电化学阻抗谱的应用及其解析方法

合集下载

电化学阻抗谱及其数据处理与解析

电化学阻抗谱及其数据处理与解析

数据处理的目的
1. 根据测量得到的EIS谱图, 确定EIS的等效电路 或数学模型,与其他的电化学方法相结合,推测 电极系统中包含的动力学过程及其机理;
2. 如果已经建立了一个合理的数学模型或等效电 路,那么就要确定数学模型中有关参数或等效电 路中有关元件的参数值,从而估算有关过程的动 力学参数或有关体系的物理参数 。
R(Q(W(RC)))
R(Q(W(RC)))
第1个括号表示等效元件Q与第2个括号中的复 合元件并联,第2个括号表示等效元件W与第3 个括号中的复合元件串联,而第三个括号又表示 这一复合元件是由等效元件R与C并联组成的。现 在我们用“级”表示括号的次序。第1级表示第 1个括号所表示的等效元件,第2级表示由第2 个括号所表示的等效元件,如此类推。由此有了 第(4)条规则:
Circuit Description Code (CDC)
阻纳数据的非线性最小二乘法拟合原理
一般数据的非线性拟合的最小二乘法
非线若性函G是数变,量且X已和知m函个数参的量具C体1,表C达2,式:…,Cm的
G = G( X,C1,C2,…,Cm )
测 线到性在n拟个控合测制就量变是值量要(X根n的据>数这m值n)个为:测Xg1量,1,值Xg来22,,估……定,,mXg个nn时参。, 非量
规则(3):
对于复杂的电路,首先将整个电路 分解成两个或两个以上互相串联或 互相并联的“盒”,每个盒必须具 有可以作为输入和输出端的两个端 点。这些盒可以是等效元件、简单 的复合元件(即由等效元件简单串 联或并联组成的复合元件)、或是 既有串联又有并联的复杂电路。对 于后者,可以称之为复杂的复合元 件。如果是简单的复合元件,就按 规则(1)或(2)表示。于是把每 个盒,不论其为等效元件、简单的 复合元件还是复杂的复合元件,都 看作是一个元件,按各盒之间是串 联或是并联,用规则(1)或(2) 表示。然后用同样的方法来分解复 杂的复合元件,逐步分解下去,直 至将复杂的复合元件的组成都表示 出来为止。

电化学阻抗谱的解析与应用

电化学阻抗谱的解析与应用

电化学阻抗谱解析与应用交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。

特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。

实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。

Element Freedom Value Error Error %Rs Free(+)2000N/A N/ACab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/A Rt Fixed(X)0N/A N/A Cd'Fixed(X)0N/A N/AZf'Fixed(X)0N/A N/ARb Free(+)10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdl Mode: Run Fitting / All Data Points (1 - 1)Maximum Iterations:100Optimization Iterations:0Type of Fitting: Complex Type of Weighting: Data-Modulus 图1. 用大面积惰性电极为辅助电极时电解池的等效电路图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。

电化学阻抗谱的应用及其解析方法.

电化学阻抗谱的应用及其解析方法.

电化学阻抗谱的应用及其解析方法交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。

特别是近年来,由于频率响应分析仪的快速发展, 交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/jωC ,纯电感L ,其阻抗值为j ωL 。

实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。

图1. 用大面积惰性电极为辅助电极时电解池的等效电路Element Freedom Value Error Error %图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Rs Free(+2000N/AN/ACab Free(+Cd 与1E-7N/AN/ACab 表示研究电极与辅助电极之间的电容,Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’Cd Fixed(X0N/AN/A表示研究电极与辅助电极的交流阻抗。

通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数Zf Fixed(X0N/AN/A及测量信号的频率,Rl 表示辅助电极与工作电极之间的溶液电阻。

一般将双电层电容Cd 与法拉第阻抗Rt Fixed(X0N/AN/A的并联称为界面阻抗Z 。

Cd' Fixed(X0N/AN/A实际测量中,电极本身的内阻很小,且辅助电极与工作电极之间的距离较大,故电容Cab 一般远远Zf' Fixed(X0N/AN/ARb Free(+10000N/AN/A小于双电层电容Cd 。

电化学阻抗图谱及应用讲义

电化学阻抗图谱及应用讲义
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
两个容抗弧的阻抗谱的两种等效电路模型
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
1 Z=Rs + Q + 1 1 R
1
1 +Q+ 1 2 R
1
1 R1+
2
Z = Rs +
Q1+
1 1 Q2&05
Seminar I
电路描述码(CDC)
电路描述码 (Circuit Description Code, 简写 为CDC)。规则如下5条: (1)RLC或CLR (2)(RLC)
(3)奇数级括号表示并联组成的复合元件,偶数级 括号表示串联组成的复合元件。
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
EIS测量的前提条件
因果性条件: 测定的响应信号是由输入的扰动信号引起的; 线性条件: 对体系的扰动与体系的响应成线性关系; 稳定性条件: 电极体系在测量过程中是稳定的,当扰动停止后, 体系将回复到原先的状态; 有限性条件: 在整个频率范围内所测定的阻抗或导纳值是有限的.
曹楚南,电化学阻抗谱导论,科学出版社,2002 马厚义,山东大学学报,Vol.35, No.1,2000
Seminar I
电路描述码CDC
(4)对于复杂的电路,分解成2个或2个以 上互相串联或并联的“盒”. (5)若在右括号后紧接着有一个左括号与 之相邻,则前后两括号中的复合元件级别 相同。这两个括号中的复合元件是并联还 是串联,决定于二者是放在奇数级还是偶 数级的括号中。 例如:R(QR(RL)(RL))
Seminar I

【备用干货】电化学阻抗谱技术与数据解析

【备用干货】电化学阻抗谱技术与数据解析

R
正弦交流电路阻抗特性
• 纯R电路: Z R
• 纯C电路: Z 1 j
jwc wc
• 纯L电路: Z jL • 各元件串联时:Z总=各部分阻抗复数之和 • 各元件并联时:Y总=各部分导纳复数之和
电解池等效电路分析
电解池等效电路的简化
1.实际测量体系中可忽略不计CAB、RA、RB
Cd
C’d
1 Cd
1 RLCd
1
• 特征频率 * 的倒数 * 称为复合元件的时间常数
(time constant),用
表示,即
1 *
RLCd
• 特征频率可从图上求得,即所以等式的左边表
示高频端是一条水平线,右边表示低频端是一
条斜率为-1的直线,两直线的延长线的交点所对 应的频率就是(图6-9)。有了,就可以用式( 6-28)求得双电层电容Cd。
电化学阻抗谱
• 电化学阻抗谱方法又是一种频率域的测量 方法,它以测量得到的频率范围很宽的阻 抗谱来研究电极系统,因而能比其他常规 的电化学方法得到更多的动力学信息及电 极界面结构的信息。
正弦交流电路电流与电压的性质
• 设激励(控制)信号为正弦交流电流:
• 对纯R电路: • 纯C电路:
i Im sin wt
Rp (1 jCd Rp ) 1 (RpCd )2
Z
1
Rp
( RpCd
)2
j Rp2Cd 1 (RpCd
)2
Z
Rp
1 (RpCd )2
Z Rp2Cd 1 (RpCd )2
溶液电阻可以忽略时电化学极化的电化学阻抗谱
• Nyquist图
Nyquist图就是阻抗复平面图,就
是 Z 为横轴,Z 为纵轴的曲线图。

电化学阻抗谱原理应用及谱图分析

电化学阻抗谱原理应用及谱图分析

电化学阻抗谱原理应用及谱图分析电化学阻抗谱原理应用及谱图分析电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)是一种测量电化学系统的电化学行为的方法,它通过测量系统对于正弦电压或电流的响应,来研究电化学反应过程中的阻抗变化。

EIS广泛应用于材料科学、化学工程、电池研究、腐蚀研究和生物医学等领域。

EIS的原理是利用正弦电压或电流去激励待测电化学系统,并测量响应信号的振幅和相位,然后将这些数据在频率域或时间域中进行分析,从而得到电化学系统的等效电路模型,如电阻、电容、电感等等,这些参数可以反映出系统的结构、特性和电化学反应的动力学信息。

EIS的主要作用是在电化学反应的过程中研究电荷传递、离子传输、质量传递等复杂的反应机理,可以通过建立电化学反应动力学模型,分析电极表面化学反应动力学参数,优化电极材料和电解液配方,提高电化学反应效率。

以下是两个例子,说明EIS的应用及注意事项:锂离子电池的研究:EIS广泛应用于电池的研究和开发中,通过测量电池的电化学阻抗谱来评估电池的性能和寿命。

例如,在锂离子电池中,电解质的性质和电极材料的表面形貌对电池性能有很大影响。

利用EIS可以评估电池的内部电阻、扩散系数等参数,进而优化电池设计和材料配方。

注意事项是,需要确保电池在测量时处于稳态,并控制好测量温度和电压等参数。

金属腐蚀的研究:EIS也被广泛应用于金属腐蚀的研究中,通过测量金属表面的电化学阻抗谱,可以评估金属表面的保护膜的质量和稳定性,了解金属腐蚀的机制,同时也可以评估防腐涂层的性能。

注意事项是,需要确保测量条件稳定,避免干扰,同时应选择合适的电解液和电极材料。

电化学阻抗谱(EIS)的谱图是通过测量电化学系统对于正弦电压或电流的响应所得到的。

谱图提供了电化学系统的等效电路模型,这些参数可以反映出系统的结构、特性和电化学反应的动力学信息。

在谱图的分析过程中,需要注意以下几点:峰的位置和形状:电化学阻抗谱中的峰代表电化学体系中不同的特征和反应机理。

eis阻抗谱

eis阻抗谱

eis阻抗谱摘要:一、引言二、eis 阻抗谱的基本概念1.电化学阻抗谱(EIS)2.eis 阻抗谱的原理三、eis 阻抗谱的应用领域1.电化学反应研究2.电极过程动力学研究3.电化学传感器4.锂电池研究四、eis 阻抗谱的实验方法1.频率范围的选择2.测量电极和参比电极的放置3.阻抗谱的解析五、eis 阻抗谱的局限性和发展趋势1.数据处理和解析的复杂性2.实验条件的敏感性3.新技术的发展正文:一、引言电化学阻抗谱(EIS)是一种广泛应用于电化学领域的分析技术,能够提供电极系统对电流响应的详细信息。

eis 阻抗谱作为EIS 的一种,具有很高的研究价值。

本文将介绍eis 阻抗谱的基本概念、应用领域、实验方法及其局限性和发展趋势。

二、eis 阻抗谱的基本概念1.电化学阻抗谱(EIS):电化学阻抗谱是一种描述电化学反应过程中电极系统的阻抗变化的实验技术。

2.eis 阻抗谱的原理:通过施加不同频率的正弦交流电压,测量电极系统的阻抗随频率的变化,从而获得电极过程的动力学信息。

三、eis 阻抗谱的应用领域1.电化学反应研究:eis 阻抗谱可以用于研究电化学反应的速率常数、电子转移数等动力学参数。

2.电极过程动力学研究:通过分析eis 阻抗谱,可以了解电极过程的动力学机制,如电极反应的活化能等。

3.电化学传感器:eis 阻抗谱可用于评估电化学传感器的性能,如灵敏度、选择性等。

4.锂电池研究:eis 阻抗谱在锂电池研究中的应用主要包括评估电极材料的性能、研究电池的充放电机制等。

四、eis 阻抗谱的实验方法1.频率范围的选择:根据所需研究的电极过程,选择合适的频率范围,一般为几赫兹至几千赫兹。

2.测量电极和参比电极的放置:通常采用三电极体系,包括工作电极、参比电极和对电极。

3.阻抗谱的解析:通过分析实部和虚部的阻抗值,获得电极过程的动力学信息。

五、eis 阻抗谱的局限性和发展趋势1.数据处理和解析的复杂性:eis 阻抗谱的数据处理和解析需要一定的电化学知识,对实验人员的要求较高。

电化学阻抗谱EIS原理、应用及谱图分析

电化学阻抗谱EIS原理、应用及谱图分析

1972 TEXT
1990
2007
介电性能
生物体系 阳极溶解
腐蚀
混合导体 非均匀表面
电桥 机械发生器
电桥 电子发生器
脉冲法
模拟阻抗测定
示波器
恒电位仪
拉普拉斯变换 (AC+DC)
数字阻抗测定 电桥 机械发生器
局部电化学 阻抗谱
R--C
电子等效 电路
Nyquist图 Bode图
校正Bode图
分析电极过程动 力学、双电层和 扩散等,研究电 极材料、固体电 解质、导电高分 子以及腐蚀防护 机理等。
3. EIS是一种频率域测量方法,可测定的频率范围很宽, 因而比常规电化学方法得到更多的动力学信息和电极 界面结构信息。
11
1. 因果性条件(causality):输出的响应信号只是由输入的扰
EIS 动信号引起的的。 测 2. 线性条件(linearity): 输出的响应信号与输入的扰动信号
量 之间存在线性关系。电化学系统的电流与电势之间是动力
Z'
(3)虚数单位乘方
j = −1 j2 = −1 j3 = − j
(4)共轭复数
Z = Z '+ jZ '' Z = Z '− jZ ''
2 复数表示法 (1)坐标表示法 (2)三角表示法
Z = Z '2 + Z ''2 = Z ' = Z ''
cos sin
Z = Z '+ jZ '' = Z cos + j Z sin
的相位角随的变化。
6
G
X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学阻抗谱的应用及其解析方法交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。

特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。

实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。

Element Freedom Value Error Error %Rs Free(+)2000N/A N/ACab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/ARt Fixed(X)0N/A N/ACd'Fixed(X)0N/A N/AZf'Fixed(X)0N/A N/ARb Free(+)10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdlMode:Type of Weighting:Data-Modulus图1. 用大面积惰性电极为辅助电极时电解池的等效电路图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。

通常称为电解阻抗或法拉第阻抗,其数值决定于电极动力学参数及测量信号的频率,Rl 表示辅助电极与工作电极之间的溶液电阻。

一般将双电层电容Cd 与法拉第阻抗的并联称为界面阻抗Z 。

实际测量中,电极本身的内阻很小,且辅助电极与工作电极之间的距离较大,故电容Cab 一般远远小于双电层电容Cd 。

如果辅助电极上不发生电化学反映,即Zf ’特别大,又使辅助电极的面积远大于研究电极的面积(例如用大的铂黑电极),则Cd ’很大,其容抗Xcd ’比串联电路中的其他元件小得多,因此辅助电极的界面阻抗可忽略,于是图1可简化成图2,这也是比较常见的等效电路。

Element Freedom Value ErrorError %Rs Fixed(X )1500N/AN/A Zf Fixed(X )5000N/AN/A Cd Fixed(X )1E-6N/A N/AData File:Circuit Model File:C:\Sai_Demo\ZModels\Tutor3 R-C.mdlMode:Run Simulation / Freq. Range (0.01 - 100Maximum Iterations:100Optimization Iterations:Type of Fitting:ComplexType of Weighting:Data-Modulus图2. 用大面积惰性电极为辅助电极时电解池的简化电路2. 阻抗谱中的特殊元件以上所讲的等效电路仅仅为基本电路,实际上,由于电极表面的弥散效应的存在,所测得的双电层电容不是一个常数,而是随交流信号的频率和幅值而发生改变的,一般来讲,弥散效应主要与电极表面电流分布有关,在腐蚀电位附近,电极表面上阴、阳极电流并存,当介质中存在缓蚀剂时,电极表面就会为缓蚀剂层所覆盖,此时,铁离子只能在局部区域穿透缓蚀剂层形成阳极电流,这样就导致电流分布极度不均匀,弥散效应系数较低。

表现为容抗弧变“瘪”,如图3所示。

另外电极表面的粗糙度也能影响弥散效应系数变化,一般电极表面越粗糙,弥散效应系数越低。

2.1 常相位角元件(Constant Phase Angle Element ,CPE )在表征弥散效应时,近来提出了一种新的电化学元件CPE,CPE 的等效电路解析式为:pj T Z )(1ω⨯=,CPE 的阻抗由两个参数来定义,即CPE-T ,CPE-P ,我们知道, )2sin()2cos(ππp j p j p +=,因此CPE 元件的阻抗Z 可以表示为)]2sin()2[cos(1ππωp j p T Z p -+-⋅=,这一等效元件的幅角为φ=--p π/2,由于它的阻抗的数值是角频率ω的函数,而它的幅角与频率无关,故文献上把这种元件称为常相位角元件。

实际上,当p=1时,如果令T=C ,则有Z=1/(j ωC ),此时CPE 相当于一个纯电容,波特图上为一正半圆,相应电流的相位超过电位正好90度,当p=-1时,如果令T=1/L ,则有Z=j ωL ,此时CPE 相当于一个纯电感,波特图上为一反置的正半圆,相应电流的相位落后电位正好90度;当p=0时,如果令T=1/R ,则Z=R ,此时CPE 完全是一个电阻。

一般当电极表面存在弥散效应时,CPE-P 值总是在1~0.5之间,阻抗波特图表现为向下旋转一定角度的半圆图。

图3 具有弥散效应的阻抗图可以证明,弥散角φ=π/2*(1-CPE-P),特别有意义的是,当CPE-P=0.5时,CPE 可以用来取代有限扩散层的Warburg 元件,Warburg 元件是用来描述电荷通过扩散穿过某一阻挡层时的电极行为。

在极低频率下,带电荷的离子可以扩散到很深的位置,甚至穿透扩散层,产生一个有限厚度的Warburg 元件,如果扩散层足够厚或者足够致密,将导致即使在极限低的频率下,离子也无法穿透,从而形成无限厚度的Warburg 元件,而CPE 正好可以模拟无限厚度的Warburg 元件的高频部分。

当CPE-P=0.5时,)22(21j T Z -=ω,其阻抗图为图3所示,一般在pH>13的碱溶液中,由于生成致密的钝化膜,阻碍了离子的扩散通道,因此可以观察到图4所示的波特图。

15.017.520.022.5-7.5-5.0-2.50Z' (Ohm)Z '' (O h m )FitResult-20-40-60-80-100I m (Z '×100)Ω.c m2R e (Z×100)Ω.cm2图4. 当CPE-P 为0.5时(左)及在Na 2CO 3溶液中的波特图2.2 有限扩散层的Warburg 元件-闭环模型本元件主要用来解析一维扩散控制的电化学体系,其阻抗为pp jT jT R Z )/(])tanh[(ωω⨯=,一般在解析过程中,设置P=0.5,并且Ws-T=L2/D ,(其中L 是有效扩散层厚度,D 是微粒的一维扩散系数),计算表明,当ω->0时,Z=R,当ω->+∞,在)22(2j T RZ -=ω,与CPE-P=0.5时的阻抗表达式相同,阻抗图如图5。

2505007501000-1000-750-500-2500Z'Z ''101010101010101010101010Frequency (Hz)|Z |1010101010101010-50-40-30-20-100Frequency (Hz)t h e t a图5. 闭环的半无限的Warburg 阻抗图2.3 有限扩散层的Warburg 元件-发散模型本元件也是用来描述一维扩散控制的电化学体系,其阻抗为pp jT jT ctnh R Z )/(])[(ωω⨯=,其中ctnh 为反正且函数,F (x )=Ln[(1+x)/(1-x )]。

与闭环模型不同的是,其阻抗图的实部在低频时并不与实轴相交。

而是向虚部方向发散。

即在低频时,更像一个电容。

典型的阻抗图如图6。

2004006008001000-1000-800-600-400-2000Z'Z ''10101010101010101010101010Frequency (Hz)|Z |1010101010101010-100-75-50-250Frequency (Hz)t h e t a图6. 发散的半无限的Warburg 阻抗图3. 常用的等效电路图及其阻抗图谱对阻抗的解析使一个十分复杂的过程,这不单是一个曲线拟合的问题,事实上,你可以选择多个等效电路来拟合同一个阻抗图,而且曲线吻合的相当好,但这就带来了另外一个问题,哪一个电路符合实际情况呢,这其实也是最关键的问题。

他需要有相当丰富的电化学知识。

需要对所研究体系有比较深刻的认识。

而且在复杂的情况下,单纯依赖交流阻抗是难以解决问题的,需要辅助以极化曲线以及其它暂态试验方法。

由于阻抗测量基本是一个暂态测量,所以工作电极,辅助电极以及参比电极的鲁金毛细管的位置极有要求。

例如鲁金毛细管距离参比电极的位置不同,在阻抗图的高频部分就会表现出很大的差异,距离远时,高频部分仅出现半个容抗弧,距离近时,高频弧变成一个封闭的弧;当毛细管紧挨着工作电极表面时,可能会出现感抗弧,这其中原因还不清楚。

为了有利于大家在今后的试验中对阻抗图有一个粗略的认识,下面简单将几种常见阻抗图谱介绍一下。

3.1 吸附型缓蚀剂体系如果缓蚀剂不参与电极反应,不产生吸附络合物等中间产物,则它的阻抗图仅有一个时间常数,表现为变形的单容抗弧,这是由于缓蚀剂在表面的吸附会使弥散效应增大,同时也使双电层电容值下降,其阻抗图及其等效电路如图7。

1000200030004000500060007000-6000-5000-4000-3000-2000-10000Z'Z ''10101010101010101010Frequency (Hz)|Z |1010101010101010-30-20-100Frequency (Hz)t h e taError N/A N/A N/A N/AData File:Circuit Model File:E:\Sai_Demo\ZModels\Tutor3 R-CP Mode: Run Simulation / Freq. Range (0.0Maximum Iterations:100Optimization Iterations:0Type of Fitting: ComplexData-Modulus图7. 具有一个时间常数的单容抗弧阻抗图3.2 涂层下的金属电极阻抗图涂装金属电极存在两个容性时间常数,一个时涂层本身的电容,另外一个是金属表面的双电层电容,阻抗图上具有双容抗弧,如图8所示。

相关文档
最新文档