数值分析3-2
(完整版)数值分析答案第三章习题

解:(1)建立假设 H0 : 0.973
n=100, x 2.62 ,s=0.06
(2)在 H0 成立的前提下,构造统计量
u x 0 ~ N (0,1)
s/ n
(3)给定 0.05 ,查得 u 1.96 ,使
2
p u u
2
(4)由样本计算,
x 62.24,s*2 404.77,问这天保险丝融化时间
分散度与通常有无明显差异( 1%)?假定融
化时间是正态母体。
解:(1)建立假设H0: 2 02 400
(2)在H
成立前提下,构造统计量
0
2
(n
1)s*2
02
~
2 (n 1)
(3)给定显著水平 0.01,查得
20.00(5 24) 45.559, 20.99(5 24) 9.886,使
:
2
2 0
1.62
s* 2.296
(2)在 H0 成立的前提下,构造统计量
2 (n 1)s* ~ 2 (n 1) 0
(3)给定 0.05 ,查得
2 (5) 14.49
2
1 2 (5) 1.237 2
(4)由样本计算,
2
6 2.296 2 1.62
12.355
2 (6) 14.49
确,收集到一组使用新安眠药的睡眠时间为
26.7,22.0,24.1,21.0,27.2,25.0,
23.4
试问:从这组数据能否说明新安眠药的睡眠时
间已达到新的疗效(假定睡眠时间服从正态分
布,取 0.05 )?
解:
x1 ~ (20.8,1.62 ) x2 ~ (, 22 )
《数值分析简明教程》第二版[王能超编著]课后习题答案解析高等教育出版社
![《数值分析简明教程》第二版[王能超编著]课后习题答案解析高等教育出版社](https://img.taocdn.com/s3/m/5c81dc54168884868762d6c3.png)
0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε;%0184.0718.20005.0||333=<-=x x e r ε。
第三章-2-最佳平方逼近

性质 5 设 k k 0是 [a, b] 上带权 (x) 的正交多项式
族,则n(x) (n>0) 有n个单重实根,且都位于 区间[a, b] 内。
几类重要的正交多项式 Legendre 多项式 Chebyshev 多项式
第二类 Chebyshev 多项式
Laguerre 多项式 Hermite 多项式
Chebyshev 多项式
切比雪夫多项式的性质:
(1) 递推公式: Tn1 ( x ) 2 xTn ( x ) Tn1 ( x )
cos(n+1) + cos(n-1) = 2cos cosn x = cos
mn 0, 1 T ( x )T ( x ) n m (Tn , Tm ) dx π / 2, m n 0 (2) 正交性: 2 1 1 x π, mn0 n T ( x ) ( 1) Tn ( x) (3) 奇偶性: n
性质1 性质2
n ( x)
为首一 n 次多项式。 [a, b] 上带权 (x) 的正交多
是 k k 0
项式族,且
H n span 0 ,1,...,n
性质 3 正交。
n ( x) 与所有次数不高于n-1次的多项式
正交多项式性质
性质 4
此 k k 0 满足如下三项递推公式:
数值分析及计算软件
第三章
函数逼近与计算
3.3 最 佳 平 方 逼 近 及正交多项式
最佳平方逼近问题:
若存在 Pn* ( x )H n , 使得
|| f ( x) Pn ( x) ||2 inf || f ( x) Pn ( x) ||2 ,
应用数值分析(第四版)课后习题答案第3章

第三章习题解答1.试讨论a 取什么值时,下列线性方程组有解,并求出解 。
123123123123212312311(1)1(2)1ax x x ax x x x ax x x ax x a x x ax x x ax a⎧++=++=⎧⎪⎪++=++=⎨⎨⎪⎪++=++=⎩⎩ 解:(1)111111111a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为1001/(2)0101/(2)0011/(2)a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦ 当2a ≠-时,方程组有解,解为111(,,).222Tx a a a =+++ (2)21111111a A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 经初等行变换化为2100(1)/(2)0101/(2)001(21)/(2)a a a a a a -++⎡⎤⎢⎥+⎢⎥⎢⎥+++⎣⎦当2a ≠-时,方程组有解,解为21121(,,).222Ta a a x a a a +++=-+++2.证明下列方程组Ax=b12341123421233234432432385x x x x b x x x x b x x x b x x x b+--=⎧⎪-+-=⎪⎨+-=⎪⎪-+-=⎩ 当(1)(10,4,16,3).T b =-时无解;(2)(2,3,1,3).T b =时有无穷多组解。
解:(1) r(A)=3≠r(A,b)=4 当(10,4,16,3).T b =-时无解;(2) r(A)=3,r(A,b)=3 当(2,3,1,3).T b =时有无穷多组解。
3.用列主元高斯消元法求解Ax=b2233(1)477,12457A b ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 1231(2)234,13462A b ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)x=(2,-2,1)T (2)x=(0,-7,5)T4.证明上(下)三角方阵的逆矩阵任是上(下)三角方阵。
数值分析-北交大-王兵团-3-线性方程组解法 (1)

©
追赶法求解公式为:
追赶法算法
用追赶法来求解三对角线性方程组, 计算量只是5n-4,这比Gauss消元法的计算 量要小很多。
©
第3章 线性方程组解法
§3.5 线性方程组解对系数的敏感性
©
1、解对系数敏感性的相对误差 设方程组Ax=b的解为
扰动方程组的准确解为
有
©
用上述过程求解 的方法称为追赶法解法。
©
定理3.7
Sor法收敛的必要条件是松弛因子满足0<<2 证明
©
2、误差估计 定理3.8 设矩阵B的某种矩阵范数
证明参照非线性方程求根定理的证明, 将:绝对值换成范数、函数换成矩阵,注意范数关系 的使用,
©
例3.1 用Jacobi 迭代法解线性方程组 解
Jacobi迭代收敛!
故所求近似解为 准确解:
©
第3章 线性方程组解法
§3.4 线性方程组的直接解法
©
一、Gauss消元法 1、基本思想 先将线性方程组通过消元方法化为同解的上三角
方程组,然后从该三角方程组中按第n个方程、第n1个方程、…、第1个方程的顺序,逐步回代求出线 性方程组的解。
2、构造原理 Gauss消元法的求解过程分为两个: “消元”:把原方程组化为上三角方程组; “回代”:求上三角方程组的解。
©
计算量
©
2)Gauss消元法矩阵解释 第1步消元
第n-1步消元后,有
©
L是下三角阵,U是上 三角阵。
A=D-L-U ?
例:研究线性方程组
的Gauss消元法求解结果,假设计算在4位浮点十进 制数的计算机上求解。
解:
用Gauss消元法得
©
用Gauss消元法求解得 其准确解为
常用数值分析方法3插值法与曲线拟合

p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
第二章 数值分析--方程求根
第二章 方程求根教学内容:1.二分法 2.基本迭代法 3.牛顿法 4.弦位法5.埃特金法和斯基芬森法 6.重根的情况教学重点:各种算法的思路及迭代公式的构造教学难点:各种算法的收敛性、收敛速度及误差估计计划学时:5-6学时 授课提纲:方程求根就是求函数)(x f 的零点*x ,即求解方程 0)(=x f这里,0)(=x f 可以是代数方程,也可以不是,如超越方程。
方程的根既可以是实数,也可以是复数;既可能是单根,也可能是重根;即可能要求求出给定范围内的某个根,也可能要求求出方程全部的根。
本章介绍的方法对两类方程都适用,但大部分都是要求知道根在什么范围内,且在此范围内只有一个单根。
若有α使得0)(,0)(≠'=ααf f ,则称α是方程0)(=x f 的单根;若有α使得0)(,0)()()()()1(≠==='=-ααααm m f f f f ,则称α是方程0)(=x f 的m 重根。
设)(x f 在区间[a,b]连续,若0)()(<b f a f ,则)(x f 在区间(a,b )内至少有一个实根,若再有)(x f '不变号,则有根区间(a,b )内仅有一个实根。
除特别声明,本章介绍的算法都是求单实根。
2.1 二分法二分法又称区间对分法,是最直观、最简单的一种方法。
2.1.1 二分法原理若 f (x)在[a, b]内单调连续,且f(a) f(b)<0,则f 在(a, b)内必有惟一的实根。
2.1.2 二分法思想区间对分,去同存异 2.1.3 二分法计算步骤步1:令2/)(0b a x +=,计算)(0x f ; 步2:若0)(0=x f ,令0*x x =,计算结束; 步3:若)(0x f *)(a f >0,令0x a =;否则令0x b =;步4:若ε≤-||a b ,令2/)(*b a x +=,计算结束;否则转步1。
2.1.4 二分法误差分析和收敛性记第k 次区间中点为k x ,则有2/)(0*a b x x -≤-,21*2/)(a b x x -≤-,1*2/)(,+-≤-k k a b x x故当∞→k 时,*x x k →。
插值数值实验报告(3篇)
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
数值分析实验报告全(3篇)
第1篇一、实验目的本次实验旨在通过编程实现数值分析中的几种重要算法,包括线性方程组求解、方程求根、插值与曲线拟合等,加深对数值分析理论的理解,提高编程能力和实际应用能力。
二、实验内容1. 线性方程组求解(1)高斯消元法:通过将矩阵化为上三角形式,再进行回代求解。
(2)克劳斯消元法:对矩阵进行逐行归一化处理,逐行消元。
(3)列主元素法:每次选取列主元素进行消元。
2. 方程求根(1)二分法:在给定区间内,通过不断缩小区间,逼近方程的根。
(2)Newton法:利用导数信息,通过迭代计算逼近方程的根。
(3)不动点迭代法:通过迭代过程,将初始值逐步逼近方程的根。
(4)弦截法:利用弦线与x轴的交点,近似求解方程的根。
3. 插值与曲线拟合(1)拉格朗日插值法:通过构造拉格朗日插值多项式,逼近函数在给定点的值。
(2)牛顿插值法:利用差商表,构造牛顿插值多项式,逼近函数在给定点的值。
(3)最小二乘法:通过最小化误差平方和,拟合曲线。
三、实验步骤1. 线性方程组求解(1)设计程序,实现高斯消元法。
(2)设计程序,实现克劳斯消元法。
(3)设计程序,实现列主元素法。
2. 方程求根(1)设计程序,实现二分法。
(2)设计程序,实现Newton法。
(3)设计程序,实现不动点迭代法。
(4)设计程序,实现弦截法。
3. 插值与曲线拟合(1)设计程序,实现拉格朗日插值法。
(2)设计程序,实现牛顿插值法。
(3)设计程序,实现最小二乘法。
四、实验结果与分析1. 线性方程组求解(1)高斯消元法:通过实验,验证高斯消元法可以成功求解线性方程组。
(2)克劳斯消元法:通过实验,验证克劳斯消元法可以成功求解线性方程组。
(3)列主元素法:通过实验,验证列主元素法可以成功求解线性方程组。
2. 方程求根(1)二分法:通过实验,验证二分法可以成功逼近方程的根。
(2)Newton法:通过实验,验证Newton法可以成功逼近方程的根。
(3)不动点迭代法:通过实验,验证不动点迭代法可以成功逼近方程的根。
华南理工大学研究生数值分析试卷
(一)1.计算81269322345++-+-=xx x x x P 时,为了减少乘除法运算次数,应把它改写成什么形式?成什么形式?2.设有递推公式,...2,1.1610=-==-n y y e y n n ,如果取'00718.2y e y =»=作近似计算,问计算到10y 时误差是初始误差的多少倍?这个计算过程数值稳定吗?时误差是初始误差的多少倍?这个计算过程数值稳定吗?(二)1.满足1+n 个相同插值条件的n 次牛顿插值多项式)(x N n 与n 次拉格朗日插值多项式)(x L n 是恒等的,对吗?(回答“对”或“错”)2.试用两种方法求满足插值条件2)2(,0)1()1(,1)0('====p p p p 的插值多项式)(x p 。
(三)1.若已有同一个量的多个近似值,通常取其算术平均作为该量的近似值。
指出这种做法的理论依据(不必详细推导)。
2.在某试验过程中,变量y 依赖于变量x 的试验数据如下:的试验数据如下::x 1 2 3 4 :y 0.8 1.5 1.8 2.0 试求其形如2bx ax y +=的拟合曲线。
的拟合曲线。
(四)1.设有插值型求积公式)()(011k n k k x f A dx x f åò=-»,则å=nk k A 0等于哪个常数?等于哪个常数?2.确定下列求积公式的求积系数101,,AA A -: )1()0()1()(10111f A f A f A dx x f ++-»--ò 使公式具有尽可能高的代数精度;并问所得公式是不是Gauss 型公式?型公式?(五)1.Gauss 消去过程中引入选主元技巧的目的是下列中的哪一项或哪几项?消去过程中引入选主元技巧的目的是下列中的哪一项或哪几项?A .提高计算速度;B 提高计算精度;C 简化计算公式;D.提高算法的数值稳定性;E.节省存储空间存储空间2.用列主元Gauss 消去法解方程组(用增广矩阵表示过程,不用求系数矩阵行列式值):úúúûùêêêëé-11.031045321úúúûùêêêëé321x x x =úúúûùêêêëé201(六)给定线性方程组úûùêëé-5.1112úûùêëé21x x =úûùêëé-48 试构造解此方程组的Jacobi 迭代公式和Guass-Seidel 迭代公式,这两种迭代收敛吗?迭代公式,这两种迭代收敛吗?2.已知求解线性方程组b Ax =的分量迭代格式的分量迭代格式ii k k a x x w +=+)()1(n i x a b n j k j ij i ,...,2,1),(1)(=-å= 试导出其矩阵迭代格式及迭代矩阵;并证明当A 是严格对角占优阵且21=w 时此迭代格式收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 Markov链的状态分类
3.2.1 互达性和周期性
定义3.3 可达与互达.如果对某一0³n,有
()
0>nijP则称状态j是从状态i
可达的记作
ji®,它表示从状态i经过有限步的转移可以到达状态j
。两个互相可达的状态i和j则称
为是互达的记作ji¬®.
命题3.1 互达性是等价关系
1)ji«自反性,
2)若ji«,则ij«,对称性,
3)若ji«,则kj«,则ki«,传递性。
两个状态如果是互达的就称他们是处在同一类中.Markov链的所有状态就由互达这一
等价关系而分割成不同的等价类.由命题3.1我们立刻知道两个类要么互不相交,要么完全
重合.如果在互达性这一等价关系下Markov链的所有状态都居于同一类那么就称这个
Markov链是不可约的.换言之,不可约过程的各个状态都是互达的.
例3.4 若Markov链有转移概率矩阵
úúúúúúúúúúúûùê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
=
01000
2102
1
00
0100000021210004341P
则显见{}2,1和{}5,4,3是状态在互达意义下的两个等价类。这个链是可约的。可以把它分成
两个链来研究。
定义3.4 状态i的周期.i为Markov链的一个状态,使
()
0>niiP的所有()1³nn
的最大公
约数称作是状态i的周期记作()id.如果对所有1³n,都有
()
0=niiP
则约定周期为¥;
()
1=id
的状态i称为是非周期的.
由定义立即可知如n不能被周期()id整除则必有
()
0=niiP
.
例3.6 Markov链有状态o,1,2,3和转移概率阵
合肥工业大学数学系
úúúúúúûùê
ê
ê
ê
ê
ê
ë
é
=
0210
2
1
1000
0100
0010
P
试求状态0的周期。
解:不难直接算出
()()()()
0,0120050030020000=====+nPPPPP
而
()()()
83,41,2
1
8006004
00
===PPP。而{}L,10,8,6,4的最大公约数为2。所以()20=d
命题3.2 如果ji«则()()jdid=
命题3.3 如果状态i有周期()id,则存在整数N使得对所有的Nn>恒有
()()
0>indiiP
.
推论3.1 如果
()0>mjiP,则存在正整数N使得对Nn³恒有()()
0>+indmjiP
。
命题3.4 令P为不可约、非周期、有限状态Markov链的转移概率矩阵.则必存在N使得
当Nn³时n步转移概率阵
()
n
P
的所有元素都非零.
3.2.2 常返与瞬过
引入一个重要的概率
()
n
ij
f,它表示从i
出发在n步转移时首次到达j的概率。即:
()
00=ijf
()
{}
iXnkjXjXPfknnij=-=¹==
0
1,,1,,L
记
()
å
¥
=
=
1n
n
ijij
ff
,它是从i出发最终转入状态j的概率。
定义3.4 如果
1=
ii
f
我们称状态i是常返的,一个非常返状态就称为是瞬过的.
定理3.2 状态i常返的充分必要条件是
()
¥=
å
¥
=1i
n
ii
P
当然与此等价地有,状态i是瞬过的当且仅当
()
¥<
å
¥
=1n
n
ii
P
推论3.2 如果i是常返的,且ji«,则j也是常返的
定义3.5 一个常返状态i当且仅当
¥=
iu时称为是零常返的.而当且仅当¥u
时称为正
常返的.
例3.7 设马氏链的状态空间为{}4,3,2,1=I,其一步转移概率矩阵为
合肥工业大学数学系
úúúúûùê
ê
ê
ê
ë
é
=
1000
4/14/14/14/1
002/12/1
002/12/1
P
试讨论该马氏链各状态的常返性。
解:n步转移概率矩阵为:
()
úúúúúúûùê
ê
ê
êêêëé==
ååå
===
1000
4141414
1
002/12/1
002/12/1
111nkknnkknk
k
n
PnP
由
()()()()
1,41,2/1,2/144332211====nPnPnPnP
n
得:
()()()()
+¥=+¥=+¥=+¥=
åååå
¥=¥=¥=¥
=1
33144122111
,,,nnnnnPnPnPnP
因此状态1,2,4都是常返态,状态3是非常返态。当¥®n时,
()()()
nPnPnP
442211
,,
都
不趋于0。所以状态1,2,4都是正常返态。
合肥工业大学数学系