带隙基准设计实例
无运放带隙基准电路设计

无运放带隙基准电路设计
运放带隙基准电路(opamp bandgap reference circuit)是一种基于运放的电路,用于提供稳定的参考电压。
它的设计基于运放的放大特性和电压反馈机制,通过差分放大和反馈调整,产生一个相对稳定的参考电压。
下面是一种常见的运放带隙基准电路的设计:
1. 选择一个适当的运放芯片,具有低噪声、高增益和低温漂移等特性。
2. 将运放芯片的非反相输入端与反相输入端相连,形成一个差分输入。
3. 将一个稳定的参考电压Vref1与非反相输入端相连。
4. 将运放芯片的反相输入端与一个电阻R1相连,然后将R1与一个稳流二极管D1的阴极相连。
5. 通过调整R1的值,使得二极管D1的电流可以产生一个正向电压降,并且与稳定的参考电压Vref1相等。
6. 将运放芯片的输出端与R1与D1的连接处相连,形成一个反馈回路。
7. 调整运放芯片的反馈电阻R2的值,使得输出电压与稳定的参考电压Vref2相等。
通过以上设计,运放正向反馈的放大特性和电压反馈机制可以保证输出电压与参考电压的稳定性。
同时,稳定的参考电压Vref1的产生通过差分放大和反馈调整的方式可以减少温度、电源等参数的影响。
需要注意的是,具体的设计参数需要根据具体的应用要求来确定,比如参考电压的稳定性要求、输出电压的范围等。
同时,在实际设计过程中,还需要考虑电源稳定性、电路布局和滤波等因素,以确保设计的稳定性和可靠性。
《带隙基准电压源》课件

带隙基准电压源 的发展趋势与展 望
技术创新方向探讨
提高精度和稳定 性:通过改进电 路设计和材料选 择,提高基准电 压源的精度和稳 定性。
降低功耗:通过 优化电路设计和 采用低功耗器件, 降低基准电压源 的功耗。
集成化:将基准 电压源与其他电 路模块集成,提 高系统的集成度 和可靠性。
智能化:通过引 入智能控制算法, 提高基准电压源 的自适应能力和 抗干扰能力。
测试设备:包括电压源、电 流源、示波器、万用表等
测试步骤:按照测试标准进行, 包括设置参数、测量数据、分 析结果等
评估标准及流程详解
评估标准: 精度、稳 定性、温 度特性、 电源抑制 比等
评估流程: 测试准备、 测试实施、 数据分析、 结果评估 等
测试准备: 选择合适 的测试设 备、设置 测试条件 等
感谢您的观看
汇报人:PPT
案例一:用于ADC/DAC转换器的基准电压源设计
应用背景:ADC/DAC转换器需要稳定的基准电压源 设计要求:高精度、低噪声、低功耗 带隙基准电压源的优势:温度稳定性好、精度高、功耗低 设计方法:选择合适的带隙基准电压源芯片,进行电路设计和调试 应用效果:提高了ADC/DAC转换器的性能和稳定性
案例二:用于PLL锁相环的基准电压源设计
设计过程中需要注意电压源的稳定性和精度 优化建议:采用高精度的电阻和电容,提高电压源的稳定性 注意电源噪声对电压源的影响,采用滤波器进行抑制 优化建议:采用低噪声的电源,提高电压源的精度 注意温度对电压源的影响,采用温度补偿技术进行校正 优化建议:采用高精度的温度传感器,提高温度补偿的精度
带隙基准电压源 的应用案例分析
功耗:带隙基准电压源的功耗较低, 适合在低功耗系统中使用
一种CMOS带隙基准的软启动电路设计

( 系统加 电后 , 1 ) 只要 E N是低 电平 , 电路产生偏置 电
v C c
l
V C C
lI与 V C aB 、 C
CI与 V C oo ) C
图 4S A T中 的偏 置 电流 T R
:
一
工作 , 当 在某一个值 时 , 电流 达 到峰值 ( 的具 体 两者
电路上 电后 ,T R S A T为基准源 的补偿 电容提供 充电 电流 , 启动带隙基准 电路 , 并在启动后 , 关断充 电电流 。 它
2 仿真验证
对 电路 进行 了性 能 指标 的仿 真 验 证 。模 型 基 于
3 2
一
种 C O 带隙基准的软启动电路设计 MS
电子 质量 ( 1第0 期) 22 6 0
T ¨^蹲 E
!
参考文献 :
“
h
,
嚣 ’ ,
’
图 8V C 3O T MP 2 ℃ , d / TS F , 动 特性 曲线 图 C = .V,E = 5 Mo e T ,S,F启 - - =
[ R N O - R .ur te i et w vl g,w 1 I C N MO A G AC r n fc n, o ae o ] e i l o t l
d o - u euaosD] h h ss t naGeri nt rp o t g ltr[ . D T ei A l t: ogaI s — r P , a i
t t fT c n lg ,9 67 7 . u eo e h oo y 1 9 :6— 9
[] AY PR, YE HU TPJ ayi a dD s n 2GR ME R R G, RS . l s n e i An s g o n lg nertdCrut[ .o r dt nNe ok: f ao tgae i i M] ut E io . w Y r A I c s F h i
带隙基准设计实例

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN带隙基准电路的设计基准电压源是集成电路中一个重要的单元模块。
目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。
它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。
因此,设计一个高性能的基准电压源具有十分重要的意义。
自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。
带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。
一 设计指标:1、 温度系数:ref F VTC V T ∆=∆ 2、 电压系数:ref F ddV VC V V ∆=∆ 二 带隙基准电路结构:三 性能指标分析如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。
在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。
V REF = a 1V BE + a 2V T ㏑(n)其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。
对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ∂∂≈-,然而/0.087m /T V T V K ∂∂≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为:17.2 1.25REF BE T V V V V ≈+≈对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。
8 Cadence IC无运放的带隙基准设计 工艺角模拟

本来一共有45种组合,但这里只为了说明问题,仿真中只加了十三种组合。在ADE窗口种选择Tools->Corners,就会弹出如图6.6所示的对话框,然后在此窗口种Setup->Add Process,又弹出一个新的对话框,如图6.7所示,Add Process窗口有两个选项,分别要做如下设置。对Process选项,按图6.8所示设置,对Groups/Variants的设置如图6.9所示,然后点击ok确定,则图6.6就变为如图6.10所示。然后在Analog Corners Analysis窗口中,选择Setup->Add/Update Model Info…继续在弹出窗口的Groups/Variants项填入电阻和双极晶体管的工艺角,注意Groups后填名字如res,bjt等等,而在Variants处填工艺角,工艺角之间用逗号隔开,填完后再在Analog Corners Analysis窗口中点击Add Corners(输入ttt)就得到如图6.11所示的对话框。其中ttt是为了说明mos管,电阻,双极晶体管都是tt的工艺角,就是说能看出来它代表的意思,具体叫什么无关紧要。
在图6.10种我们可以在黑三角的下面选择我们想要的工艺角,这样ttt就得到了一种组合,这样在继续点击Add Corners,输入你想要的工艺角组合,一共有45种组合。设置完毕后保存,方法是File->Save Setup Ars Analysis窗口中,点击run就开始仿真了,仿真结束,就得到一组曲线,每条曲线代表一种工艺角的组合。如图6.12所示:
6.2
这里只介绍晶体管的参数设置,mos管、电阻和电压的设置如电路图所示。晶体管的参数设置,Q1和Q3的Multiplier项都设为1,Q2的设为8。
一种低温漂低功耗的简易带隙基准电压设计

一种低温漂低功耗的简易带隙基准电压设计模拟电路设计常常用到电压基准和电流基准。
这些基准受电源、温度或者工艺参数的影响很小,为电路提供一个相对稳定的参考电压或者电流,从而保证整个模拟电路稳定工作。
目前已经出现的高性能带隙基准,能够实现高精度、低温漂和低功耗,但这些电路中一般都有运放,调试难度较大;电路结构复杂,原理不便理解。
在一般的应用中,如果对带隙基准电压的要求不是特别高的情况下,完全可以采用一种更为简洁的电路结构。
因此,这里介绍一模拟电路设计常常用到电压基准和电流基准。
这些基准受电源、温度或者工艺参数的影响很小,为电路提供一个相对稳定的参考电压或者电流,从而保证整个模拟电路稳定工作。
目前已经出现的高性能带隙基准,能够实现高精度、低温漂和低功耗,但这些电路中一般都有运放,调试难度较大;电路结构复杂,原理不便理解。
在一般的应用中,如果对带隙基准电压的要求不是特别高的情况下,完全可以采用一种更为简洁的电路结构。
因此,这里介绍一种简易可行的带隙基准电压的设计,利用PTAT电压和双极性晶体管发射结电压的不同的温度特性,获取一个与温度无关的基准电压。
1 低温漂低功耗带隙基准电压设计带隙基准电压的设计目标,就是建立一个与电源和温度无关的直流电压VREF。
进一步将该目标分为2个设计问题:设计与电源无关的偏置,获取能抵消温度影响的电压值。
图1为其整体设计框图。
1.1 与电源无关的偏置首先设计与电源无关的偏置。
考虑采用2个NMOS管和电阻做近似的电流镜做偏置,并充分利用电流镜的“电流复制”特点,设计一个简单的电流产生电路,如图2所示。
在这个电路中,因为栅漏短接的MOS管都是由一个电流源驱动,所以I0和I1几乎与电源电压无关。
同时,2条支路的电流关系是确定的,只要已知I0,便可由宽长比得到左边支路电流的大小。
忽略沟道长度调制效应的影响,支路电流的比值和MOS管宽长比的比值成正比。
为了唯一确定电流,加入电阻R1。
则有:VGS1=VGS2+I0R1,忽略体效应,有:由式(1)可见,输出电流与电源电压无关,但仍与工艺和温度有关。
7 带运放的带隙基准设计

图 1.3 直流扫描曲线 1 第 3 页,共 9 页
带运放的带隙基准设计
图 1.4 直流扫描曲线 2
3、瞬态分析 给电源电压加一正弦信号,频率为 1k,峰峰值为 20mV,观察基准输出电压,基准电 压的输出波形如图 1.5 所示: 从两个波形的峰峰值仍然可以算电压灵敏度。 图 1.5 中电压源 的瞬态波形也打印出来了。从图可以看出,当电压源的峰峰值为 20mV 时,基准电压输出 的峰峰值仅为 1.56191967uV,这个值非常小,所以此电路的电源抑制比非常好。 4、工艺角分析 这里仅给出三种组合即 ttt, sss, fff 组合的情况, 其实一共有四十五中组合, 自己可以试着做 做看。波形如图 1.6 所示:
Vdd V PSRR dd Vref Vref
(3)
在此设计中,用的电源电压为 1.8V,由图 1.4 的直流扫描曲线,可以计算出电压灵敏 度为 6634(76.4dB), 而从瞬态分析中也可算出电压灵敏度,为 78.7dB,两者相差不大。从 而可以看出此电路的电源抑制比还是比较大的。
第 5 页,共 9 页
带运放的带隙基准设计
2006-7
西安交通大学国家集成电路人才培养基地
目 录
带运放的带隙基准设计 ................................................................................................................... 1 实验 带运放的带隙基准设计 ......................................................................................................... 1 1.1 电路分析............................................................................................................................. 1 1.2 电路仿真............................................................................................................................. 2 1.3 结果分析............................................................................................................................. 5
带隙基准设计

带隙基准参数设计基准源核心电路参数设计首先,考虑两个三极管发射极面积之比N的选取。
由上述公式可知:N值越大,则R2/R3的比例就越小,从而可以减小电阻的版图面积。
但是N值越大,也会导致三极管的静态电流增大。
折中选取N=8,这样版图可以采用中心对称布局,有利于减少匹配误差。
假设选取的工艺下的三极管的电流大于1uA时,V BE的输出曲线较为平滑。
从节省功耗的角度,假定流过三极管集电极的电流为1uA。
由上述公式可知,当N=8、IR3=1uA、T=300K时,计算得:考虑到R1和R2的数值数倍于R3,则电阻值太大,消耗版图面积太大。
因此,作为折中,选取R3为10K,电流值为5uA左右。
确定了以上参数后,考虑一阶补偿时R2的取值。
对上述公式在T0处求导可得:令上式为零,即进行一阶补偿,可得:化简得:代入参数,V G0=1.205V,查图可知V EB1在5uA的偏执电流下约为716mV,300K温度下V T0=26mV,r=3.2,a=1(三极管的偏置电流为PTA T),N=8,计算得:为了产生600mV的输出电压,需要调整R4的值。
由上式可以推出:在T=300K条件下代入各值,求得R4=48.5K。
考虑到各个电阻阻值偏大,故将各电阻设为高阻多晶型。
然而,高阻多晶虽然有很高的方阻,但是工艺稳定性不太好,故后期的Trimming 工序是必不可少的。
最后,确定电流镜的尺寸。
采用适当偏小的宽长比,可以提高电流镜的过驱动电压,进而可以减小电流镜阈值电压失配所带来的影响。
另外,沟道长度调制效应也是一个重要影响因素,考虑到低压应用不能使用Cascode结构,可以增大器件的栅长来减小沟道长度调制效应的影响。
但是过大的沟道长度会导致版图的面积的增加,需要在性能和版图面积之间做出折中。
经过计算与迭代仿真,选取M1、M2和M3的宽长比为10um/1um。
注意电流镜的版图设计中需采用中心对称布局以减小误差。
综上,通过理论分析,确定带隙核心电路的器件参数为:运算放大器设计运放的性能对带隙的性能有着直接的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。