交流阻抗及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性条件
• 由于电极过程的动力学特点,电极过程速 度随状态变量的变化与状态变量之间一般 都不服从线性规律。只有当一个状态变量 的变化足够小,才能将电极过程速度的变 化与该状态变量的关系作线性近似处理。 故为了使在电极系统的阻抗测量中线性条 件得到满足,对体系的正弦波电位或正弦 波电流扰动信号的幅值必须很小,使得电 极过程速度随每个状态变量的变化都近似 地符合线性规律,才能保证电极系统对扰 动的响应信号与扰动信号之间近似地符合 线性条件。
• Nyquist图
Nyquist图就是阻抗复平面图,就
是 Z 为横轴,Z 为纵轴的曲线图。
Z


1

Rp
( RpCd
)2
Z Rp2Cd 1 (RpCd )2
tan

Z Z

RpCd
Rp Cd

Z Z
将此式代入 Z中有:
Z


1

Rp (Z

)
2

RpZ 2 Z 2 Z 2
Z
溶液电阻可以忽略时电化学极化的电化学阻抗谱
Z3 Z2Z RpZ2 Z2 RpZ Z2 0
两边同时加 ( Rp )2 得:
2
Z 2

Rp Z

(
Rp 2
)2

Z 2

(
Rp 2
)2
(Z Rp )2 Z 2 ( Rp )2
• Bode图:以频率的对数 lg f 或 lg 为横坐标,分别 以电化学阻抗的模的对数 lg Z 和相位角 为纵坐 标。
• Admittance 图 导纳图 • Capacitance 图 电容图
理想极化电极的电化学阻抗谱
等效电路 阻抗
Cd Rl
Z
ZRL
ZCd
RL

1 jCd
第四章 电化学阻抗谱技术与数据解析
电化学阻抗谱
➢ 以小幅度的正弦交流信号(I或Φ)作激励信号扰动 电解池,测量体系对扰动的跟随情况(即I~t或φ~t 曲线) ,也可直接测量电极阻抗随交流信号频率变 化,以此来研究电极系统的方法就是交流阻抗法 (AC Impedance),又称为电化学阻抗谱 (Electrochemical Impedance Spectroscopy,EIS)。
2
2
Rp
Rp
这是一个圆心为( 2,0),半径为 2 的圆的方程。由于虚部 Z 0 ,
实部 Z 0,所以是一个位于第一象限的半圆。根据图中半圆与横轴的
交点可以直接读出极化电阻 Rp 的数值。
在高频条件下,由于吸附引起的表面覆盖度不发生松弛,可以忽略其他
表面状态变量对阻抗的贡献,所以Rp 即为电荷传递电阻 。也就是说,我 们可以从复平面上的高频半圆求得电荷传递电阻Rct 。
稳定性性条件
• 对电极系统的扰动停止后,电极系统能否 回复到原先的状态,往往与电极系统的内 部结构亦即电极过程的动力学特征有关。 一般而言,对于一个可逆电极过程,稳定 性条件比较容易满足。电极系统在受到扰 动时,其内部结构所发生的变化不大,可 以在受到小振幅的扰动之后又回到原先的 状态。
稳定性性条件
电化学阻抗谱
• 电化学阻抗谱方法又是一种频率域的测量 方法,它以测量得到的频率范围很宽的阻 抗谱来研究电极系统,因而能比其他常规 的电化学方法得到更多的动力学信息及电 极界面结构的信息。
正弦交流电路电流与电压的性质
• 设激励(控制)信号为正弦交流电流:
• 对纯R电路: • 纯C电路:
%i Im sin wt
Z
1
arctan Cd arctan 1
RL
RLCd
讨论: (1)高频区
1
lim arctan Cd arctan 0

RL
所以, 0 即高频时其相位角等于零。
理想极化电极的电化学阻抗谱
2. lg 图
arctan Z
Z
1
arctan Cd arctan 1
➢ 因为电极可等效为R、C网络组成的电化学等效电路, 所以交流阻抗法实质是研究RC电路在交流电作用下 的特点与应用。
电化学阻抗谱
• 阻抗测量原本是电学中研究线性电路网络 频率响应特性的一种方法,引用到研究电 极过程,成了电化学研究中的一种实验方 法。
• 由于以小振幅的电信号对体系扰动,一方 面可避免对体系产生大的影响,另一方面 也使得扰动与体系的响应之间近似呈线性 关系,这就使测量结果的数学处理变得简 单
电解池等效电路分析
电解池等效电路的简化
1.实际测量体系中可忽略不计CAB、RA、RB
Cd
C’d
A
Rf
Rl
R‘f
B
电解池等效电路分析
2. 为突出研究电极界面阻抗,可采取措施以 略去辅助电极界面阻抗,即“辅”采用大 面积铂电极→大面积。相当于“辅”为短路
,所测得的实际等效电路阻抗只反映“研 ”界面阻抗与Rl :
A
B
电解池等效电路分析
3. 为研究溶液电阻,可进一步略去“研”界 面阻抗—也采用大面积铂黑电极(即电导池
),使“研”为短路:
A
Rl
B
电解池等效电路分析
4. 为研究双电层结构,“研”采用小面积理
想极化电极(如滴汞),则Zf→ ,视为断
路 低 XCd; 频w:1C加(d 入大>量>R局l)外,电则解主质要,阻使抗R变l减化少取,决且于用 Cd
溶液电阻可以忽略时电化学极化的电化学阻抗谱
等效电路
Cd
导纳
A
B
Rp
Y
YRp
YCd

1 Rp

jCd
1
jCd Rp
Rp
溶液电阻可以忽略时电化学极化的电化学阻抗谱 Y
YRp
YCd

1 Rp

jCd
1
jCd Rp Rp
阻抗
Z
1 Y
1
Rp
jCd Rp

(1
因果性条件
• 当用一个正弦波的电位信号对电极系统进 行扰动,因果性条件要求电极系统只对该 电位信号进行响应。这就要求控制电极过 程的电极电位以及其它状态变量都必须随 扰动信号——正弦波的电位波动而变化。控 制电极过程的状态变量则往往不止一个, 有些状态变量对环境中其他因素的变化又 比较敏感,要满足因果性条件必须在阻抗 测量中十分注意对环境因素的控制。
虚部相等,即 ,所以 RL

1 Cd
1 RLCd
1
• 特征频率 * 的倒数 * 称为复合元件的时间常数
(time constant),用
表示,即


1 *

RLCd
• 特征频率可从图上求得,即所以等式的左边表
示高频端是一条水平线,右边表示低频端是一
条斜率为-1的直线,两直线的延长线的交点所对 应的频率就是(图6-9)。有了,就可以用式( 6-28)求得双电层电容Cd。

RL

j1 Cd
RL

j1 2 fCd
Z
理想极化电极的电化学阻抗谱
• NyquLeabharlann Baidust图 Z 为一个常数RL,而 Z 随
f 而改变, 越大, Z 越小。因此,理想极化电
极电化学阻抗的复平面图 是一条与轴平行的直线, 直线与轴相交点的横坐标 等于RL。
lg Z
理想极化电极的电化学阻抗谱
Rp (1 jCd Rp ) jCd Rp )(1 jCd Rp )

Rp (1 jCd Rp ) 1 (RpCd )2
Z

1
Rp
(RpCd )2

j Rp2Cd 1 (RpCd
)2
Z
Rp
1 (RpCd )2
Z


1

Rp2Cd ( RpCd
)2
溶液电阻可以忽略时电化学极化的电化学阻抗谱
RL
RLCd
讨论: (1)低频区
1
lim arctan Cd arctan
0
RL
所以,
2
即低频时其相位角等于

2
理想极化电极的电化学阻抗谱
• Bode图
理想极化电极的电化学阻抗谱
3.时间常数
当 处于高频和低频之间时,有一个特征频率*
,在这个特征频率,RL和Cd的复数阻抗的实部和
% m sin wt
θ:电流与电压之间的相位差(相角) 纯R: 0 ,纯C: 2 ,纯L: 2
阻抗概念与表示方法
概念:正弦交流电可用矢量或复数表示,因 为欧姆定律普遍形式为:
阻抗的模:
% %iZ
Z R2 X 2
阻抗的幅角:
tan1 X
Rl
电化学阻抗谱的基本条件
• 因果性条件:当用一个正弦波的电位信号对 电极系统进行扰动,因果性条件要求电极 系统只对该电位信号进行响应。
• 线性条件:当一个状态变量的变化足够小, 才能将电极过程速度的变化与该状态变量 的关系作线性近似处理。
• 稳定性条件:对电极系统的扰动停止后,电 极系统能回复到原先的状态,往往与电极 系统的内部结构亦即电极过程的动力学特 征有关。
溶液电阻可以忽略时电化学极化的电化学阻抗谱
• Bode图 1. lg Z lg 图
Z
Z2 Z2
Rp2 1 (RpCd )2 2

(Rp2Cd )2 1 (RpCd )2
2


Rp 1 (RpCd )2
讨论: (1)低频区。
lim
0
(RpCd
lg
Z

1 2
lg
1

(RLCd
)2


lg


lg
Cd
讨论:(1)低频区
lim
0
1 2
lg
1
(RLCd
)2


1 2
lg1

0

lg Z lg lgCd
lg Z 与 lg 是一条斜率为-1的直线
理想极化电极的电化学阻抗谱
2. lg 图
arctan Z
与频率无关
lg Z 是一条平行于横轴 lg 的水平线。
lg Z
理想极化电极的电化学阻抗谱
• Bode图
1. lg Z lg 图
Z Z2 Z2
Z
RL2

1 2Cd2

1 (RLCd )2 Cd
lg
Z

1 2
lg
1

(RLCd
)2


lg


lg
Cd
讨论:(1)高频区 lim
1 2
lg
1

(RLCd
)2


lg
RLCd
则 lg Z lgCd
与频率无关
lg Z 是一条平行于横轴 lg 的水平线。
理想极化电极的电化学阻抗谱
• Bode图
1. lg Z lg 图
Z Z2 Z2
Z
RL2

1 2Cd2

1 (RLCd )2 Cd
线性条件
• 总的说来,电化学阻抗谱的线性条件只能 被近似地满足。我们把近似地符合线性条 件时扰动信号振幅的取值范围叫做线性范 围。每个电极过程的线性范围是不同的, 它与电极过程的控制参量有关。如:对于 一个简单的只有电荷转移过程的电极反应 而言,其线性范围的大小与电极反应的塔 菲尔常数有关,塔菲尔常数越大,其线性 范围越宽。
% RIm sin wt
% Q 1
CC
%idt 1 C
Im
sin
wtdt


Im wc
cos
wt

Im wc
sin

wt


2

正弦交流电路电流与电压的性质
• 纯L电路:
%
L
d%i dt
wL
Im
cos
wt

wL
Im
sin

wt


2

• 当R,C,L组成串联电路时(通式):
)2
1

1
lg
Z
lg Rp
表明低频时lg Z 与频率无关,是一条平行于 lg 的直线,并且可由
此直线与 lg Z 的交点求得。
R
阻抗的表示方法
• 复数形式:
Z R jX
• 复平面图
-X
Z
• 三角函数形式
Z
Z Z cos j Z sin
• 指数形式:
Z Z e j
Θ
0
R
正弦交流电路阻抗特性
• 纯R电路: Z R
• 纯C电路: Z 1 j
jwc wc
• 纯L电路: Z jL • 各元件串联时:Z总=各部分阻抗复数之和 • 各元件并联时:Y总=各部分导纳复数之和
• Bode图
1. lg Z lg 图
Z Z2 Z2
Z
RL2

1 2Cd2

1 (RLCd )2 Cd
lg Z

1 2
lg
1

(RLCd
)2


lg


lg
Cd
讨论:(1)高频区 lim
1 2
lg
1

(RLCd
)2


lg
RLCd
则 lg Z lgCd
• 在对不可逆电极过程进行测量时,要近似 地满足稳定性条件也往往是很困难的。这 种情况在使用频率域的方法进行阻抗测量 时尤为严重,因为用频率域的方法测量阻 抗的低频数据往往很费时间,有时可长达 几小时。这么长的时间中,电极系统的表 面状态就可能发生较大的变化 。
电化学阻抗谱表示方法
• Nyquist图:以 Z 为纵轴,以 Z 为横轴来表示复数 阻抗的图叫电化学阻抗的复平面图,在电化学中 常称为Nyquist图,也叫Sluyters图 。
相关文档
最新文档