小波分析-经典解读

合集下载

第六章小波分析基础ppt课件

第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,

小波变换-完美通俗解读

小波变换-完美通俗解读

小波变换和motion信号处理(一)这是《小波变换和motion信号处理》系列的第一篇,基础普及。

第二篇我准备写深入小波的东西,第三篇讲解应用。

记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。

当然后来也退学了,不过这是后话。

当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。

我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。

当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。

对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。

后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。

比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。

但这些年,小波在信号分析中的逐渐兴盛和普及。

这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。

后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。

看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。

同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。

牢骚就不继续发挥了。

在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。

如果不做特殊说明,均以离散小波为例子。

考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。

有些必要的公式是不能少的,但我尽量少用公式,多用图。

小波分析11sss

小波分析11sss

例:L2([0,1])
1 0 t 1 t 其它 0
1 0 t 1 2 t 1 1 2 t 1 0 其它
(t)
1
st , g t 0

(t)
0 1
1
t
ˆ , g 0 ˆ s

st , g t
xt ii t
(t)为变换的核函数(基函数)。
一般地,对任意平方可积的实函数,有线性展开:
t e jt Fourier变换: 正弦变换: t sin t
Hartley变换: t cost sin t
xt ii t
i

2 ji t T
简谐信号叠加
1 i T
T 2
T 2
x t e
2 ji t T
dt
x(t)分解为无穷多个正交分量的线性累加(线性展开)。 2 jm 令 t T =2/T代表频率间隔(基频)。
gm t e
N 0 1 N
i 0,1, , N 1
随着N的增大,sN对s(t) (或gN对g(t) )的近似越好。
当N→∞,内积的求和越来越大,计算平均内积:
1 sN , g N N
RN
1 N
s ti g ti
i 0
N 1
i 0 N b
s ti g ti t
(t) 应满足以下三个特性:
■任何复杂的信号f(t),都能由一个母函数(t) 经过伸缩和平移产生 的基底的线性组合表示; ■新的基函数(t) 及其伸缩平移要比三角基sint更好地匹配非平稳信 号。 正交基函数应尽量简单,使计算复杂度降低。 具有好的去相关和能量集中特性。 稀疏化表示。

小波分析的基本理论

小波分析的基本理论
Let (x)=2 hk(2x-k), (x)=2 gk(2x-k), Vj+1=Vj Wj, Pj and Qj are the orthogonal projectors from L2(R) to Vj and Wj respectively. For f Vj , Denote
Pj f(x)=c j,k j,k(x), Qj f(x)=d j,k j,k(x), Then we have S. Mallat’s algorithm as follows:
MRA的思想来自于计算机视觉理论。从机器视觉的角度而 言,单纯从灰度信息理解一幅图象中的物体是很困难的,更 重要的是图象中灰度的局部变化。为了能够较好地理解一个 物体,刻划这种局部变化的尺度应该与物体的大小适配。然 而在一般的图象中,需要理解的各种结构拥有不同的大小, 因此不可能预先定义一个最佳的分辨率来描述它们。
又定义其时 --- 频窗半径为: g:||g 1|2 | (R (tt*)2|g(t)|2d)1 t2
g ˆ:||g ˆ1 |2 |(R (*)2|g ˆ()|2d)12
则其时 --- 频窗大小为:[t*g,t*g][*gˆ,*gˆ]
图 时-频盒(Heisenberg长方形)
只要适当地选择窗口函数,就可以通过信号的加窗 Fourier变换获得在2 g 时间区域内的信息;另一方面, 一旦窗口函数取定,其窗口大小也随之确定,其时 --频窗的大小和形状都就一定了,时间、频率分辨率也 随之确定。
变换为: 其Fourier逆变换为:
fˆ() f(x)eixdx
R
f(x) 1 fˆ()eixd
2 R
(3) (4)
式中 称为频率。实际应用中的信号都是时间的函数,因此,

小波分析小结(小编整理)

小波分析小结(小编整理)

小波分析小结(小编整理)第一篇:小波分析小结小波分析的形成小波分析是一门数学分支,是继Fourier变换之后新的时频域分析工具。

小波理论的形成经历了三个发展阶段:Fourier变换阶段:Fourier变换是将信号在整个时间轴上进行积分,它将信号的时域特征和频域特征联系起来,分别进行分析。

设信号f(t),其Fourier变换为:F(ω)=⎰f(t)e-iωtdt-∞∞F(ω)确定了f(t)在整个时间域上的频谱特性。

但Fourier变换不能对信号从时域和频域结合起来分析,它是一种全局变换,在时间域上没有任何分辨率。

例:f(t)=1,(-2<=t<=2),其Fourier变换对应图如下:短时Fourier变换阶段:短时Fourier变换即加窗Fourier变换,其思想是把信号分成许多小的时间间隔,用Fourier分析每个时间间隔,以确定该间隔存在的频率,达到时频局部化目的。

其表达式为:Gf(ω,τ)=〈f(t),g(t-τ)ejωt〉=⎰f(t)g(t-τ)e-jωtdtR式中,g(t)为时限函数,即窗口函数,e-jωt起频限作用,Gf(ω,τ)大致反映了f(t)在τ时、频率为ω的信号成分含量。

由上式,短时Fourier变换能实现一定程度上的时频局部化,但窗口函数确定时,窗口大小和形状固定,所得时频分辨率单一。

小波分析阶段:为了克服上述缺点,小波变换应运而生。

小波变换在研究信号的低频成分时其窗函数在时间窗长度上增加,即在频率宽上减小;在研究信号的高频成分时其窗函数在时间窗长度上减小,而在频率宽上增加。

对信号可以进行概貌和细节上的分析。

小波的定义:∝(ω),若满足设ψ(t)∈L2(R)(为能量有限的空间信号),其Fourier变换为ψ容许条件:|ψ(ω)|2⎰-∞|ω|dω<+∞∞∝∝(0)=∞ψ(t)dt=0,说明ψ(t)具有波动则称ψ(t)为母小波,由容许条件可得:ψ⎰-∞性,在有限区间外恒为0或快速趋近于0.t-12以Marr小波ψ(t)=(1-t)e2为例,如下图:2π2将母小波进行伸缩平移所得小波系列称为子小波,定义式如下:ψb,a(t)=1t-bψ(),a>0aa其中a为伸缩因子,b为平移因子。

《小波分析概述》PPT课件

《小波分析概述》PPT课件

Heisenberg不等式表明窗口Fourier变换的时 窗半径和频窗半径, 一个减小必然引起另一个的 增大, 不能同时减小.
窗口Fourier变换的窗函数选定以后, 其时-频 窗就固定不变了, 这样就限制了窗口Fourier变换 的实际应用. 为了提取高频分量的信息, 时窗应该 尽量地窄, 而允许频窗适当地宽; 对于低频分量, 时窗则应适当加宽, 以保证至少能包含一个周期的 过程, 频窗应当尽量缩小, 保证有较高的频率分辨率.
§4.2 窗口Fourier变换简介
窗口Fourier变换是在 Fourier 变换的框架内, 将非平稳过程看成是一系列短时平稳信号的叠加, 通过在时域上加上窗口来实现短时性. 通常选择在 有限区间外恒等于零或迅速趋于零的钟形函数g(t) 作为窗函数, 用平移滑动的窗函数g(t-t)与信号f (t) 相乘, 有效地抑制了t=t 邻域以外的信号, 在t 附近 开窗, 通过平移来覆盖整个时间域. 再进行Fourier 变换, 所得的结果反映了t=t 时刻附近的频谱信息, 从而产生了时域局部化的作用.
设 f , g Lk12, k(2R是)任,意常数, 则
W (k1 f k2g) (a,b) k1 W f (a,b) k2 W g (a,b).
(2) 平移性质
设 f L2则(R),
W f (t t0 ) (a,b) W f (t) (a,b t0).
(3) 尺度法则
第四章 小波变换基础
§4.1 小波变换的背景 §4.2 窗口Fourier变换简介 §4.3 连续小波变换 §4.4 二进小波变换和离散小波变换 §4.5 多分辨分析 §4.6 Mallat分解与重构算法
主要内容
小波分析是当前数学中一个迅速发展的 新领域,它也是一种积分变换,是一个时间和 频率的局域变换,因而能有效地从信号中提 取信息,通过伸缩和平移等运算功能对函数 或信号进行多尺度细化分析,解决了Fourier 变换不能解决的许多困难问题.本章简单介绍 小波变换的基本理论和应用.

小波分析系列讲座1—初见小波

小波分析系列讲座1—初见小波
这一节中希望大家能多动脑子呵呵因为我懒得写很多东西嘿嘿不好意思了
接着看上一节的变换
[90,70,100,70] --〉[82.5, -2.5, 10, 15]
82.5 即4个数的平均数可画出其对应波形如F.1 其他数字对应相应波形(请稍微思考一下为什么及这些波形特点)好了思考后请画出8个点阵的对应波形(如是新手,一定要亲手作作)以后我们将使用这些波深入学习
在这里我们称这些图形为波, 与常见的SIN波不同呵呵可能不习惯
我举几个重要特性:
面积特性:保持变换前后能量不变(常如此,但非必须)
F.3→ F.4 平移特性(可对不同部分使用同一操作)
F2 → F.3 伸缩特性(将操作对象的尺度变大或变小)
空间表示的信息完整性(最少用几个波就可以表示这个向量呢,波表示的数的含义,波之间可以替换吗,有其他形式的波吗其他形式的波能用更少的数量来表示这个向量吗)
等等
等好好思考了这些特性后,我们下一节将学习正交基,空间表示等
---------------------------FEATHERSKY。

(完整)小波分析算法资料整理总结,推荐文档

一、小波分析基本原理:信号分析是为了获得时间和频率之间的相互关系。

傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。

与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。

对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。

相关原理详见附件资料和系统设计书。

注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。

本人找到了相对好理解些的两个外文的资料:Tutorial on Continuous Wavelet Analysis of Experimental Data.docTen.Lectures.of.Wavelets.pdf二、搜索到的小波分析源码简介(仅谈大体印象,还待继续研读):1、83421119WaveletVCppRes.rar源码类型:VC++程序功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。

说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。

但这是为专业应用写的算法,通用性差。

2、WA.FOR(南京气象学院常用气象程序中的小波分析程序)源码类型:fortran程序功能是:对简单的一维时间序列进行小波分析。

说明:用的是墨西哥帽小波。

程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份功能是:气象应用。

小波分析理论ppt课件


S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,

14.1 小波分析的基本原理


都满足窗口函数的要求。
中心和窗宽分别为 E((a,b))ba(E ) 和 ((a,b))|a|(),以
及 E(Ψ(a,b))E(Ψ)/a和 (Ψ(a,b))(Ψ)/a 。
连续小波 a,b (t) 的时窗:[baE ()a() ,baE ()a()],
频窗为:[E(Ψ)/a(Ψ)/a,E(Ψ)/a(Ψ)/a ]。 小波函数 a,b (t)的时-频窗,是一个可变的矩形:
几个比较典型的小波:
(1) Shannon小波:Ψ(t)sin 2(t) tsin t)(
t2
(2) Gaussan 小波: G(x) e 2
(3) Morlet小波:(x) eicxet22
(4) Mexican 帽子小波:H(x)(1t2)et22
图14.1.1 以Mexican 帽子小波为母小波的小波
若以a为横坐标、W f (a) 为纵坐标,作小波方差图, 则它反映了能量随尺度a变化的分布情况。
小波变换的基本性质: 1. Parseval 恒等式
d a d b
C R f(x )g (x )d xR 2 W f(a ,b )W g (a ,b )a 2
(14.1.9)
小 波 变 换 和 Fourier 变 换 一 样 , 在 变 换 域保持信号的内积不变。
1
h(t) 1
0
0 t 21 21 t 1 t [0,1)
这时,函数族
hj,k(t)22 jh(2jtk):(j,k)ZZ
构成函数空间L2(R)的标准正交基。
五、小波分解
通过小波分解,将时域信号分解到不同的
频带上。根据范数为1的规则,在一个给定的小 波族如Symmlet里有两种类型的小波:
[ baE ()a() ,baE ()a() ]×[ E(Ψ)/a(Ψ)/a ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。

在时间序列研究中,时域和频域是常用的两种基本形式。

其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。

然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。

对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。

显然,时域分析和频域分析对此均无能为力。

20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。

目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。

在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。

一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。

因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。

需要说明的是,选择合适的基小波函数是进行小波分析的前提。

在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。

目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。

2. 小波变换若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为:dt )abt (f(t)a)b ,a (W R2/1-f ⎰-=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数;)abx (-ψ为)ab x (-ψ的复共轭函数。

地学中观测到的时间序列数据大多是离散的,设函数)t k (f ∆,(k=1,2,…,N; t ∆为取样间隔),则式(3)的离散小波变换形式为:)ab-t k (t)f(k t a)b ,a (W N1k 2/1-f ∆∆∆=∑=ψ (4) 由式(3)或(4)可知小波分析的基本原理,即通过增加或减小伸缩尺度a 来得到信号的低频或高频信息,然后分析信号的概貌或细节,实现对信号不同时间尺度和空间局部特征的分析。

实际研究中,最主要的就是要由小波变换方程得到小波系数,然后通过这些系数来分析时间序列的时频变化特征。

3. 小波方差将小波系数的平方值在b 域上积分,就可得到小波方差,即db)b a,(W )a (Var 2f ⎰∞∞-=(5)小波方差随尺度a 的变化过程,称为小波方差图。

由式(5)可知,它能反映信号波动的能量随尺度a 的分布。

因此,小波方差图可用来确定信号中不同种尺度扰动的相对强度和存在的主要时间尺度,即主周二、小波分析实例-时间序列的多时间尺度分析(Multi-time scale analysis)例题河川径流是地理水文学研究中的一个重要变量,而多时间尺度是径流演化过程中存在的重要特征。

所谓径流时间序列的多时间尺度是指:河川径流在演化过程中,并不存在真正意义上的变化周期,而是其变化周期随着研究尺度的不同而发生相应的变化,这种变化一般表现为小时间尺度的变化周期往往嵌套在大尺度的变化周期之中。

也就是说,径流变化在时间域中存在多层次的时间尺度结构和局部变化特征。

表1给出了某流域某水文观测站1966-2004年的实测径流数据。

试运用小波分析理论,借助Matlab6.5、suffer8.0和相关软件(Excel等),完成下述任务:⑴计算小波系数;⑵绘制小波系数图(实部、模和模方)、小波方差图和主周期变化趋势图,并分别说明各图在分析径流多时间尺度变化特征中的作用。

表1 某流域某水文观测站1966-2004年实测径流数据(×108m3)年份径流量年份径流量年份径流量年份径流量年份径流量1966 1.438 1974 2.235 1982 0.774 1990 1.806 1998 1.709 1967 1.151 1975 4.374 1983 0.367 1991 0.449 1999 0.000 1968 0.536 1976 4.219 1984 0.562 1992 0.120 2000 0.000 1969 1.470 1977 2.590 1985 3.040 1993 0.627 2001 2.104 1970 3.476 1978 3.350 1986 0.304 1994 1.658 2002 0.009 1971 4.068 1979 2.540 1987 0.728 1995 1.025 2003 3.177 1972 2.147 1980 0.807 1988 0.492 1996 0.955 2004 0.921 1973 3.931 1981 0.573 1989 0.007 1997 1.3411. 选择合适的基小波函数是前提在运用小波分析理论解决实际问题时,选择合适的基小波函数是前提。

只有选择了适合具体问题的基小波函数,才能得到较为理想的结果。

目前,可选用的小波函数很多,如Mexican hat小波、Haar小波、Morlet小波和Meyer小波等。

在本例中,我们选用Morlet连续复小波变换来分析径流时间序列的多时间尺度特征。

原因如下:1.1 径流演变过程中包含“多时间尺度”变化特征且这种变化是连续的,所以应采用连续小波变换来进行此项分析。

1.2实小波变换只能给出时间序列变化的振幅和正负,而复小波变换可同时给出时间序列变化的位相和振幅两方面的信息,有利于对问题的进一步分析。

1.3 复小波函数的实部和虚部位相差为π/2,能够消除用实小波变换系数作为判据而产生的虚假振荡,使分析结果更为准确。

2. 绘制小波系数图、小波方差图和主周期变化趋势图是关键当选择好合适的基小波函数后,下一步的关键就是如何通过小波变换获得小波系数,然后利用相关软件绘制小波系数图、小波方差图和主周期变化趋势图,进而根据上述三种图形的变化识别径流时间序列中存在的多时间尺度。

具体步骤1. 数据格式的转化2. 边界效应的消除或减小3. 计算小波系数4. 计算复小波系数的实部5. 绘制小波系数实部等值线图6. 绘制小波系数模和模方等值线图7. 绘制小波方差图8. 绘制主周期趋势图下面,我们以上题为例,结合软件Matlab 6.5、Suffer 8.0和Excel ,详细说明小波系数的计算和各图形的绘制过程,并分别说明各图在分析径流多时间尺度变化特征中的作用。

1. 数据格式的转化和保存将存放在Excel 表格里的径流数据(以时间为序排为一列)转化为Matlab 6.5识别的数据格式(.mat )并存盘。

具体操作为:在Matlab 6.5 界面下,单击“ Data ”,出现文件选择对话框“Import ”后,找到需要转化的数据文件(本例的文件名为runoff.xls ),单击“打开”。

等数据转化完成后,单击“Finish ”,出现图1显示界面;然后双击图1中的Runoff ,弹出“Array Editor: runoff ”对话框,选择File 文件夹下的“Save Workspace As ”单击,出现图2所示的“Save to MAT-File:”窗口,选择存放路径并填写文件名(runoff.mat ),单击“保存”并关闭“Save to MAT-File ”窗口。

2. 边界效应的消除或减小图1 数据格式的转化图2数据的保存因为本例中的实测径流数据为有限时间数据序列,在时间序列的两端可能会产生“边界效用”。

为消除或减小序列开始点和结束点附近的边界效应,须对其两端数据进行延伸。

在进行完小波变换后,去掉两端延伸数据的小变换系数,保留原数据序列时段内的小波系数。

本例中,我们利用Matlab 6.5小波工具箱中的信号延伸(Signal Extension )功能,对径流数据两端进行对称性延伸。

具体方法为:在Matlab 6.5界面的“Command Window ”中输入小波工具箱调用命令“Wavemenu ”,按Enter 键弹“Wavelet Toolbox Main Menu ”(小波工具箱主菜单)界面(图3);然后单击“Signal Extension ”,打开Signal Extension / Truncation 窗口,单击“File ”菜单下的“Load Signal ”,选择runoff.mat 文件单击“打开”,出现图4信号延伸界面。

Matlab 6.5的Extension Mode 菜单下包含了6种基本的延伸方式(Symmetric 、Periodic 、Zero Padding 、Continuous 、Smooth and For SWT )和Direction to extend 菜单下的3种延伸模式(Both 、Left and Right ),在这里我们选择对称性两端延伸进行计算。

数据延伸的具体操作过程是:在Extension Mode 下选择“ Symmetric ”,Dircetion to extend 下选择“Both ”,单击“Extend ”按钮进行对称性两端延伸计算,然后单击“File ”菜单下的“Save Tranformed Signal ”,将延伸后的数据结果存为erunoff.mat 文件。

从erunoff 文件可知,系统自动将原时间序列数据向前对称延伸12个单位,向后延伸13个单位。

3. 计算小波系数图3 小波工具箱主菜单图4 径流时间序列的延伸选择Matlab 6.5小波工具箱中的Morlet复小波函数对延伸后的径流数据序列(erunoff.mat)进行小波变换,计算小波系数并存盘。

相关文档
最新文档