数字图像处理实验报告

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。

二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。

2. 运行图像处理程序,并保存处理结果图像。

三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。

在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。

2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。

3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。

以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。

4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。

数字图像处理实验报告(图像边缘检测)

数字图像处理实验报告(图像边缘检测)

实验报告实验名称实验三图像边缘检测课程名称数字图像处理某成绩班级学号日期地点备注:1、实验目的(1)了解并掌握使用微分算子进行图像边缘检测的基本原理;(2)编写程序使用Laplacian 算子(二阶导数算子)实现图像锐化,进一步理解图像锐化的实质;(3)掌握使用不同梯度算子(一阶导数算子)进行图像边缘检测的原理、方法,根据实验结果分析各种算子的工作效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。

2、实验环境(1)Windows XP/7(2)Matlab 7.1/7.143、实验方法本次实验要求对256×256大小,256级灰度的数字图像lena.img进行处理。

(1)对该图像进行锐化处理,要求采用Laplacian算子进行锐化,分α=1和α=2两种情况,按如下不同情况进行处理:①g1(m,n)=f(m,n)-α∇f②g2(m,n)=4αf(m,n)-α[f(m-1,n)+f(m+1,n)+f(m,n-1)+f(m,n+1)]I、要对图像进行处理,要先读取该图像,实验代码如下:close all;clear all;fid=fopen('lena.img','r');image=fread(fid,[256,256],'uint8');fclose(fid);II、读取图像后,对该图像的每一像素(不考虑图像的边界部分)进行遍历,根据公式①(公式①相当于做差分)对每一灰度进行计算,将所得的结果存入一矩阵g1中(矩阵g1初始化为该图像的矩阵),代码如下(仅以ɑ=1为例):g1=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1) g1(i,j)=(1+4*a)*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endendIII、根据公式②对图像的每一个像素(不考虑图像的边界部分)进行计算,将所得之存入矩阵g2中(g2初始化值为该图像的矩阵值),具体方法与上一步类似,代码如下(仅以ɑ=1为例):g2=image;a=1;[x,y]=size(image);for i=2:(x-1)for j=2:(y-1)g2(i,j)=4*a*image(i,j)-a*(image(i+1,j)+image(i-1,j)+image(i,j+1)+image(i,j-1));endend(2)分别利用Roberts、Prewitt 和Sobel 边缘检测算子,对原图像进行边缘检测,显示处理前、后图像。

数字图像处理实验教学报告.doc

数字图像处理实验教学报告.doc

数字图像处理实验报告实验内容:主要实现以下几个内容:⑴直方图均衡化(histogram equalization ) ⑵直方图匹配(histogram matching ) ⑶邻域平均(neighborhood averaging ) ⑷局域增强(local enhancement ) ⑸中值滤波(median filtering )。

二.实验目的:下载安装MATLAB 图像处理工具箱,对图像进行处理;学会用Matlab 中的下列函数对输入图像进行上述5类运算;感受各种不同的图像处理方法对最终图像效果的影响。

Imhist :对灰度图像画直方图 Histeq :是图像直方图均衡化处理 Nlfilter :实现双边滤波器mean2:图像处理工具箱中的函数,用来计算矩阵元素的平均数 std2:计算矩阵元素的标准差 fspecial :建立预定义的滤波算子 filter2:使用指定的滤波器进行滤波 medfilt2:中值滤波三.实验步骤1.仔细阅读Matlab 帮助文件中有关以上函数的使用说明,能充分理解其使用方法并能运用它们完成实验内容。

2.将桌面上文件1(a).jpg 图像文件用函数imread 读入Matlab 中,对其作直方图均衡化和直方图匹配运算,显示运算前后该图像的直方图,处理后的图像和灰度变换函数。

直方图反映灰度等级的分布情况,本实验指定的直方图如下:1400×rr ≤5 7000-310×r 5<r ≤20 900-5×r 20<r ≤180 -1440+8×r 180<r ≤225 3060-12×r225<r ≤2553.将文件2.jpg 图像文件读入Matlab ,用nlfilter 对其进行3×3邻域平均和计算邻域标准差,再对其黑暗部分的特征进行局域增强而保持明亮部分图像不变,显示增强后的效果图。

在进行局域增强时,应按下列算法进行:E ·f (x ,y ) if m Sxy ≤k 0M G and k 1D G ≤σSxy ≤k 2D G f (x ,y )otherwisen =g (x ,y )=适当调整k 0,k 1和k 2的值,使局域增强达到最佳效果。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告学生姓名:叶圣红学号: 20097048 专业年级: 09级电子信息工程二班实验一常用MATLAB图像处理命令一、实验内容1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。

实验结果如右图:代码如下:Subplot (1,3,1)i=imread('E:\数字图象处理.jpg')imshow(i)title('RGB')Subplot (1,3,2)j=rgb2gray(i)imshow(j)title('灰度')Subplot (1,3,3)k=im2bw(j,0.5)imshow(k)title('二值')2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。

实验结果如右图:代码如下:Subplot (3,2,1)i=imread('E:\数字图像处理\1.jpg')x=imresize(i,[250,320])imshow(x)title('原图x')Subplot (3,2,2)j=imread(''E:\数字图像处理\17.jpg')y=imresize(j,[250,320])imshow(y)title('原图y')Subplot (3,2,3)z=imadd(x,y)imshow(z)title('相加结果');Subplot (3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果')Subplot (3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果')Subplot (3,2,6);z=imdivide(x,y);imshow(z);title('相除结果')3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。

数字图像处理实验及报告(含源码)

数字图像处理实验及报告(含源码)

大学数字图像处理实验报告设计题目:数字图像处理专业名称:软件工程班级: 1 学号: 1 姓名: MARK 指导教师:2016年5月16日目录实验一数字图像的采集和Photoshop软件的操作 (4)1.1实验目的 (4)1.2实验任务及要求 (4)1.3实验内容、步骤和结果 (4)1.4 结果分析 (7)实验二图像的傅里叶变换 (8)2.1实验目的 (8)2.2实验任务及要求 (8)2.3实验内容、步骤和结果 (8)2.4 结果分析 (11)实验三图像的灰度变换和直方图变换 (12)3.1实验目的 (12)3.2实验任务及要求 (12)3.3实验内容、步骤和结果 (12)3.4 结果分析 (16)实验四图像的平滑处理 (17)4.1实验目的 (17)4.2实验任务及要求 (17)4.3实验内容、步骤和结果 (17)4.4 结果分析 (20)实验五 (21)5.1实验目的 (21)5.2实验任务及要求 (21)5.3实验内容、步骤和结果 (21)5.4 结果分析 (24)实验六 (26)6.1实验目的 (26)6.2实验任务及要求 (26)6.3实验内容、步骤和结果 (26)6.4 结果分析 (28)实验一数字图像的采集和Photoshop软件的操作1.1实验目的1、熟悉并掌握MATLAB,PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单的变换。

1.2实验任务及要求1、根据实验内容在MATLAB中编写相应地代码,使结果符合题目要求;2、在PHOTOSHOP中实现与MATLAB中相同对图像的处理,进行对比;3、完成实验报告。

1.3实验内容、步骤和结果1、实验内容:a)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口上分成三个子窗口来分别显示RGB图像、灰度图像和二值图像,注上文字标题;b)对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题;c)对一幅图像进行灰度变化,实现图像变亮,变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题;d)学会常用数字图像处理软件Photoshop的功能操作练习。

数字图像处理实验报告图像处理

数字图像处理实验报告图像处理数字图像处理实验报告实验报告书实验类别数字图像处理学院信息工程学院专业通信工程班级通信1005班姓名叶伟超指导教师聂明新2013 年 6 月 3 日篇二:数字图像处理实验报告数字图像处理实验报告课程:班级:学号:姓名:指导老师:日期:实验一内容一MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;解:读取图像,存入数组I中:I = imread('flower.tif');2.利用whos 命令提取该读入图像flower.tif的基本信息;解:查询数组I的信息:3.利用imshow()函数来显示这幅图像;解:因为imshow()方法不能直接显示tif图像矩阵,因此要先转换成RGB模式,再调用imshow()显示。

代码如下:I1 = I(:,:,1);I2 = I(:,:,2);I3 = I(:,:,3);RGB = cat(3,I1,I2,I3);imshow(RGB);显示的图像为:4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;解:代码如下:imfinfo('flower.tif')结果截图:5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

解:代码:imwrite(RGB,'flower.jpg','quality',80);结果截图:6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp 图像,设为flower.bmp。

数字图像处理实验报告

数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。

2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。

3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。

二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。

2、编程实现空间分辨率变化的效果。

三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。

[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(RGB);真彩色图像转化为灰度图像[x,map]=rgb2ind(RGB);真彩色图像转化为索引图像RGB=ind2rgb(x,map);索引图像转化为真彩色图像BW=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间BW=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间BW=im2bw(RGB,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('peppers.png');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)2、%空间分辨率变化的效果clc,close all,cleari=imread('cameraman.tif');i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel('256x256')subplot(222),imshow(i1),xlabel('128x128')subplot(223),imshow(i2),xlabel('64x64')subplot(224),imshow(i3),xlabel('32x32')256 x 256128 x 12864 x 6432 x 32实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb 命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread 命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。

数字图像处理实验报告

数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。

本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。

实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。

实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。

在Python中,我们可以使用OpenCV库来实现图像的读取和显示。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。

常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。

数字图像处理 实验报告(完整版).doc

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字图像处理》 实验报告 .

Word 资料 目录 第一章 实验一 数字图像的基本操作和灰度变换............................ 3 1.1实验目的 ............................................................................ 3 1.2实验原理与方法 .................................................................. 3 1.3实验内容与结果分析 ........................................................... 4 1.4思考问题 ............................................................................ 8 第二章 实验二 图像的空间域增强 ............................................... 9 2.1实验目的 ............................................................................ 9 2.2实验原理与方法 .................................................................. 9 2.3实验内容与结果分析 ......................................................... 10 . Word 资料 2.4思考问题 .......................................................................... 16 第三章 实验三 图像的傅里叶变换和频域处理 ........................... 17 3.1实验目的 .......................................................................... 17 3.2实验原理与方法 ................................................................ 17 3.3实验内容与结果分析 ......................................................... 18 附录:实验代码 ........................................................................... 23

第一章 实验一 数字图像的基本操作和灰度变换 1.1实验目的 ① 了解数字图像的基本数据结构 ② 熟悉Matlab中数字图像处理的基本函数和基本使用方法 ③ 掌握图像灰度变换的基本理论和实现方法 ④ 掌握直方图均衡化增强的基本理论和实现方法 1.2实验原理与方法 1.2.1图像灰度的线性变换 灰度的线性变换可以突出图像中的重要信息。通常情况下,处理前后的图像灰度级是相同的,即处理前后的图像灰度级都为[0,255]。那么,从原理上讲,我们就只能通过抑制非重要信息的对比度来腾出空间给重要信息进行对比度展宽。 . Word 资料 设原图像的灰度为),(jif,处理后的图像的灰度为),(jig,对比度线性展宽的原理示意图如图1.1所示。假设原图像中我们关心的景物的灰度分布在[af,bf]区间内,处理后的图像中,我们关心的景物的灰度分布在[ag,bg]区间内。在这里)(abggg()bafff,也就是说我们所关心的景物的灰度级得到了展宽。根据图中所示的映射关系中分段直线的斜率我们可以得出线性对比度展宽的计算公式: ),(jif, afjif),(0

),(jig aagfjif)),((, bafjiff).,( (1-1)

bbgfjif)),((, 255),(jiffb

(mi,3,2,1;nj,3,2,1) 其中,aafg,ababffgg,bbfg255255,图像的大小为m×n。 1.2.2 直方图均衡化 直方图均衡化是将原始图像通过某种变换,得到一幅灰度直方图为均匀分布

0 255 bg

),(jig

ag 

af bf

255

),(jif

图1.1 对比度线性变换关系

0()kjkkjnsTrn .

Word 资料 的新图像的方法。 离散图像均衡化处理可通过变换函数: 来实现 1.3实验内容与结果分析 1.3.1图像灰度线性变换的实现 1.读入一幅灰度图像test1.tif,显示其灰度直方图 test1原始图像0100020003000400050006000test1灰度直方图

050100150200250 2.根据图像灰度直方图,选择所关心的图像景物的灰度分布范围[fa,fb],以及拟

变换的灰度分布范围[ga,gb] .

Word 资料 ①确定灰度变换范围为af=100,bf=150,ag=50,b

g=200,则线性变换结果

如下: test1变换后

01000200030004000500060007000

test1变换后灰度直方图

050100150200250 由此可以看出,将图像灰度在100到150之间的部分进行灰度拉伸,其他部分

灰度压缩,图像整体变暗了,但因为拉伸的灰度值处于中间部分,所以效果不明显。

0 255 bg

),(jig

ag 

af bf

255

),(jif

图1.1 对比度线性变换关系 .

Word 资料 ② 确定灰度变换范围为af=30,bf=50,ag=30,bg=200,则线性变换结果如下:

test1变换后

01000200030004000500060007000

test1变换后灰度直方图

050100150200250 将灰度值处于30至50之间的部分进行拉伸,其他部分压缩,图像变换效果比较明显。30至50位于直方图低灰度值部分,所以图像变亮。 1.3.2图像的均衡化处理 1.读入一幅灰度图像test2.tif,求出其直方图 .

Word 资料 test2原始图像0100020003000400050006000test2灰度直方图

050100150200250 2.利用Matlab函数实现图像的均衡化处理

3.显示处理前后的图像和灰度直方图,说明处理前后直方图的变化以及对应的灰度变化 . Word 资料 test2原始图像0100020003000400050006000test2灰度直方图

050100150200250 test2均衡化图像0100020003000400050006000test2均衡化后的直方图

050100150200250 均衡化处理前,直方图分布集中在低亮度区域,图像暗且对比度低,

视觉效果差。均衡化处理后,直方图分布均匀,图像变亮,且对比度提高,图像清晰,视觉效果好。

1.4思考问题 1.在映射关系中,分段直线的斜率的大小对图像处理结果有哪些影响? 斜率大于1的部分对图像灰度有拉伸作用,小于1的部分对图像灰度有压缩作用。例如,低灰度级的区域斜率大于1,有拉伸作用,高灰度级的区域斜率 . Word 资料 小于1,有压缩作用,所以图像变亮;反之,图像变暗。 2.在进行对比度扩展时,如果确定和选取所关心的景物? 根据直方图分布的峰值所在区域,一半背景峰值分布在直方图低灰度区,物体对象峰值分布在直方图高灰度区,两峰之间的谷底近似背景和物体对象的分界。 3. 直方图均衡化适用于什么形式的灰度分布情形? 适用于灰度分布集中在较窄的区域从而使图像细节不清晰的图像,直方图均衡化后使图像的灰度间距拉开,使灰度分布均匀,增大反差,提高对比度,使图像细节清晰,改善视觉效果。

第二章 实验二 图像的空间域增强 2.1实验目的 ① 熟悉图像空间域增强方法,掌握增强模板使用方法 ② 掌握均值滤波器、中值滤波器的理论基础和实现方法 ③ 掌握图像锐化的基本理论和实现方法 ④ 验证图像滤波处理结果 2.2实验原理与方法 图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像 . Word 资料 中的某些“有用”信息,削弱或去除不需要的信息,以改善图像的视觉效果,或突出图像的特征,便于计算机处理。图像增强可以在空间域进行,也可以在频率域中进行。 空间域滤波主要利用空间模板进行,如33,55模板等,一般来说,使用大小为m×n 的滤波器对大小为M×N 的图像f进行空间滤波,可表示成:

其中,m=2a+1, n=2b+1, ( , )是滤波器系数, ( , )是图像值 均值滤波器是一种空间平滑滤波器,它是对包含噪声的图像上的每个像素点,用它邻域内像素的平均值替代原来的像素值。例如,采用一个3×3的模板,待处理的像素为f(i,j),则处理后图像对应的像素值为g(i-1,j+1) g(i,j)=1/9*(f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)+f(i,j-1)+f(i,j)+ f(i,j+1)+f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)); 中值滤波器也是一种空间平滑滤波器,它是对以图像像素点为中心的一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。 采用Laplacian锐化算子进行图像边缘的锐化,是采用二阶差分运算获得像素间的差异值,由此,获得对图像景物边界的锐化。Laplacian也可以算子也可以写成是模板作用的方式,如下: 设待处理的像素为f(i,j),则处理后图像对应的像素值为g(i-1,j+1),则 g(i,j)=4*f(i,j) -(f(i-1,j-1)+f(i,j-1)+f(i,j+1)+f(i+1,j)); 常用的锐化算子还有Roberts、Prewitt和Sobel算子等。

相关文档
最新文档