电化学阻抗图谱及应用讲义

合集下载

(完整版)电化学曲线极化曲线阻抗谱分析

(完整版)电化学曲线极化曲线阻抗谱分析

(完整版)电化学曲线极化曲线阻抗谱分析电化学曲线极化曲线阻抗谱分析⼀、极化曲线1.绘制原理铁在酸溶液中,将不断被溶解,同时产⽣H2,即:Fe + 2H+ = Fe2+ + H2 (a)当电极不与外电路接通时,其净电流I总为零。

在稳定状态下,铁溶解的阳极电流I(Fe)和H+还原出H2的阴极电流I(H),它们在数值上相等但符号相反,即:(1)I(Fe)的⼤⼩反映Fe在H+中的溶解速率,⽽维持I(Fe),I(H)相等时的电势称为Fe/H+体系的⾃腐蚀电势εcor。

图1是Fe在H+中的阳极极化和阴极极化曲线图。

图2 铜合⾦在海⽔中典型极化曲线当对电极进⾏阳极极化(即加更⼤正电势)时,反应(c)被抑制,反应(b)加快。

此时,电化学过程以Fe的溶解为主要倾向。

通过测定对应的极化电势和极化电流,就可得到Fe/H+体系的阳极极化曲线rba。

当对电极进⾏阴极极化,即加更负的电势时,反应(b)被抑制,电化学过程以反应(c)为主要倾向。

同理,可获得阴极极化曲线rdc。

2.图形分析(1)斜率斜率越⼩,反应阻⼒越⼩,腐蚀速率越⼤,越易腐蚀。

斜率越⼤,反应阻⼒越⼤,腐蚀速率越⼩,越耐腐蚀。

(2)同⼀曲线上各各段形状变化如图2,在section2中,电流随电位升⾼的升⾼反⽽减⼩。

这是因为此次发⽣了钝化现象,产⽣了致密的氧化膜,阻碍了离⼦的扩散,导致腐蚀电流下降。

(3)曲线随时间的变动以7天和0天两曲线为例,对于Y轴,七天后曲线下移(负移),⾃腐蚀电位降低,说明更容易腐蚀。

对于X轴,七天后曲线正移,腐蚀电流增⼤,亦说明更容易腐蚀。

⼆、阻抗谱1.测量原理它是基于测量对体系施加⼩幅度微扰时的电化学响应,在每个测量的频率点的原始数据中,都包含了施加信号电压(或电流)对测得的信号电流(或电压)的相位移及阻抗的幅模值。

从这些数据中可以计算出电化学响应的实部和虚部。

阻抗中涉及的参数有阻抗幅模(| Z |)、阻抗实部(Z,)、阻抗虚部(Z,,)、相位移(θ)、频率(ω)等变量,同时还可以计算出导纳(Y)和电容(C)的实部和虚部,因⽽阻抗谱可以通过多种⽅式表⽰。

电化学阻抗谱课件

电化学阻抗谱课件
电化学阻抗谱
电 化 学 阻 抗 谱 (Electrochemical Impedance Spectroscopy,简写为 EIS),早期的电化 学文献中称为交流阻抗(AC Impedance)。 阻抗测量原本是电学中研究线性电路网 络频率响应特性的一种方法,引用到研 究电极过程,成了电化学研究中的一种 实验方法。
电化学阻抗谱
数据处理的途径
阻抗谱的数据处理有两种不同的途径: • 依据已知等效电路模型或数学模型的数据
处理途径 • 从阻纳数据求等效电路的数据处理途径
电化学阻抗谱
阻纳数据的非线性最小二乘法拟合原理
• 一般数据的非线性拟合的最小二乘法 若且G已是知变函量数X和的m具个体参表量达C式1,:C2,…,Cm的非线性函数,
5. 若在右括号后紧接着有 一个左括号与之相邻, 则在右括号中的复合元 件的级别与后面左括号 的复合元件的级别相同。 这两个复合元件是并联 还是串联,决定于这两 个复合元件的CDC是放 在奇数级还是偶数级的 括号中。
电化学阻抗谱
计算等效电路阻纳
根据上述5条规则,可以写出等效电路的电路 描述码(CDC),就可以计算出整个电路的阻 纳。
电化学阻抗谱
拟合过程主要思想如下 :
假设我们能够对于各参量分别初步确定一个近似 值C0k , k = 1, 2, …, m,把它们作为拟合过程的初 始值。令初始值与真值之间的差值 C0k – Ck = k, k = 1, 2, …, m, 于是根据泰勒展开定理可将Gi 围绕C0k , k = 1, 2, …, m 展开,我们假定各初始值C0k与其真值非常 接近,亦即,k非常小 (k = 1, 2, …, m), 因此可 以忽略式中 k 的高次项而将Gi近似地表达为 :
G=G( X,C1,C2,…,Cm ) 个就C2测,是在量…控要值,制根(C变据mn量的这>X数mn的值)个数,:测值使g量为1得,X值将g12,,来这X…些估2,,参定…g量mn,的。X个n估非时参定线,量值性测C代拟到1 入合,n 非线性函数式后计算得到的曲线(拟合曲线)与实 验有测随量机数误据差符,合不得能最从好测。量由值于直测接量计值算g出i (im=个1,参2,…量,,n) 而只能得到它们的最佳估计值。

电化学阻抗谱的解析与应用

电化学阻抗谱的解析与应用

电化学阻抗谱解析与应用交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。

特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。

实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。

Element Freedom Value Error Error %Rs Free(+)2000N/A N/ACab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/A Rt Fixed(X)0N/A N/A Cd'Fixed(X)0N/A N/AZf'Fixed(X)0N/A N/ARb Free(+)10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdl Mode: Run Fitting / All Data Points (1 - 1)Maximum Iterations:100Optimization Iterations:0Type of Fitting: Complex Type of Weighting: Data-Modulus 图1. 用大面积惰性电极为辅助电极时电解池的等效电路图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。

电化学阻抗图谱及应用讲义

电化学阻抗图谱及应用讲义
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
两个容抗弧的阻抗谱的两种等效电路模型
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
1 Z=Rs + Q + 1 1 R
1
1 +Q+ 1 2 R
1
1 R1+
2
Z = Rs +
Q1+
1 1 Q2&05
Seminar I
电路描述码(CDC)
电路描述码 (Circuit Description Code, 简写 为CDC)。规则如下5条: (1)RLC或CLR (2)(RLC)
(3)奇数级括号表示并联组成的复合元件,偶数级 括号表示串联组成的复合元件。
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
EIS测量的前提条件
因果性条件: 测定的响应信号是由输入的扰动信号引起的; 线性条件: 对体系的扰动与体系的响应成线性关系; 稳定性条件: 电极体系在测量过程中是稳定的,当扰动停止后, 体系将回复到原先的状态; 有限性条件: 在整个频率范围内所测定的阻抗或导纳值是有限的.
曹楚南,电化学阻抗谱导论,科学出版社,2002 马厚义,山东大学学报,Vol.35, No.1,2000
Seminar I
电路描述码CDC
(4)对于复杂的电路,分解成2个或2个以 上互相串联或并联的“盒”. (5)若在右括号后紧接着有一个左括号与 之相邻,则前后两括号中的复合元件级别 相同。这两个括号中的复合元件是并联还 是串联,决定于二者是放在奇数级还是偶 数级的括号中。 例如:R(QR(RL)(RL))
Seminar I

电化学阻抗谱原理应用及谱图分析

电化学阻抗谱原理应用及谱图分析

电化学阻抗谱原理应用及谱图分析电化学阻抗谱原理应用及谱图分析电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)是一种测量电化学系统的电化学行为的方法,它通过测量系统对于正弦电压或电流的响应,来研究电化学反应过程中的阻抗变化。

EIS广泛应用于材料科学、化学工程、电池研究、腐蚀研究和生物医学等领域。

EIS的原理是利用正弦电压或电流去激励待测电化学系统,并测量响应信号的振幅和相位,然后将这些数据在频率域或时间域中进行分析,从而得到电化学系统的等效电路模型,如电阻、电容、电感等等,这些参数可以反映出系统的结构、特性和电化学反应的动力学信息。

EIS的主要作用是在电化学反应的过程中研究电荷传递、离子传输、质量传递等复杂的反应机理,可以通过建立电化学反应动力学模型,分析电极表面化学反应动力学参数,优化电极材料和电解液配方,提高电化学反应效率。

以下是两个例子,说明EIS的应用及注意事项:锂离子电池的研究:EIS广泛应用于电池的研究和开发中,通过测量电池的电化学阻抗谱来评估电池的性能和寿命。

例如,在锂离子电池中,电解质的性质和电极材料的表面形貌对电池性能有很大影响。

利用EIS可以评估电池的内部电阻、扩散系数等参数,进而优化电池设计和材料配方。

注意事项是,需要确保电池在测量时处于稳态,并控制好测量温度和电压等参数。

金属腐蚀的研究:EIS也被广泛应用于金属腐蚀的研究中,通过测量金属表面的电化学阻抗谱,可以评估金属表面的保护膜的质量和稳定性,了解金属腐蚀的机制,同时也可以评估防腐涂层的性能。

注意事项是,需要确保测量条件稳定,避免干扰,同时应选择合适的电解液和电极材料。

电化学阻抗谱(EIS)的谱图是通过测量电化学系统对于正弦电压或电流的响应所得到的。

谱图提供了电化学系统的等效电路模型,这些参数可以反映出系统的结构、特性和电化学反应的动力学信息。

在谱图的分析过程中,需要注意以下几点:峰的位置和形状:电化学阻抗谱中的峰代表电化学体系中不同的特征和反应机理。

电化学阻抗ppt课件

电化学阻抗ppt课件

1.2 电化学阻抗谱基础知识:
复数 电化学阻抗为向量(即矢量), 因此常写成复数形式。复数由实部和虚部组成。 电化学阻抗Z的复数形式为: Z=Z‘ +jZ” 其中,Z’ 为阻抗Z的实部,Z‘’为其虚部,j为虚数单位,j= 1 复数的模 '2 Z ''2 复数的大小称为复数的模,电化学阻抗的模IzI表示为:IZI= Z 复数的辐角(即相位角) 复数矢量与实轴的夹角 φ称为复数的辐角, 电化学阻抗的相位角 φ表示 为:φ= arctan
电化学阻抗
1、电化学阻抗概念及相关知识介绍
2、电工学中简单电路的交流阻抗谱图 3、电化学中的交流阻抗谱图 4、电化学阻抗谱的应用
1.电化学阻抗概念及相关知识介绍
1.1 电化学阻抗法:
电化学阻抗法是电化学测量的重要方法之一。 以小振幅的正弦波电势(或电流)为扰动信号,使电极系统产生近似线性关系 的响应,测量电极系统在很宽频率范围的阻抗谱,以此来研究电极系统的方 法就是电化学阻抗谱(EIS),又称交流阻抗法(AC Impedance)。 特点: (1)由于使用小幅度(一般小于10 mV)对称交流电对电极进行极化,当频率足 够高时,每半周期持续时间很短,不会引起严重的浓差极化及表面状态变化。 在电极上交替进行着阴极过程与阳极过程,同样不会引起极化的积累性发展, 避免对体系产生过大的影响。 (2)由于可以在很宽频率范围内测量得到阻抗谱, 因而与其它常规的电化学方 法相比,能得到更多电极过程动力学信息和电极界面结构信息。
θ
Z’ 交流阻抗Z的复平面表示
θ
Y’
交流导纳Y的复平面表示
阻抗的大小: 阻抗Z是电路元件对电流的阻碍作用和移相作用的反映。 对于纯电阻电路,其阻抗就是电阻 R:ZR=R 对于纯电感电路,其阻抗为:ZL=jXL=jωL 对于纯电容电路,其阻抗为:Zc=-jXc=-j/ωC 复阻抗的串联: 当电路中有多个元件串联时,总的复阻抗等于各串联复阻抗的和。例如一个 电阻 、一个电感L和一个电容C串联时,总复阻抗z为:

《电化学阻抗谱知识点滴基础篇》PPT课件讲义

《电化学阻抗谱知识点滴基础篇》PPT课件讲义
电化学阻抗谱知识点滴基础篇
(Suitable for teaching courseware and reports)
§1 概述 §2 交流信号微扰下电解池体系的等效电路及其简化 §3 电化学极化下的交流阻抗 §4 浓差极化时的交流阻抗 §5 一些常见的电极过程的阻抗谱及等效电路 §6 交流阻抗测量技术 §7 交流阻抗测量实验注意事项 §8 阻抗谱的分析思路
高频率、大面积 RL
用来求溶液电导率。(交频信号下测量电导率的基础)
③ 在①的前提下,实现Zf研→∞
RL→0
RL
Cd研
加入电解质,仪器清除
Cd研
§3 电化学极化下的交流阻抗
3.1 交流电路中的线性元件
电化学阻抗谱(EIS)的测试中,需要在直流电位下叠加交流微扰信号, 测定交流信号所引起的电极响应信号。
先看一下交流电路中线性元件电阻、电容、电感的阻抗。
假设正旋波交流电的电压可表示为: u(t)U0sin t (3-1)
① 纯电阻的阻抗(电阻)
u(t)施加到电阻R上产生的电流
i(t)u(t)U 0s RR
in tI0sin t
(3-2)
如此,
ZR
U0 I0
R
ui 0
显然,电压、电流的位相一致,其交流阻抗ZR就是它的电阻值R。
1.3.3 浓差极化不会积累性发展,但可通过交流阻抗将极化测量出来
① 控制幅度小(电化学极化小); ② 交替进行的阴、阳极过程,消除了极化的积累。
1.3.4 Rr、Cd和RL是线性的,符合欧姆 阻抗与导纳
对于一个稳定的线性系统M,如以一个角频率为 的正弦波电信号(电压或 电流)X为激励信号(在电化学术语中亦称作扰动信号)输入该系统,则相应 地从该系统输出一个角频率也是 的正弦波电信号(电流或电压)Y,Y即是 响应信号。Y与X之间的关系可以用下式来表示:

电化学阻抗谱EIS原理、应用及谱图分析

电化学阻抗谱EIS原理、应用及谱图分析

1972 TEXT
1990
2007
介电性能
生物体系 阳极溶解
腐蚀
混合导体 非均匀表面
电桥 机械发生器
电桥 电子发生器
脉冲法
模拟阻抗测定
示波器
恒电位仪
拉普拉斯变换 (AC+DC)
数字阻抗测定 电桥 机械发生器
局部电化学 阻抗谱
R--C
电子等效 电路
Nyquist图 Bode图
校正Bode图
分析电极过程动 力学、双电层和 扩散等,研究电 极材料、固体电 解质、导电高分 子以及腐蚀防护 机理等。
3. EIS是一种频率域测量方法,可测定的频率范围很宽, 因而比常规电化学方法得到更多的动力学信息和电极 界面结构信息。
11
1. 因果性条件(causality):输出的响应信号只是由输入的扰
EIS 动信号引起的的。 测 2. 线性条件(linearity): 输出的响应信号与输入的扰动信号
量 之间存在线性关系。电化学系统的电流与电势之间是动力
Z'
(3)虚数单位乘方
j = −1 j2 = −1 j3 = − j
(4)共轭复数
Z = Z '+ jZ '' Z = Z '− jZ ''
2 复数表示法 (1)坐标表示法 (2)三角表示法
Z = Z '2 + Z ''2 = Z ' = Z ''
cos sin
Z = Z '+ jZ '' = Z cos + j Z sin
的相位角随的变化。
6
G
X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Seminar I
Ni电极的等效电路图
等效电路图
物理意义: Rs:从参比电极到工作电极的溶液电阻 CPE:与双电层电容关联的常相位角元件 Rt:电极的电荷转移电阻 Wo:固相扩散的沃伯格阻抗
H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
Seminar I
拟合结果
Rt(电荷转移电阻)拟合结果
结论: 1.同一放电深度,电荷转移电阻Rt值随着Zn含量的增加, 先减小后增大,(0%DOD除外); 2.同一Zn含量的样品,Rt值随着DOD的增大而增大,归 因于NiOOH的还原和镍电极的电化学极化。
H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
张鉴清,电化学阻抗谱,讲义,2005
Seminar I
数据处理的目的与途径
数据处理的目的: 1.根据测量得到的EIS谱图, 确定EIS的等效电路或数 学模型; 2.根据已建立的合理的数学模型或等效电路,确定数 学模型中有关参数或等效电路中有关元件的参数值. 数据处理的途径: 1.依据已知等效电路模型或数学模型的数据处理途径 2.从阻纳数据求等效电路的数据处理途径
Seminar I
电化学阻抗谱及其应用
2005.11
Seminar I
电化学阻抗谱方法(EIS)
黑箱动态系统研究方法
对于一个稳定的线性系统M,如以一个角频率为ω的正弦波 电信号X(电压或电流)输入该系统,相应的从该系统输出一 个角频率为ω的正弦波电信号Y(电流或电压),此时电极系 统的频响函数G就是电化学阻抗。 在一系列不同角频率下测得的一组这种频响函数值就是电 极系统的电化学阻抗谱。 若在频响函数中只讨论阻抗与导纳,则G总称为阻纳。 一般表达式为: G (ω ) = G '(ω ) + jG ''(ω )
Seminar I
参考文献
1.曹楚南,张鉴清,电化学阻抗谱导论,科学出版社, 2002 2.张鉴清,电化学阻抗谱,讲义,2005 3.马厚义,电化学阻抗谱测试中的稳定性和线性问题,山东 大学学报,Vol.35, No.1,2000 4.H.Chen,J.Q.Zhang, J Solid State Electrochem,2005 9:421-428 5.赵新生,直接甲醇燃料电池膜电极的电化学研究,博士论 文,第三章
Seminar I
阻纳的复平面(Nyquist)图
R 2 R 2 2 (Z '− ) + Z ' ' = ( ) 2 2 1 Y = + jω C R
复合元件(RC)的阻抗复平面图
(RC)的导纳复平面图
张鉴清,电化学阻抗谱,讲义,2005
Seminar I
阻抗波特(Bode)图
复合元件(RC)阻抗波特图
Seminar I
电路描述码(CDC)
电路描述码 (Circuit Description Code, 简写 为CDC)。规则如下5条: (1)RLC或CLR (2)(RLC)
(3)奇数级括号表示并联组成的复合元件,偶数级 括号表示串联组成的复合元件。
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
电化学阻抗谱的特点
1.一种以小振幅的正弦波电位(或电流)为扰 动信号的电化学测量方法: (1)避免对体系产生大的影响 (2)使扰动与体系的响应之间近似呈线性关系 2.一种频率域的测量方法:
以测量得到的频率范围很宽的阻抗谱来研究电 极系统,速度快的子过程出现在高频区,速度慢的子 过程出现在低频区,可判断出含几个子过程,讨论动 力学特征。
Seminar I
计算等效电路阻纳
出发点是下面三条: (1)串联元件,计算阻抗,各元件阻抗相加; 并联元件,计算导纳,各元件导纳相加。 (2)阻抗和导纳之间互相变换的公式: Gi-1 = Gi’/(Gi’2 + Gi”2 ) - j Gi”/(Gi’2 + Gi”2 ) (3)逐级阻纳的计算公式是: Gi-1 = G*i-1 + G-1i
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,20高级开始。最高级为3级,是奇数,应 计算其导纳: G3 = 1 /R4 +jωC5 2.计算第2级复合元件的阻抗 -1 G2 = Zw3 + G3 3.计算第1级复合元件的导纳 -1 G1 = YQ2 + G2 4.计算第0级即整个电路的阻抗 -1 0 = R1 + G1 G
Seminar I
EIS测量的前提条件
因果性条件: 测定的响应信号是由输入的扰动信号引起的; 线性条件: 对体系的扰动与体系的响应成线性关系; 稳定性条件: 电极体系在测量过程中是稳定的,当扰动停止后, 体系将回复到原先的状态; 有限性条件: 在整个频率范围内所测定的阻抗或导纳值是有限的.
曹楚南,电化学阻抗谱导论,科学出版社,2002 马厚义,山东大学学报,Vol.35, No.1,2000
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
复合元件的CDC示例
按规则(1)将这一等效电路表示为: R CE-1 按规则(2),CE-1可以表示为 (Q CE-2). 因此整个电路可进一步表示为: R(Q CE-2) 将复合元件CE-2表示成: (Q(W CE-3)) 整个等效电路就表示成: R(Q(W CE-3)) 将简单的复合元件CE-3表示出来。应 表示为(RC),于是电路可以用如下的 CDC表示:R(Q(W(RC)))
1 Q 2 + R1
2
1 1 Q1+ R
1
张鉴清,电化学阻抗谱,讲义,2005
Seminar I
含锌Ni(OH)2碱性电池的EIS谱图
0%的DOD(放电深度)时不同Zn含量的Zn-Ni(OH)2碱性充电电池的EIS谱图 H.Chen,JQ Zhang, J Solid State Electrochem,2005 9:421-428
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
Seminar I
近似简化处理
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
高频端的近似: 低频端的近似:
Z = Rs +
Z=
Seminar I
电路描述码CDC
(4)对于复杂的电路,分解成2个或2个以 上互相串联或并联的“盒”. (5)若在右括号后紧接着有一个左括号与 之相邻,则前后两括号中的复合元件级别 相同。这两个括号中的复合元件是并联还 是串联,决定于二者是放在奇数级还是偶 数级的括号中。 例如:R(QR(RL)(RL))
Seminar I
谢谢大家!
曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002
Seminar I
两个容抗弧的阻抗谱的两种等效电路模型
R(Q1R1)(Q2R2) R(Q1(R1(Q2R2)))
1 Z=Rs + Q + 1 1 R
1
1 +Q+ 1 2 R
1
1 R1+
2
Z = Rs +
Q1+
1 1 Q2+ R 2
张鉴清,电化学阻抗谱,讲义,2005
相关文档
最新文档