(1)设现在实际购进这种水果每千克x元,则原来购进这种水果每千克(x+2)元,由题意,得80(x+2)=88x,解得x=20.答:现在实际购进这种水果每千克20元;……………………4分(2)①设y与x之间的函数关系式为y=kx+b,将(25,165),(35,55)代入,得,解得,故y与x之间的函数关系式为y=﹣11x+440;……………………8分②设这种水果的销售单价为x元时,所获利润为w元,则w=(x﹣20)y=(x﹣20)(﹣11x+440)=﹣11x2+660x﹣8800=﹣11(x﹣30)2+1100,所以当x=30时,w有最大值1100.答:将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元. (12)分八、(本题满分14分)23.(1)图略,作线段AC的中垂线BD即可……………………2分(2)不能.如图1,若直线CD 平分△ABC 的面积 那么S △ADC=S △DBC∴21AD ·CE =21BD ·CE ∴AD =BD ……………………5分 ∵AC ≠BC ,∴AD +AC ≠BD +BC∴过点C 不能画出一条“等分积周线” ……………………7分 (3)如图2所示过点E 作EH ⊥AC 于点H ,过点B 作BG ⊥AC 于点G 易求得BG =4,AG =CG =3 易证EF 平分△ABC 的周长 由△CEH ∽△CBG ,可得EH =512∴S △ABC =124621=⨯⨯S △CEF =6512521=⨯⨯ ∴S △CEF =S 四边形ABEF∴EF 是△ABC 的等分积周线。

2014届九年级数学中考模拟试卷及答案【宁波市】

2014宁波市初中毕业生学业考试数学模拟1本卷满分150分一.选择题(每题4分,共48分)1. 抛物线y =122+-x x 与坐标轴交点为( )A 、二个交点B 、一个交点C 、无交点D 、三个交点3则 这组数据的极差与众数分别是(A )2,28 (B )3,29 (C )2,27 (D )3,284据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学计数法表示为(A )1.04485×106元 (B )0.104485×106元 (C )1.04485×105元 (D )10.4485×104元5. 如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,折叠正方形ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展平后,折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,下列结论:①AE=AG ;②tan ∠AGE=2;③EFO G D O G S S 四边形=∆;④四边形ABFG 为等腰梯形;⑤BE=2OG ,则其中正确的结论个数为( )。

A .2B .3C .4D .56. 如图,三个半径为3的圆两两外切,且ΔABC 的每一边都与其中的两个圆相切,那么ΔABC 的周长是(A )12+63 (B )18+63 (C )18+123 (D )12+1237. 把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ) A)4m cm(B) 2(m +n ) cm(C) 4n cm (D)4(m -n ) cm8. 如图是一把300的三角尺,外边AC=8,内边与外边的距离都是2,那么内边EF 的长度是()A. 4B. 43C. 2.5D. 326-n9. 如图,二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.给出四个结论:① abc<0; ②a+c=1; ③ 2a+b>0; ④b 2-4ac>0. 其中结论正确的个数为( ) A .4 B .3 C .2D .110. 如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④CO CE CD ⋅=2.其中正确结论的序号是 。

2014年初三中考模拟测试题数学试卷

2014年初三中考模拟测试题数学试卷一、选择题〔此题共32分,每题4分〕 1.32-的相反数是 A .23- B .23 C .32-D .322.清明小长假本市150家景区接待游客约5245000人,数字5245000用科学记数法表示为 A .3105.245⨯B .6105.245⨯C .7100.5245⨯D .3105245⨯ 3.正五边形的每个角等于 A .72°B .108°C .54°D .36°4.为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:那么这10户家庭的月用水量的平均数和众数分别是 A .7.8,9B .7.8,3C .4.5,9D .4.5,35.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为 A .1)2(22--=x y B . 32)4(22+-=x y C .9)2(22--=x y D .33)4(22--=x y6.如图,△ABC 接于⊙O ,BA =BC ,∠ACB =25°,AD 为⊙O 的直径,那么∠DAC 的度数是 A .25B .30°C .40D .50°7.转盘上有六个全等的区域,颜色分布如下图,假设指针固定不动,转动转盘, 当转盘停止后,那么指针对准红色区域的概率是 A .21 B .31 C .41 D .618.如图,边长为1的正方形ABCD 中有两个动点P ,Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,那么另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,以下图象中,能表示y 与x 的函数关系的图象大致是月用水量〔吨〕5 6 7 8 9 10 户数112231第8题图QPC DAB第6题图 第7题图红 黄蓝 红蓝 蓝O DCBAxyAB Oy O x12 yO x12 yOx12 yO x12 A BC D二、填空题〔此题共16分,每题4分〕9.分解因式:ax ax 163-=_______________.10.如图,CD AB //,AC 与BD 相交于点O ,3=AB , 假设3:1:=BD BO ,那么CD 等于_____.11.如下图,小明同学在距离某建筑物6米的点A 处测得条幅两端B 点、C 点的仰角分别为60°和30°,那么条幅的高度BC 为米〔结果可以保存根号〕. 12.在平面直角坐标系xOy 中,直线l :x y =,作1A 〔1,0〕关于x y =的对称点1B ,将点1B 向右水平平移2个单位得到点2A ;再作2A 关于x y =的对称点2B ,将点2B 向右水平平移2个单位得到点3A ;….请继续操作并探究:点3A 的坐标是,点2014B 的坐标是.三、解答题〔此题共30分,每题5分〕13.02014130tan 3512)(-︒+--. 14.解方程:xx x -=+--53153. 15.如图,在△ABC 和△ADE 中,AC AB =,AE AD =,DAE BAC ∠=∠,点C 在DE 上. 求证:〔1〕△ABD ≌△ACE ;〔2〕ADC BDA ∠=∠. 16.:23=y x ,求代数式y x y x 3294+-的值.17.如图,一次函数21+=kx y 的图象与x 轴交于点B 〔0 2-,〕,与函数xmy =2(0>x )的图象交于点A 〔a 1,〕.〔1〕求k 和m 的值; 〔2〕将函数xmy =2〔0x >〕的图象沿y 轴向下平移3个单位后交x轴于点C .假设点D 是平移后函数图象上一点,且△BCD 的面积是3,直接写出点D 的坐标.ECBAD BDC第11题图OCD BA第10题图CB A D18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,甲、乙型号的显示器价格分别为1000元/台、2000元/台. 〔1〕求该公司至少购置甲型显示器多少台?〔2〕假设要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购置方案? 四、解答题〔此题共20分,每题5分〕19.如图,在四边形ABCD 中,2AB =,︒=∠=∠60C A ,DB AB ⊥于点B ,45DBC ∠=︒,求BC 的长.20.为响应推进中小学生素质教育的号召,某校决定在下午15点至16点开设以下选修课:音乐史、管乐、篮球、健美操、油画.为了解同学们的选课情况,某班数学兴趣小组从全校三个年级中各调查一个班级,根据相关数据,绘制如下统计图.〔1〕请根据以上信息,直接补全条形统计图和扇形统计图;〔2〕假设初一年级有180人,请估算初一年级中有多少学生选修音乐史? 〔3〕假设该校共有学生540人,请估算全校有多少学生选修篮球课? 21.如图,⊙O 是△ABC 的外接圆,AC AB =,连结CO 并延长交⊙O 的切线AP 于点P . 〔1〕求证:BCP APC ∠=∠; 〔2〕假设53sin =∠APC ,4=BC ,求AP 的长.POA三个班级参加选修课的 初二(5)班参加各类选修课的人数统计图 人数分布统计图 人数 音乐史 管乐 篮球 健美操 油画 课程 10 9 8 7 6 5 4 3 2 122.实验操作〔1〕如图1,在平面直角坐标系xOy 中,△ABC 的顶点的横、纵坐标都是整数,假设〔〔1〕求m 的值;〔2〕将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,假设抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的表达式;〔3〕将抛物线2C 绕点(n n ,1+)旋转︒180得到抛物线3C ,假设抛物线3C 与直线121+=x y 有两个交点且交点在其对称轴两侧,求n 的取值围.24.在矩形ABCD 中,AD =12,AB =8,点F 是AD 边上一点,过点F 作∠AFE =∠DFC ,交射线AB 于点E ,交射线CB 于点G . (1) 假设82FG =_____CFG ∠=︒;(2) 当以F ,G ,C 为顶点的三角形是等边三角形时,画出图形并求GB 的长;〔3〕过点E 作EH//CF 交射线CB 于点H ,请探究:当GB 为何值时,以F ,H ,E ,C 为顶点的四边形是平行四边形.25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积〞,给出如下定义: “水平底〞a :任意两点横坐标差的最大值,“铅垂高〞h :任意两点纵坐标差的最大值,那么“矩面积〞=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,那么“水平底〞5=a ,“铅垂高〞4=h ,“矩面积〞20==S ah . 〔1〕点)2,1(A ,)1,3(-B ,),0(t P .①假设A ,B ,P 三点的“矩面积〞为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积〞的最小值. 〔2〕点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①假设E ,F ,M 三点的“矩面积〞为8,求m 的取值围;②直接写出E ,F ,N 三点的“矩面积〞的最小值与对应n 的取值围.数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.假设考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题〔此题共8道小题,每题4分,共32分〕 题号 1 2 3 4 5 6 7 8 答案 D B B A CCBA二、填空题〔此题共4道小题,每题4分,共16分〕9.)4)(4(-+x x ax ;10.6;11.34;12.〔3,2〕,〔2013,2014〕. 三、解答题〔此题共30分,每题5分〕13.解:02014130tan 3512)(-︒+-- =1333532-⨯+-………………………………………4分 =6-33………………………………………5分14.解:方程两边同乘以)5(-x ,得………………………………………1分3)5(3-=-+-x x . ………………………………………2分解得25=x . ………………………………………3分 经检验:25=x 是原分式方程的解.………………………………4分所以25=x 是原方程的解.………………………………………5分15.证明:〔1〕DAE BAC ∠=∠ , DAC DAE DAC BAC ∠-∠=∠-∠∴.CAE BAD ∠=∠∴.…………………………1分 在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=AE AD EAC BAD AC AB , ……………2分 ∴△ABD ≌△ACE .………………………3分〔2〕AEC ADB ∠=∠∴. AE AD = ,AEC ADC ∠=∠∴.…………………………4分 ADC BDA ∠=∠∴.…………………………5分16.解:由y x 32=, ………………………………………2分 ∴原式yy yy 3396+-=………………………………………4分21-=.………………………………………5分 17.解:〔1〕根据题意,将点B 〔0 2-,〕代入21+=kx y , ∴22-0+=k .………………………………………………………1分∴1=k .…………………………………………………2分∴A 〔3 1,〕.将其代入xmy =2,可得:3=m …………………3分 〔2〕〔2 53,〕或〔2 3-,〕.………………………………………5分 18.解:设该公司购进甲型显示器x 台,那么购进乙型显示器()50-x 台.〔1〕依题意可列不等式:77000)50(20001000≤-+x x ……………2分解得:23≥x …………………………………………………………3分∴该公司至少购进甲型显示器23台. 〔2〕依题意可列不等式:x x -≤50解得:25≤x ………………………………………………………4分 ∵23≥x∴x 为23,24,25. 答:购置方案有:①甲型显示器23台,乙型显示器27台; ②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.…………5分四、解答题〔此题共20分,每题5分〕19.解:过点D 作BC DE ⊥于点E . ……………………1分︒=∠=⊥60 2,A AB AB DB ,,∴3260tan =︒⨯=AB BD . ………………2分 45DBC ∠=︒,BC DE ⊥,∴645sin =︒⨯==BD DE BE …………3分︒=∠︒=∠=∠9060DEC A C ,260tan =︒=∴DECE .……………………4分62+=∴BC .………………………………5分20.解:〔1〕条形统计图补充数据:6〔图略〕.………………………………………1分 扇形统计图补充数据:20.……………………………2分〔2〕180×308=48〔人〕.………………………………………………3分 〔3〕()1543030303020866=++÷⎪⎭⎫⎝⎛⨯++.……………4分144540154=⨯〔人〕.…………………………………………5分 21.〔1〕证明:连结AO 并延长交BC 于D 、⋂BC 于EAP 切⊙O 于点AAPBC BC EA AC AB ACAB PA EA //∴⊥∴=∴=⊥∴⋂⋂…………………1分 BCP APC ∠=∠∴…………………………2分〔2〕解:BC AE ⊥221==∴BC CD53sin ==∠PO AO APC ∴设k OP k OA 5,3==,那么k OA OC 3==………………3分AP BC //∴△PAO ∽△CDO …………………………4分CO POCD PA =∴ kkPA 352=∴∴310=PA …………………………5分22.解:〔1〕画出点P …………………..1分画出△DEF ………………..2分 〔2〕 °A'C'B'PCA B…………………………….4分x y–5–4–3–2–112345–5–4–3–2–112345P F E D C B A O BPCO E DEG DA B CF 34π=⋂AB ……………………………………………………5分 五、解答题〔此题共22分,第23题7分,第24题8分,第25题7分〕 23.解:〔1〕∵方程01)1(22=-+-+m x m mx有两个实数根,∴0≠m 且0≥∆, ……………………1分 那么有0)1(4-)1(42≥--m m m 且0≠m∴1≤m 且0≠m又∵m 为非负整数,∴1=m . ………………………………2分〔2〕抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2)(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a ,同理:b a b +-=+2)4(12,可得3=b , …………………………4分∴2C :()322+-=x y )(或742+-=x x y . …………5分〔3〕将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶点为〔322-n n ,〕, ………………6分当n x 2=时,11221+=+⨯=n n y , 由题意,132+>-n n ,即:4>n .……………………………7分24.解:〔1〕90°………………………………………………2分〔2〕正确画图 ………………………………………………3分四边形ABCD 是矩形, ∴∠D=90°.△FGC 是等边三角形,=60GFC ∴∠︒ . ∠DFC =∠AFE ,∴∠DFC =60°. …………4分 DC =8 ,∴331660sin =︒=DC FC .△FGC 是等边三角形, ∴GC =FC 163.BC=AD =12,∴GB=12163.………………………………5分 〔3〕过点F 作FK ⊥BC 于点K 四边形ABCD 是矩形∴∠ABC =90°,AD//BC∴∠DFC =∠KCF ,∠AFG =∠KGF ∠DFC =∠AFG ∴∠KCF =∠KGF∴FG =FC ……………………………………………………………6分∴GK =CK四边形FHEC 是平行四边形∴FG =EG ……………………………………………………………7分 ∠FGK =∠EGB,∠FKG =∠EBG=90°∴△FGK ≌△EGB∴BG =GK=KC=4312=……………………………………………8分25.解:〔1〕由题意:4=a . ①当2>t 时,1-=t h ,那么12)1(4=-t ,可得4=t,故点P 的坐标为(0,4);……………1分当1<t 时,t h -=2,那么12)2(4=-t ,可得1-=t ,故点P 的坐标为(0,1)-.…………2分②A ,B ,P 三点的“矩面积〞的最小值为4. ……………………3分 〔2〕①∵E ,F ,M 三点的“矩面积〞的最小值为8,∴⎩⎨⎧≤≤≤≤24040m m .∴210≤≤m .∵0>m ,∴210≤<m . ………………………………………………………4分②E ,F ,N 三点的“矩面积〞的最小值为16,…………………………5分 n 的取值围为84≤≤n ………………………………………………7分K H EGDAB CFFE. . . .11 / 11。

2014年九年级数学第一次中考模拟试卷及答案

2014年4月九年级第一次数学模拟试题及答案一.选择题:(每小题3分,共18分)1.在-6,0,3,8这四个数中,最小的数是( )A . -6B 、0C 、3D 82.下列图形中,是中心对称图形的是( )4.已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如上图所示,则下列结论中,正确的是( )A 、a>0B b<0C c<0D a+b+c>05.为了建设社会主义新农村,我市积极推进“行政村通畅工程”。

张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按完成了两村之间的道路改造。

下面能反映该工程尚未改造的道路里程y (公里)与时间x(天)的函数关系的大致图象是()6.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。

将△ADE 沿对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF 。

下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF;④S △FGC =3. 其中正确结论的个数是( ) A 1 B 2 C 、3 D 、48. 如图,已知一次函数kx b +的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A 、1y <;B 、y <0;C 、y >1;D 、y <2二.填空题:(每小题,每小题3分,共27分) 9. 64的立方根是 .10.如图,AB/∥CD ,∠∠C =800,∠CAD =600,则∠BAD 的度数等于 。

11.如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为 。

12.在参加的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,12,11,9.则这组数据的众数是 ,中位数是 ,平均数是 。

2014年山西中考数学适应性真题及详解

2014年山西中考数学适应性真题一.选择题(共8小题) 1. 5-的倒数是( ) A .15B .15-C .5D .5-2.下列运算正确的是( ) A .532x x x -=B .222()a b a b +=+C .336()mn mn =D .624p p p ÷=3.我们虽然把地球称为“水球”,但可利用淡水资源匮乏.我国淡水总量仅约为899000亿米,用科学记数法表示这个数为( )A .0.899×104亿米3B .8.99×105亿米3C .8.99×104亿米3D .89.9×104亿米34.一个空心的圆柱如图所示,那么它的主视图是( )A .B .C .D .5.已知两圆的半径分别为3cm 、4cm ,圆心距为8cm ,则两圆的位置关系是( ) A .外离 B .相切 C .相交 D .内含 6.下列说法正确的是( )A .随机掷一枚硬币,正面一定朝上,是必然事件B .数据2,2,3,3,8的众数是8C .某次抽奖活动获奖的概率为150,说明每买50张奖券一定有一次中奖 D .想了解赤峰市城镇居民人均年收入水平,宜采用抽样调查 7.解分式方程131(1)(2)x x x =--+的结果为( ) A .1 B .1- C .2- D .无解8.如图,等腰梯形ABCD 中,AD ∥BC ,以点C 为圆心,CD 为半径的弧与BC 交于点E ,四边形ABED 是平行四边形,AB=3,则扇形CDE (阴影部分)的面积是( )A .32πB .2π C .π D .3π二.填空题(共8小题)9.一个n 边形的内角和为1080°,则n= .11.化简22(1)2211a a a a +÷+++= . 12.如图,在菱形ABCD 中,BD 为对角线,E 、F 分别是DC .DB 的中点,若EF=6,则菱形ABCD 的周长是 .13.投掷一枚质地均匀的骰子两次,两次的点数相同的概率是 .14.存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).15.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为 . 16.将分数67化为小数是,则小数点后第2012位上的数是 .三.解答题(共9小题) 1720sin 30(2)-︒+--;18.求不等式组3(2)41413x x x x --≥⎧⎪+⎨>-⎪⎩的整数解.19.如图所示,在△ABC 中,∠ABC=∠ACB .(1)尺规作图:过顶点A 作△ABC 的角平分线AD ;(不写作法,保留作图痕迹) (2)在AD 上任取一点E ,连接BE 、CE .求证:△ABE ≌△ACE .20.如图,王强同学在甲楼楼顶A处测得对面乙楼楼顶D处的仰角为30°,在甲楼楼底B处测得乙楼楼顶D处的仰角为45°,已知甲楼高26米,求乙楼的高度. 1.7)21.甲、乙两名运动员在相同的条件下各射靶10次,每次射靶的成绩情况如图所示:22.(2012赤峰)如图,点O 是线段AB 上的一点,OA=OC ,OD 平分∠AOC 交AC 于点D ,OF 平分∠COB ,CF ⊥OF 于点F .(1)求证:四边形CDOF 是矩形;(2)当∠AOC 多少度时,四边形CDOF 是正方形?并说明理由.23.(2012赤峰)如图,直线1l y x =:与双曲线ky x=相交于点A (a ,2),将直线l 1向上平移3个单位得到l 2,直线l 2与双曲线相交于B .C 两点(点B 在第一象限),交y 轴于D 点. (1)求双曲线ky x=的解析式; (2)求tan ∠DOB 的值.24.(2012赤峰)如图,AB 是⊙O 的弦,点D 是半径OA 上的动点(与点A .O 不重合),过点D 垂直于OA 的直线交⊙O 于点E 、F ,交AB 于点C .(1)点H 在直线EF 上,如果HC=HB ,那么HB 是⊙O 的切线吗?请说明理由;(2)连接AE 、AF ,如果 AF=FB,并且CF=16,FE=50,求AF 的长.25.(2012赤峰)如图,抛物线25y x bx =--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1. (1)求抛物线的解析式; (2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.26.(2012赤峰)阅读材料:(1)对于任意两个数a b 、的大小比较,有下面的方法: 当0a b ->时,一定有a b >; 当0a b -=时,一定有a b =;反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a b 、的大小时,我们还可以用它们的平方进行比较: ∵22()()a b a b a b -=+-,0a b +> ∴(22a b -)与(a b -)的符号相同 当22a b ->0时,a b ->0,得a b > 当22a b -=0时,a b -=0,得a b = 当22a b -<0时,a b -<0,得a b <解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x >y ,张丽同学的用纸总面积为W 1,李明同学的用纸总面积为W 2.回答下列问题: ①W 1= (用x 、y 的式子表示) W 2= (用x 、y 的式子表示) ②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l 上修建一个泵站,分别向A .B 两镇供气,已知A .B 到l 的距离分别是3km 、4km (即AC=3km ,BE=4km ),AB=xkm ,现设计两种方案:方案一:如图2所示,AP ⊥l 于点P ,泵站修建在点P 处,该方案中管道长度a 1=AB+AP .方案二:如图3所示,点A ′与点A 关于l 对称,A ′B 与l 相交于点P ,泵站修建在点P 处,该方案中管道长度a 2=AP+BP .①在方案一中,a 1= km (用含x 的式子表示); ②在方案二中,a 2= km (用含x 的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.解答:解:∵|﹣5|=5,5的倒数是,∴|﹣5|的倒数是.故选A.2、考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2014年初中毕业生升学考试模拟试题 数学 考生须知: 1.作答前,请将自己的姓名、准考证号填写在答题纸上相应位置,并核对条形码上的姓名、准考证号等有关信息。 2.答题内容一律填涂或书写在答题纸上规定的位置,在试题卷上作答无效。 3.本试题共8页,三大题,24小题,满分120分,考试时间共计120分钟。 一、单项选择(本大题共10题,每题3分,共30分.) 1. |-5|的相反数是

A. 5 B. -5 C. 51 D. 51

2. 青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为 A. 0.25×107 B. 2.5×107 C. 2.5×106 D. 25×105

3.在函数31xy中,自变量x的取值范围是 A. x≠3 B. x≠0 C. x>3 D. x≠-3

4. 把代数式244axaxa分解因式,结果正确的是

A. 2(2)ax B. 2(2)ax C. 2(4)ax D. (2)(2)axx

5. 下列命题是真命题的个数是 ① 垂直于半径的直线是圆的切线;

② 若一个正多边形的内角和等于720,则这个正多边形的边数是 6

③ 若12xy是方程x-ay=3的一个解,则a=-1; ④ 若反比例函数3yx的图像上有两点(12,y1),(1,y2),则y1 A.1个 B.2个 C.3个 D.4个

6. 袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从袋子中摸出一个球,摸到白球的概率为

A. 19 B. 13 C. 12 D. 23

7. 下列图形中,既是轴对称图形,又是中心对称图形的是 2

A B C D 8. 若右图是某几何体的三视图,则这个几何体是

A.圆柱 B. 正方体 C. 球 D. 圆锥

9. 我市某一周的最高气温统计如下表: 最高气温(℃) 25 26 27 28 天 数 1 1 2 3 则这组数据的中位数与众数分别是 A. 27,28 B. 27.5,28 C. 28,27 D. 26.5,27

10. 若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如 在 代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c„„;a+b+c就是完全对称式. 下列三个代数式: ① (a-b)2;② ab+bc+ca;③ a2b+b2c+c2a.

其中为完全对称式的是 A. ① ② B. ② ③ C. ① ③ D. ① ② ③

二、填空(本大题共6题,每题3分,共18分) 11. 抛物线y=-x2+4x-5的顶点坐标是 . 12. 若0)1(32nm,则m + n的值为 。 13. 若关于x的一元二次方程220xxk有两个不相等的实数根,则k的取值范围 是 . 14.如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径, 则∠A+∠B+∠C=__________度.

15. 用“☆”定义新运算: 对于任意实数a 、b ,都有a ☆b=b2+1。 例如7☆4=42+1=17, 那么5☆3= ;

O E D C B A 3

16. 如图所示,等边△ABC中,D、E分别是AB、AC上的点,将△ADE沿直线DE翻折后,点A落在点A'处,且点A'在△ABC的外部,若原等边三角形的边长为a ,则图中阴影部分的周长为 .

三、解答(本大题8题,共72分,解答时要写出必要的文字说明、演算步骤或推证过程) 17.(本题满分10分)

(1) 计算:011820072sin45()4.

(2) 先化简,再求值:已知20xy,求 22()2xyxyyxxxyy 的值.

18.(本题满分5分). 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”,“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.

19.(本题满分6分)

在“走基层,树新风”活动中,我市青年记者小明深入边远山区,随机走访农户,调查我市农牧民儿童生活教育现状。根据收集的数据,编制了不完整的统计图表如下:

类别 现状 户数 比例 4

儿童生活教育现状

请你用学过的统计知识,解决问题: (1)记者走访了边远山区多少家农牧民户? (2)将统计图表中的空缺数据填写完整; (3)分析数据后,请你提一条合理建议。

20.(本题满分9分) 如果,ABCD是矩形纸片,翻折∠B、∠D,使BC,AD恰好落在AC上,其中F,H分

别是B,D的落点. 求证:四边形AECG是平行四边形.

A类 父母常年在外打工,孩子留在老家由老人照顾 100 B类 父母常年在外打工,孩子带在身边 10% C类 父母就近在城镇打工,晚上回家照顾孩子 50 D类 父母在家务农,并照顾孩子 15% 5 21.(本题满分10分) 已知:如图,△ABC内接于⊙O ,点D在OC的延长线上,sin B =21,∠CAD =30° (1)求证:AD是⊙O的切线; (2)若OD⊥AB,BC = 5,求AD的长。

22.(本题满分10分)

校车安全是近几年社会关注的重大问题,安全隐患主要是超载和超速.我市某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔

直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD =60°

(1)求AB的长(精确到0.1米,参考数据:73.13,41.12); (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车

A D B C O 6

是否超速?说明理由. 23.(本题满分10分) 我市某商城某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少时每个月可获得最大利润? 最大利润是多少?

24.(本题满分12分) 在平面直角坐标系xOy中,抛物线2yxbxc与x轴交于AB,两点(点A在点B

的左侧),与y轴交于点C,点B的坐标为(30),,将直线ykx沿y轴向上平移3个单位长度后恰好经过BC,两点. (1)求直线BC及抛物线的解析式; (2)设抛物线的顶点为D,点P在抛物线的对称轴上, 且APDACB,求点P的坐标; (3)连结CD,求OCA与OCD两角和的度数. 7

2014年初中毕业升学模拟考试 数学试题参考答案及评分说明 一、单项选择(本大题10题,每题3分,共30分) 题 号 1 2 3 4 5 6 7 8 9 10 选项 B C A A C B B A A A 二、填空(本大题6题,每题3分,共18分) 11. (2, -1) 12. 2 13. 1k 14. 90 15 . 10 16. 3a

1 O y x 2 3 4 4 3 2 1

-1 -2

-2 -1 8 三、解答(本大题8个小题,共72分) 17.(本小题满分10分) (1)计算:011820072sin45()4. 解: 011820072sin45()4 222124 2 „„„„„„„„„„„„„„„„„„4分

32 .„„„„„„„„„„„„„„„„„„„„„„„„5分 (2) 解: 22()2xyxyyxxxyy

=22222xyxyxyxxyy =2()()()xyxyxyxyxy =xyxy. „„„„„„„„„„„„„„„„„„3分 20xy, ∴2xy. ∴xyxy=2332yyyyyy. ∴原式=3. „„„„„„„„„„„„„„„„„„„„„5分

18.(本题满分5分)

树状图如图 列表如下:

2次 1次 1 2 3

1 (1,1) (1,2) (1,3)

3 1 2 1 3 1 2 2 3 1 2 3

开始 1次 2次 9

选择一种方法即可„„„„„„„„„„„„„„„„„„„„„3分 由树状图或表格可知,共有9种可能的结果,且每种结果出现的可能性相同,第二次抽取的数字大于第一次抽取的数字有3种,所以P(第二次抽取的数字大于第一次抽取的数字有多

少种)= 39=13.„„„„„„„„„„„„„„„„„„„„„„„„„5分

19.(本题满分6分) (1)由图、表可知C类共50户,占总受访户的25%,所以受访的总户数为

50÷25%=200„„„2分

(2)补全图表空缺数据. 类别 现状 户数 比例

A类 父母常年在外打工孩子留在老家由老人照顾 100 50% B类 父母常年在外打工,孩子带在身边 20 10% C类 父母就近在城镇打工,晚上回家照顾孩子 50 25% D类 父母在家务农,并照顾孩子 30 15% …

2 (2,1) (2,2) (2,3) 3 (3,1) (3,2) (3,3)

D类 15 %C类25%B类 10 %A类 50 %

山区儿童各类所占比例

540

5

60

D类C类B类A类山区儿童身心健康状况

251015

40

类别

户数60

5040302010

——身心健康 ——身心一般

相关文档
最新文档