圆的切线的识别华师大
2015年华师大版九年级数学下册教案(表格式全册)剖析

大明学校九年级数学教案唐莉2016年2月第28章圆28.1.1圆的基本元素教学目标:使学生理解圆、等圆、等弧、圆心角等概念,重点难点: 1、重点:圆中的基本概念的认识。
2、难点:对等弧概念的理解。
教学过程:一、圆是如何形成的?请同学们画一个圆,并从画圆的过程中阐述圆是如何形成的。
如右图,线段OA绕着它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形。
同学们想一想,如何在操场上画出一个很大的圆?说说你的方法。
由以上的画圆和解答问题的过程中,让同学们思考圆的位置是由什么决定的?而大小又是由谁决定的?(圆的位置由圆心决定,圆的大小由半径长度决定)二、圆的基本元素问题:据统计,某个学校的同学上学方式是,有50%的同学步行上学,有20%的同学坐公共汽车上学,其他方式上学的同学有30%,请你用扇形统计图反映这个学校学生的上学方式。
我们是用圆规画出一个圆,再将圆划分成一个个扇形,右上图28.1.1就是反映学校学生上学方式的扇子形统计图。
如图28.1.2,线段OA、OB、OC都是圆的半径,线段AB为直径,.这个以点O为圆心的圆叫作“圆O”,记为“⊙O”。
线段AB、BC、AC都是圆O中的弦,曲线BC、BAC都是圆中的弧,分别记为BC︵、BAC︵,其中像弧BC︵这样小于半圆周的圆弧叫做劣弧,像弧BAC︵这样的大于半圆周的圆弧叫做优弧。
∠AOB、∠AOC、∠BOC就是圆心角。
结合上面的扇形统计图,进一步阐述圆心角、优弧、劣弧等圆中的基本元素。
三、课堂练习: 1、直径是弦吗?弦是直径吗? 2、半圆是弧吗?弧是半圆吗?3、半径相等的两个圆是等圆,而两段弧相等需要什么条件呢?4、说出右图中的圆心解、优弧、劣弧。
5识别。
五、作业: 1、如图,AB是⊙O的直径,C点在⊙O上,那么,哪一段弧是优弧,哪一段弧是劣弧?2、经过A、B两点的圆的几个?它们的圆心都在哪里?3、长方形的四个顶点在以为圆心,以为半径的圆上。
4、如图,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于D,6BC cm,求OD 的长。
切线长定理

班级:九年 班 座号:____ 姓名:__________ 100聚龙学子语录:只有拼出来的美丽,没有等出来的辉煌!课题:§27.2.4切线长定理【学习内容】华师大版九年级上教材第53页.【学习目标】掌握切线长定理【夺百创优第一关】我是第( )名 得分 批改人签字:1. 如图,在△ABC 中,AB=10,BC=6,AC=8,以点C 为圆心的圆与AB 相切,则⊙O 的半径为( )A .4.5B .4.6C .4.7D .4.82. 如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,AD 为⊙O 的弦,连结BD ,∠BAD=∠B=30°,直线BD 是⊙O 的切线吗?如果是,请给出证明.【自学】自学课本53页,解答以下问题:切线长:经过圆外一点作圆的切线,这点与切点之间线段的长度,叫做这点到圆的切线长切线长定理:过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.如图,PA 、PB 分别与⊙O 相切于A 、B 两点则PA= ,∠APO= .练习1.下列说法正确的是( )A .切线长就是切线的长度;B .过任意一点都可以作圆的切线;C .从圆外可以引圆的两条切线,两个切线长相等;D .三角形外心到三边距离相等 练习2.如图1,点P 在 ⊙O 外,PA 、PB 分别与⊙O 相切与点A 、B ,∠P=50°,则∠AOB等于( )A .150°B .130°C .155°D .135° 练习3.如图2,PA 、PB 分别切⊙O 于点A 、B ,若∠P=70°,则∠C 的大小为 .练习4.如图3,从⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别为A 、B ,且∠APB=60°,PA=8,那么弦AB 的长是( )A .4B .8C .34D .38练习5.如图4,⊙O 与△ABC 各边分别相切于点D 、E 、F ,△ABC 的周长20cm,AF=5cm,CF=3cm,则BD= cm.(图1) (图2) (图3) (图4)练习6. 如图,P 是⊙O 外一点,PA 、PB 分别和⊙O 切于A 、B 两点,PA=PB=4cm,∠P=40°,C 是弧AB 上任意一点,过点C 作⊙O 的切线,分别交PA 、PB 于点D 、E.求:(1)△PDE 的周长;(2)∠DOE 的度数.总结提升:解题时应有选择地应用,它是证明线段相等、角相等、弧相等以及垂直关系的重要依据.【挑战100分】 我一直都有读题三遍再做题目的习惯!批改人 得分1.如图1,一个钢管放在V 形架内,如图是其截面图,O 为钢管的圆心,如果钢管的半径为25cm,∠MPN=60°,则OP=( )A .50cmB .325cmC .3350 cm D .350cm 2.如图2,PA 、PB 为⊙O 的切线,A 、B 为切点,根据图形得出四个结论:①PA=PB;②∠APO=∠BPO ;③∠AOP=∠BOP ;④AB 被OP 垂直平分.其中正确结论个数为( ) A .1个 B .2个 C .3个 D .4个3.如图3,PA 、PB 为⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P=40°,则∠BAC= .图1 图2 图34.如图4,AB 是⊙O 的直径,AD 、BC 、CD 是切线,A 、B 、E 是切点.求证:OC ⊥DO.。
利用方程解决有关圆的计算问题 华师大版(PPT)5-2

由勾股定理:OD2+AD2=OA2,
即(r-2.4)2+3.62=r2 解得:r=3.9
答:拱桥圆弧所在圆的半径是3.9米。
想一想:现有一艘宽3米,船舱顶部为 长方形并高出水面2米的货船要经过这 里,问:此船能顺利通过这座拱桥吗?
2.4
3.6
3.6
r r-2.4
利用方程解决有关圆的 若干计算问题
1、垂直于弦(不是直径)的直径平分弦并且平分弦所
对的弧。
【垂径定理】
2、在同一圆内,同弧或等弧所对的圆周角相等,都等于 该弧所对的圆心角的一半;相等的圆周角所对的弧也相等。
3、从圆外一点引圆的两条切线,它们的切线长相等;这 一点和圆心的连线平分这两条切线的夹角。
护林~住风沙。②名起遮蔽或阻挡作用的东西:越过~|清除~。 【馝】[馝馞]()〈书〉形形容香气很浓。 【箅】[箅子](?)名有空隙而能起间隔 作用的器具,如蒸食物用的竹箅子,下水道口上挡住垃圾的铁箅子等。 【弊】①欺诈蒙骗、图占便宜的行为:作~|营私舞~。②害处;毛病(跟“利”相 对):兴利除~|切中时~。 【弊病】名①弊端:管理;森课网校 森课网校 ;混乱,恐有~。②缺点或毛病:制度不健全的~越来越突出 了。 【弊端】名由于工作上有漏洞而发生的损害公益的事情:消除~。 【弊害】名弊病;害处。 【弊绝风清】ī形容社会风气好,没有贪污舞弊等坏事情。 也说风清弊绝。 【弊政】〈书〉名有害的政治措施:抨击~|革除~。 【髲】〈书〉假发。 【獘】〈书〉同“毙”。 【薜】①[薜荔]()名常绿藤本植 物,茎蔓生,叶子卵形。果实球形,可做凉粉,茎叶可入。②()名姓。 【觱】[觱篥]()名古代管乐器,用竹做管,用芦苇做嘴,汉代从西域传入。也 作觱栗、??篥、筚篥。 【篦】动用篦子梳:~头。 【篦子】?名用竹子制成的梳头用具,中间有梁儿,两侧有密齿。 【壁】①墙:~报|~灯|家徒四~◇ 铜墙铁~。②某些物体上作用像围墙的部分:井~|锅炉~|细胞~。③像墙那样直立的山石:绝~|峭~。④壁垒:坚~清野。⑤二十八宿之一。 【壁报】 名机关、团体、学校等办的报,把稿子张贴在墙壁上。也叫墙报。 【壁布】名贴在室内墙上做装饰或保护用的布。 【壁橱】名墙体上留出空间而成的橱。也 叫壁柜。 【壁灯】名装置在墙壁上的灯:一盏~。 【壁挂】名挂在墙壁上的装饰物:毛织~|印染~|木雕~。 【壁柜】名壁橱。 【壁虎】名爬行动物。 身体扁平,四肢短,趾上有吸盘,能在壁上爬行。吃蚊、蝇、蛾等小昆虫,对人类有益。也叫蝎虎。旧称守宫。 【壁画】名绘在建筑物的墙壁或天花板上的 图画:敦煌~。 【壁垒】名①古时军营的围墙,泛指防御工事。②比喻对立的事物和界限:两种观点~分明|唯物主义和唯心主义是哲学中的两大~。 【壁 垒森严】比喻防守很严密或界限划得很分明。 【壁立】动(山崖等)像墙壁一样陡立:~千仞|~的山峰。 【壁炉】名就着墙壁砌成的生火取暖的设备,有 烟囱通到室外。 【壁球】名①球类运动项目之一。场地一端是一面墙,比赛时一方向墙击球,球弹回落地后由另一方回击。分单打和双打。也叫壁式网球。 ②壁球运动使用的球,用纯橡胶或合成橡胶制成。 【壁上观】见页〖作壁上观〗。 【壁虱】ī名①蜱()。②〈方〉臭虫。 【壁式网球】
华师大版九年级下册数学第27章 圆含答案

华师大版九年级下册数学第27章圆含答案一、单选题(共15题,共计45分)1、如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB 于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,,,则为()(取)A. B. C. D.2、AB是⊙O的弦,∠AOB=80°,则弦AB所对的圆周角是()A.40°B.140°或40°C.20°D.20°或160°3、⊙O中,M为的中点,则下列结论正确的是()A.AB>2AMB.AB=2AMC.AB<2AMD.AB与2AM的大小不能确定4、在中,,,,将绕边所在直线旋转一周得到一个圆锥,该圆锥的侧面积()A. B. C. D.5、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为()A. B. C.1 D.26、如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.20°B.40°C.50°D.80°7、如图,⊙O的直径BC=12cm,AC是⊙O的切线,切点为C,AC=BC,AB与⊙O 交于点D,则的长是()A.πcmB.3πcmC.4πcmD.5πcm8、若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似。
如图,如果扇形AOB与扇形是相似扇形,且半径(为不等于0的常数)那么下面四个结论:①∠AOB=∠ A1O1B1;②△AOB∽△ A1O1B1;③A 1B1=k;④扇形AOB与扇形 A1O1B1的面积之比为。
成立的个数为:()A.1个B.2个C.3个D.4个9、如图,△ABC是⊙O的内接三角形,半径OB=3,sinA= ,则弦BC的长为()A.3B.4C.5D.3.7510、如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为( )A. B. C. D.11、如图,AB为⊙O的直径,点C为⊙O上一点,连接CO,作AD OC,若CO =,AC=2,则AD=()A.3B.C.D.12、如图,⊙O的弦AB垂直于直径MN,C为垂足.若OA=5 cm,下面四个结论中可能成立的是()A.AB=12 cmB.OC=6 cmC.AC=3 cmD.MN=9 cm13、如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=1,则图中阴影部分的面积为A. B. C. D.14、如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:① =2 ;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是()A.1B.2C.3D.415、如图,是⊙O的直径,的平分线交⊙O于点,连接,,给出下列四个结论:① ;② 是等腰直角三角形;③ ;④ .其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC=3,∠BAC=120°,以点A为圆心,1为半径作圆弧,分别交AB,AC于点D,E,以点C为圆心,3为半径作圆弧,分别交AC,BC于点A,F.若图中阴影部分的面积分别为S1, S2,则S1﹣S2的值为________.17、如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则的长为________.18、已知等腰内接于半径为5的,已知圆心O到的距离为3,则这个等腰中底边上的高可能是________.19、如图,在半径为3的⊙O中,随意向圆内投掷一个小球,经过大量重复投掷后发现,小球落在阴影部分的概率稳定在,则的长约为________.(结果保留)20、蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB 边如图所示,则△ABC是直角三角形的个数有________ .21、已知扇形的半径为3cm,圆心角为120°,则此扇形的弧长为________ cm,扇形的面积是________ cm2.(结果保留π)22、已知正六边形的边心距为,则这个正六边形的边长为________23、如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为________.24、如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为________.25、已知的三边a、b、c满足,则的内切圆半径=________.三、解答题(共5题,共计25分)26、已知:如图,四边形ABCD是⊙O的内接矩形,AB=4,BC=3,点E是劣弧上的一点,连接AE,DE.过点C作⊙O的切线交线段AE的延长线于点F,若∠CDE=30°,求CF的长.27、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,若,求证:AB=AC28、已知:如图,⊙O1和⊙O2相交于A、B两点,动点P在⊙O2上,且在⊙1外,直线PA、PB分别交⊙O1于C、D,问:⊙O1的弦CD的长是否随点P的运动而发生变化?如果发生变化,请你确定CD最长和最短时P的位置,如果不发生变化,请你给出证明.29、已知如图:为测量一个圆的半径,采用了下面的方法:将圆平放在一个平面上,用一个含有30°角的三角板和一把无刻度的直尺,按图示的方式测量(此时,⊙O与三角板和直尺分别相切,切点分别为点C、点B),若量得AB=5cm,试求圆的半径以及的弧长.30、如图,CB是⊙O的直径,P是CB延长线上一点,PB=2,PA切⊙O于A点,PA=4.求⊙O的半径.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、C5、B6、D7、B8、D9、B10、A11、D12、C13、A14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
第12讲 直线和圆的方程(解析版)

第12讲 直线和圆的方程【考点梳理】一、直线与方程 1.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在. (2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1(x 1≠x 2).若直线的倾斜角为θ(θ≠π2),则k =tan__θ.3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |(2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d 三、圆的方程 1.圆的定义和圆的方程2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)|MC |>r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外;(2)|MC |=r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上;(3)|MC |<r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.四、直线与圆、圆与圆的位置关系 1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎪⎨⎪⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0 消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:【解题方法和技巧】1.求倾斜角的取值范围的一般步骤(1)求出斜率k=tan α的取值范围.(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.求倾斜角时要注意斜率是否存在.2.已知两直线的一般方程两直线方程l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0中系数A1,B1,C1,A2,B2,C2与垂直、平行的关系:A1A2+B1B2=0⇔l1⊥l2;A1B2-A2B1=0且A1C2-A2C1≠0⇔l1∥l2.3.判断直线与圆的位置关系常见的方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程随后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.4.求圆的弦长的常用方法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则()2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=.5.(1)判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.(2)当两圆相交时求其公共弦所在直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.6.在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.【考点剖析】【考点1】直线的倾斜角与斜率一、单选题1.(2022·上海·高三专题练习)“21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案. 【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. (3)两直线平行时要注意验证,排除掉两直线重合的情况.2.(2022·上海市实验学校模拟预测)已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,a b +有最小值,无最大值; ③221a b +>; ④当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞. 正确的个数是( ) A .1 B .2 C .3 D .4【答案】B【分析】由M 与N 的位置关系有3450a b -+<,数形结合法判断M 位置,结合11b a +-的几何意义判断a b +、11b a +-的范围,应用点线距离公式有222a b +>判断③. 【详解】将(0,1)N -代入有304(1)590⨯-⨯-+=>,而M 与N 在3450x y -+=的两侧,则3450a b -+<,①错误;由上知:3450a b -+<且0a >,则M 在直线上方与y 轴右侧部分, 所以54a b +>,故a b +无最值,②错误; 由上图知:M 在直线左上方,则22222(134a b +>=+,③正确; 由3450x y -+=过5(0,)4且0a >且1a ≠,即M 在直线上方与y 轴右侧部分,而11b a +-表示(1,1)-与M 连线的斜率,由图知:193(,)(,)144b a +∈-∞-⋃+∞-,④正确. 故选:B 二、填空题3.(2022·上海·华师大二附中模拟预测)直线2380ax y -+=与直线10x y --=垂直,则=a ______. 【答案】32-【分析】根据两直线垂直得230a +=,即可求出答案.【详解】由直线2380ax y -+=与直线10x y --=垂直得,32302a a +=⇒=-.故答案为:32-.4.(2022·上海·高三专题练习)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________ 【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=, 所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12, 所以所求直线的方程为:()1022y x -=-,即220x y --=, 故答案为:220x y --=.5.(2022·上海·高三专题练习)求直线2x =-与直线310x y -+=的夹角为________. 【答案】6π【分析】先求出直线的斜率,可得它们的倾斜角,从而求出两条直线的夹角. 【详解】解:直线2x =-的斜率不存在,倾斜角为2π, 直线310x y -+=的斜率为3,倾斜角为3π, 故直线2x =-与直线310x y -+=的夹角为236πππ-=,故答案为:6π.6.(2022·上海·高三专题练习)已知双曲线22145x y Γ-=:的左右焦点分别为1F 、2F ,直线l 与Γ的左、右支分别交于点P 、Q (P 、Q 均在x 轴上方).若直线1PF 、2QF 的斜率均为k ,且四边形21PQF F 的面积为206,则k =___________. 【答案】2±【解析】斜率相等,两条线平行,然后用余弦定理求出1PF 和2QF ,根据四边形 21PQF F 的面积为206建立等式解出tan θ即可.【详解】按题意作出图如下:由双曲线方程可得:2a =,3c =,因为直线1PF 、2QF 的斜率均为k ,所以直线1PF ∥2QF ,在三角形12QF F 中,设2QF x =,则124QF a x x =+=+, 设2QF 的倾斜角为θ,则由余弦定理得()()22364cos 26x x x πθ+-+-=⨯,解得2523cos QF x θ==-,同理可得:1523cos PF θ=+,所以四边形21PQF F 的面积()121221155sin 6sin 2223cos 23cos S PF QF F F θθθθ⎛⎫=+⨯⨯=+⨯⨯=⎪+-⎝⎭解得sin θ=sin θ=tan k θ==故答案为:【点睛】两直线平行转化为:斜率相等或者向量平行; 两直线垂直转化为:斜率之积为1-或者向量数量积为0; 三、解答题7.(2022·上海·高三专题练习)已知函数()22x xf x -=-.(1)设()()()112212,,,A x y B x y x x ≠是()y f x =图象上的两点,直线AB 斜率k 存在,求证:0k >;(2)求函数()()()22224x xg x mf x m R -=+-∈在区间0,1上的最大值.【答案】(1)证明见解析;(2)当38m ≥时,max ()2g x =;当38m <时,max 17()64g x m =-. 【分析】(1)由解析式判断()f x 的单调性,进而判断k 的符号,即可证结论.(2)由题设整理()g x ,令322[0,]2x xt --∈=有2()()42g x h t t mt ==-+,根据二次函数的性质可求区间最大值.【详解】(1)∵2x y =单调递增,2x y -=单调递减,∴()22x xf x -=-在定义域上是单调增函数,而2121y y k x x -=-, ∴0k >恒成立,结论得证.(2)由题意,有()222224(22)(22)4(22)2x x x x x x x xg x m m ----=+-⋅-=--⋅-+且[]0,1x ∈,令322[0,]2x xt --∈=,则2()42h t t mt =-+,开口向上且对称轴为2t m =,∴当324m ≤,即38m ≤时,max 317()()624h t h m ==-,即max 17()64g x m =-;当324m >,即38m >时,max ()(0)2h t h ==,即max ()2g x =;【考点2】直线的方程一、单选题1.(2022·上海·高三专题练习)若点1(,)M a b和1(,)N b c 都在直线:1l x y +=上,又点1(.)P c a 和点1(,)Q b c ,则A .点P 和Q 都不在直线l 上B .点P 和Q 都在直线l 上C .点P 在直线l 上且Q 不在直线l 上D .点P 不在直线l 上且Q 在直线l 上【答案】B【详解】由题意得:1111a bb c ⎧+=⎪⎪⎨⎪+=⎪⎩,易得点1,Q b c ⎛⎫⎪⎝⎭满足1 1b c += 由方程组得1111b a b c b ⎧=⎪⎪-⎨⎪=⎪-⎩,两式相加得11c a +=,即点1,P c a ⎛⎫⎪⎝⎭ 在直线:1l x y +=上,故选B.2.(2022·上海·高三专题练习)如下图,直线l 的方程是( )A 330x y -B 3230x y -C 3310x y --=D .310x -=【答案】D【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解. 【详解】由图可得直线的倾斜角为30°, 所以斜率3tan 30k =︒=所以直线l 与x 轴的交点为()1,0, 所以直线的点斜式方程可得l :)301y x -=-,即310x y --=. 故选:D3.(2022·上海市七宝中学高三期中)在平面直角坐标系中,函数+=+1()1x f x x 的图象上有三个不同的点位于直线上,且这三点的横坐标之和为0,则这条直线必过定点( ) A .1,02⎛⎫- ⎪⎝⎭B .()10-, C .()1,1-- D .()1,1【答案】A【分析】画出函数图像,由图可知,直线0k ≠,当0x ≥时,由1kx b =+,解得其中一根, 当0x <时,联立直线和函数方程,由韦达定理及三根之和为0,即可求解. 【详解】解:当0x ≥,1()1,1x f x x +==+ 当()1220,()1,11x x f x x x --++<==---+-所以1,0()21,01x f x x x ≥⎧⎪=⎨--<⎪-⎩,画出图像:设直线方程为:y kx b =+,当0k =时,直线l 与函数()f x 的图像的交点个数不可能是3个, 故0k ≠,依题意可知,关于x 的方程()f x kx b =+有三个不等实根, 当0x ≥时,由1kx b =+,可解得1b x k -=,不妨令31bx k-=, 当0x <时,由211kx b x --=+-可得, 2(1)10(*)kx b k x b ++-+-=,则关于x 的方程(*)有两个不等负实根12,x x , 则由韦达定理可得,121211,k b bx x x x k k---+==, 依题意可知123110k b b x x x k k---++=+=, 则2k b =,直线方程为:()21y kx b b x =+=+,故直线恒过定点1,02⎛⎫- ⎪⎝⎭,故选:A.4.(2022·上海·高三专题练习)设{}n a 是公比为()1q q ≠,首项为a 的等比数列,n S 是其前n 项和,则点()1,n n S S +( )A .一定在直线y qx a =-上B .一定在直线y ax q =+上C .一定在直线y ax q =-上D .一定在直线y qx a =+上【答案】D【分析】由于()()111111n n n n a q a q S qS qa qq++---=-=--,即可得出.【详解】∵()()111111n n n n a q a q S qS qa qq++---=-=--,∴1n n S qS a +=+,∴点()1,n n S S +一定在直线y qx a =+上. 故选:D.【点睛】本题考查了等比数列的前n 项和公式、直线的方程,考查了推理能力与计算能力,属于中档题. 二、填空题5.(2022·上海奉贤·二模)构造一个二元二次方程组()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩,使得它的解恰好为1112x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩,要求(),0f x y =与(),0g x y =的每个方程均要出现x ,y 两个未知数.答:________. 【答案】()()2235021100x y x y +-=⎧⎪⎨-++-=⎪⎩【分析】不妨令(),0f x y =为过()1,2、()3,4-两点的直线,(),0g x y =为以()1,2、()3,4-两点为直径的圆,即可满足题意.【详解】过()1,2、()3,4-两点的直线为214231y x --=---,整理得350x y +-= ()1,2、()3,4-()1,2、()3,4-两点的中点坐标为()2,1-则以()1,2、()3,4-两点为直径的圆为()222(1)10x y -++=则可令(),0f x y =为350x y +-=,(),0g x y =为()222(1)10x y -++=故答案为:()()2235021100x y x y +-=⎧⎪⎨-++-=⎪⎩6.(2022·上海·高三专题练习)在△ABC 中,3AC =,4AB =,5BC =,P 为角平分线AT 上一点,且在△ABC 内部,则P 到三边距离倒数之和的最小值为________ 【答案】1927012+ 【分析】先根据题意建立平面直角坐标系,求出BC 所在直线的方程为134x y+=和角A平分线AT 的方程为y x =,求出交点的坐标,令(,)P m m ,依题意知1207m <<,根据点到直线的距离表示出P 到三边的距离的倒数和,构造函数25()127f m m m =+-,1207m <<,利用导数求出函数的最小值. 【详解】由3AC =,4AB =,5BC =可知△ABC 为直角三角形,以A 为原点,以直角边AC 为x 轴,直角边AB 为y 轴建立平面直角坐标系,易知(0,4)B ,(3,0)C ,角A 平分线AT 的方程为y x =,由截距式知BC 所在直线的方程为134x y+=,即43120x y +-=,43120y x x y =⎧⎨+-=⎩ 解得1212(,)77T ,令(,)P m m 依题可知1207m <<, 由点到直线的距离公式知P 到BC 的距离为1275m-, 则P 到三边距离倒数之和为11525127127m m m m m++=+-- 令25()127f m m m =+-,1207m <<,则'22235()(127)f m m m =-+-,令'()0f m =,即有m =(该极值点在区间1207m <<上),当 0m <<'()0f m <,则()f m 递减;127m <<时,'()0f m >,则()f m 递增,min ()f m f ∴==【点睛】本题考查了点到直线的距离公式、导数和函数的最值关系,培养了学生的计算能力、转化能力,属于中档题.7.(2022·上海·高三专题练习)已知直线l 过点(2,1)P -,直线l 的一个方向向量是()3,2d =-,则直线l 的点方向式方程是___________. 【答案】2132x y +-=- 【分析】利用直线的点方向式方程可得出结果.【详解】因为直线l 过点(2,1)P -,它的一个方向向量为()3,2d =-, 所以,直线l 的点方向式方程为2132x y +-=-. 故答案为:2132x y +-=-. 8.(2022·上海·复旦附中模拟预测)经过点1,0A 且法向量为()2,1n =的直线l 的一般式方程是______. 【答案】220x y +-=【分析】由法向量的定义求出直线方程法向式再化为一般式.【详解】设(,)P x y 是直线上任一点,则由0AP n ⋅=得直线方程为2(1)0x y -+=,即220x y +-=. 故答案为:220x y +-=.【考点3】两直线的位置关系一、单选题1.(2021·上海市七宝中学模拟预测)“2m =-”是“直线()230m x my -++=与直线30x my --=垂直”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】利用两直线垂直可求得m 的值,再利用集合的包含关系判断可得出结论. 【详解】若直线()230m x my -++=与直线30x my --=垂直,则220m m --=, 即220m m +-=,解得2m =-或1,因为{}2- {}2,1-,所以,“2m =-”是“直线()230m x my -++=与直线30x my --=垂直”的充分非必要条件. 故选:A. 二、填空题2.(2022·上海徐汇·二模)已知m ∈R ,若直线1l :10mx y ++=与直线2l :9230x my m +++=平行,则m =______________.【答案】3【分析】根据两条直线平行的充要条件列方程组求解即可得答案.【详解】解:因为直线1l :10mx y ++=与直线2l :9230x my m +++=平行,所以()29101231m m m ⎧-⨯=⎪⎨⨯+≠⨯⎪⎩,解得3m =,故答案为:3.3.(2022·上海市行知中学高二期中)若直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,则=a ______. 【答案】2-【分析】根据两个直线垂直的公式代入计算即可.【详解】因为直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直, 所以()()1210a a ⨯+-⨯+=,解得2a =-, 故答案为:2-.4.(2022·上海宝山·二模)已知直线20x y ++=与直线0x dy -+=互相平行且距离为m .等差数列{}n a 的公差为d ,且7841035,0a a a a =+<,令123||||||||n n S a a a a =++++,则m S 的值为__.【答案】52【分析】根据平行线的距离求出d 和m 的值,利用等差数列的定义和性质求出通项公式,进而求和即可. 【详解】由题意知,0d ≠,因为两直线平行,所以121d =≠-2d =-,由两平行直线间距离公式得10m ==,由78a a ⋅=77(2)35a a ⋅-=,解得75a =-或77a =. 又410720a a a +=<,所以75a =-,即7165a a d =+=-, 解得17a =,所以1(1)29n a a n d n =+-=-+. 所以1012310S a a a a =++++|7||5||3||1||1||3||5||7||9|=++++-+-+-+-+-|11|52+-=.故答案为:52.5.(2022·上海·同济大学第一附属中学高二阶段练习)若直线1:210l ax y a ++-=与直线2:230l x ay a ++-=平行,则1l 与2l 之间的距离为______.【分析】利用直线平行可求得2a =-,代入距离公式即可得出结果.【详解】根据两直线平行,可得22(1)2(3)a a a a a ⋅=⨯⎧⎨-≠-⎩,解得2a =-,所以两直线的方程为:12:2230,:2250l x y l x y -+=-+=,根据平行线间的距离公式可得,两平行线间的距离2d =,【考点4】直线与圆的位置关系一、单选题1.(2022·上海·模拟预测)设集合(){}222Ω(,)()4,x y x k y kk k =-+-=∈Z ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧;②存在直线l ,使得集合Ω中存在无数点在l 上:( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立 D .①不成立②不成立【答案】B【分析】根据圆与圆的位置关系及直线与圆的位置关系一一判断即可; 【详解】解:若①成立,则相邻两圆外离,不妨设相邻两圆方程为()222(4)k x k y k -+-=,圆心为()2,k k,半径1r =()()()2224111x k y k k -++=-+-,圆心为()()21,1k k ++,半径2r =2>当4k =时(222282360⎡⎤-=-->⎣⎦,2>成立,所以结论①成立;对于②,设直线l 的方程为y mx t =+,则圆心()2,k k到直线l 的距离d =,当k →∞时d r >,所以直线l 只能与有限个圆相交,所以结论②不成立; 故选:B2.(2022·上海·高三专题练习)直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A试题分析:由1k =时,圆心到直线:1l y x =+的距离d =.所以11222OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时, OAB ∆的面积为12.所以不要性不成立.故选A. 考点:1.直线与圆的位置关系.2.充要条件. 二、填空题3.(2022·上海·模拟预测)设直线系:(1)cos (2)sin 1(02)M x y θθθπ-+-=≤≤,对于下列四个命题: ①M 中所有直线均经过一个定点; ②存在定点P 不在M 中的任一条直线上;③对于任意整数(3)n n ≥,存在正n 边形,使其所有边均在M 中的直线上; ④M 中的直线所能围成的正三角形面积都相等.其中真命题的序号是_________(写出所有真命题的序号) 【答案】②③【分析】令1cos 2sin x y θθ-=⎧⎨-=⎩,消去θ,即可得到直线系M 表示圆()()22121x y -+-=的切线的集合,即可判断①②③,再利用特殊值判断④;【详解】解:由直线系:(1)cos (2)sin 1(02)M x y θθθπ-+-=≤≤,可令1cos 2sin x y θθ-=⎧⎨-=⎩,消去θ可得()()22121x y -+-=,故直线系M 表示圆()()22121x y -+-=的切线的集合,故①不正确; 因为对任意θ,存在定点()1,2不在直线系M 中的任意一条上,故②正确;由于圆()()22121x y -+-=的外切正n 边形,所有的边都在直线系M 中,故③正确;M 中的直线所能围成的正三角形的边长不一定相等,故它们的面积不一定相等,如图中等边三角形ABC 和ADE 面积不相等,故④不正确.综上,正确的命题是②③. 故答案为:②③.4.(2022·上海·高三开学考试)已知点P 是直线3420x y +-=上的点,点Q 是圆22(1)(1)1x y +++=上的点,则PQ 的最小值是___________. 【答案】45【分析】由题意可得PQ 的最小值为圆心到直线的距离减去半径即可 【详解】圆22(1)(1)1x y +++=的圆心为(1,1)--,半径为1, 则圆心到直线3420x y +-=的距离为223429534d ---==+,所以PQ 的最小值为94155-=,故答案为:455.(2022·上海·高三专题练习)若直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y ,则1221x y x y +的值为________.【答案】16【分析】直接利用圆与直线的位置关系,建立一元二次方程根与系数的关系,进一步求出结果. 【详解】解:直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y , 则:22516x y x y +=⎧⎨+=⎩所以:221090x x -+=, 则125x x +=,1292x x , 则()()1112221255x x x y x y x x =-+-+121252x x x x25916故答案为:16【点睛】本题考查的知识要点:直线与曲线的位置关系的应用,一元二次方程根与系数的关系的应用. 6.(2022·上海·高三专题练习)过原点且与圆22420x y x y ++-=相切的直线方程为_______. 【答案】20x y -=【分析】切线的斜率显然存在,设出切线方程,利用圆心到直线的距离等于半径,列方程可解得答案. 【详解】由22420x y x y ++-=得22(2)(1)5++-=x y ,所以圆心为(2,1)-,因为圆心到y 轴的距离为2,所以所求切线的斜率一定存在, 所以设所求切线方程为y kx =,即0kx y ,解得2k =,所以所求切线方程为20x y -=. 故答案为:20x y -=.【点睛】本题考查了求圆的切线方程,属于基础题.7.(2022·上海·高三专题练习)在平面直角坐标系xOy 中,过点(3,)P a -作圆2220x y x +-=的两条切线,切点分别为11(,)M x y ,22(,)N x y .若21212121()()()(2)0x x x x y y y y -++-+-=,则实数a 的值等于____________. 【答案】4.【分析】取MN 中点Q ,设()1,0,(0,1)A B ,则利用斜率公式转化条件得1MN BQ k k ⋅=-,再结合圆的切线性质得1MN PA k k ⋅=-,即得BQ PA k k =,最后根据三点共线求结果.【详解】由2220x y x +-=得()2211x y -+=,圆心为1,0A ,设()0,1B ,取MN 中点Q ,由题意得1MN PA k k ⋅=-, 因为21212121()()()(2)0x x x x y y y y -++-+-= 所以21212121()(2)1()()y y y y x x x x -+-=--+,则1MN BQ k k ⋅=-因此BQ PA k k =,从而,,P A B 三点关系,即13110a -=---得4a = . 故答案为:4.【点睛】关键点点睛:本题的关键在于利用斜率关系转化为三点共线问题求解.8.(2022·上海·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.【分析】设直线AB的方程为y b =+,则点()0,A b ,利用直线AB 与圆()2211x y +-=相切求出b 的值,求出AC ,利用勾股定理可求得AB .【详解】设直线AB的方程为y b =+,则点()0,A b ,由于直线AB 与圆()2211x y +-=相切,且圆心为()0,1C ,半径为1,则112b -=,解得1b =-或3b =,所以2AC =, 因为1BC =,故AB ==9.(2021·上海·高三专题练习)过直线:2l x y +=上任意点P 向圆22:1C x y +=作两条切线,切点分别为,A B ,线段AB 的中点为Q ,则点Q 到直线l 的距离的取值范围为______.【答案】 【分析】设P (t ,2﹣t ),可得过O 、A 、P 、B 的圆的方程与已知圆的方程相减可得AB 的方程,进而联立直线方程解方程组可得中点Q 的坐标,由点Q 到直线的距离公式和不等式的性质可得. 【详解】∵点P 为直线:2l x y +=上的任意一点,∴可设(),2P t t -,则过O A P B 、、、的圆的方程为()2222212224t t x y t t -⎛⎫⎛⎫⎡⎤-+-=+- ⎪ ⎪⎣⎦⎝⎭⎝⎭, 化简可得()2220x tx y t y -+--=,与已知圆的方程相减可得AB 的方程为()21tx t y +-=, 由直线OP 的方程为()20t x ty --=, 联立两直线方程可解得2244tx t t =-+,22244t y t t -=-+,故线段AB 的中点222,244244t t Q t t t t -⎛⎫⎪-+-+⎝⎭,∴点Q 到直线l的距离2122d t t ==--+,∵()2222111t t t -+=-+≥,∴210122t t <≤-+, ∴211022t t -≤-<-+,∴2112222t t ≤-<-+,∴21222t t -<-+d ∈⎣故答案为⎣ 【点睛】本题考查直线与圆的位置关系,涉及圆的相交弦和点到直线的距离公式,以及不等式求函数的值域,属中档题.10.(2022·上海交大附中高三期中)圆C 的圆心C 在抛物线22y x =上,且圆C 与y 轴相切于点A ,与x 轴相交于P 、Q 两点,若9OC OA ⋅=(O 为坐标原点),则PQ =______.【答案】【分析】不妨设点C 在第一象限,设()2000,02y C y y ⎛⎫> ⎪⎝⎭,则()00,A y ,根据9OC OA ⋅=求出0y ,从而可求得圆C 的方程,求出,P Q 的坐标即可得解. 【详解】解:不妨设点C 在第一象限, 设()2000,02y C y y ⎛⎫> ⎪⎝⎭,则()00,A y , 故()2200009,0,2y y OC y y OA ⎛⎫=⋅= ⎪⎝⎭⋅=,解得03y =, 故圆心9,32C ⎛⎫⎪⎝⎭,所以圆C 的半径等于92,所以圆C 的方程为()22981324x y ⎛⎫-+-= ⎪⎝⎭,当0y =时,3592x +=或3592-+, 所以3593593522PQ -++=-=. 故答案为:35.11.(2022·上海·高三专题练习)已知圆221:1x y ω+=,圆222:4x y ω+=,P 为1ω上的动点,M 、N 为2ω上的动点,满足23MN =PM PN ⋅的取值范围是___________. 【答案】[3,1]-【分析】先由勾股定理得出MN 的中点Q 的轨迹,再结合向量的运算得出23PM PN QP ⋅=-,最后由2[0,4]QP ∈得出PM PN ⋅的取值范围.【详解】设MN 的中点Q ,22||2(3)1OQ =-=,即MN 的中点Q 的轨迹是221x y +=,所以222()()3PM PN QM QP QN QP QP QM QP ⋅=-⋅-=-=-,又 220,2QP ⎡⎤∈⎣⎦,所以[3,1]PM PN ⋅∈-故答案为:[3,1]-12.(2022·上海·华师大二附中模拟预测)已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是_________. 【答案】1,12⎡⎤-⎢⎥⎣⎦【分析】通过曲线方程判断曲线特征,通过0AP AQ +=,说明A 是PQ 的中点,结合y 的范围,求出m 的范围即可. 【详解】解:曲线2:9C y x =--,是以原点为圆心,3为半径的半圆(圆的下半部分), 并且[3P y ∈-,0],对于点(0,)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的纵坐标2y =,21[,1]22py m +∴=∈-.故答案为:1[,1]2-.【点睛】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 三、解答题13.(2022·上海·模拟预测)如图,由半圆()22200,+=≤>x y r y r 和部分抛物线()()2100y a x y a =-≥>,合成的曲线C 称为“羽毛球开线”,曲线C 与x 轴有AB 、两个焦点,且经过点()23.,(1)求a r 、的值;(2)设()02N ,,M 为曲线C 上的动点,求MN 的最小值;(3)过A 且斜率为k 的直线l 与“羽毛球形线”相交于点、、P A Q 三点,问是否存在实数k ,使得QBA PBA ∠=∠?若存在,求出k 的值;若不存在,请说明理由.【答案】(1)11a r =⎧⎨=⎩;(2)min MN =3)存在,且1k =【分析】(1)将()23,代入()21=-y a x 求出1a =,再由21y x =-与x 轴交点坐标,代入圆的方程,即可求出1r =;(2)先设00(,)M x y ,得到=MN 00≤y ,和00≥y 两种情况,由抛物线与圆的方程,即可求出结果;(3)先由题意得到PQ 的方程,与抛物线联立,求出2(1,2)--Q k k k ;与圆联立,求出22212,11⎛⎫-- ⎪++⎝⎭k k P k k ,根据QBA PBA ∠=∠得到=-BP BQ k k ,化简得到关于k 的方程,求解,即可得出结果.【详解】(1)由题意,将()23,代入()21=-y a x ,得到1a =;所以抛物线21y x =-; 又21y x =-与x 轴交于()1,0±,所以(1,0)(1,0)、-A B ,代入圆的方程,可得1r =; 所以1a =,1r =;(2)设00(,)M x y ,因为()02,N ,则MN当00≤y 时,22001=-x y ,所以=MN所以00y =时,min =MN当00≥y 时,2001=+x y ,=MN所以032=y 时,minMN<MN (3)由题意,可得:PQ 的方程为(1)y k x =-,由2(1)1y k x y x =-⎧⎨=-⎩,整理得:210x kx k -+-=, 解得1x =或1=-x k ,即2(1,2)--Q k k k ;由22(1)1y k x x y =-⎧⎨+=⎩,整理得:2222(1)210+-+-=k x k x k 解得:1x =或2211-=+k x k ,则22212,11⎛⎫-- ⎪++⎝⎭k k P k k ,由QBA PBA ∠=∠,可得=-BP BQ k k ,即2222221111--+=--++kk k k k kk ,整理得2210--=k k,解得1=k因此,存在实数1k =QBA PBA ∠=∠.【点睛】本题主要考查圆与圆锥曲线的综合,熟记直线与圆位置关系,以及直线与抛物线物位置关系即可,属于常考题型.14.(2022·上海·高三专题练习)某景区欲建造同一水平面上的两条圆形景观步道1M 、2M (宽度忽略不计),已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆1M 与AB 、AD 分别相切于点B 、D ,2M 与AC 、AD 分别相切于点C 、D ,且90CAD BAD ︒∠+∠=.(1)若60BAD ︒∠=,求圆1M 、圆2M 的半径(结果精确到0.1米);(2)若景观步道1M 、2M 的造价分别为每米0.8千元、0.9千元,如何设计圆1M 、圆2M 的大小,使总造价最低?最低总造价为多少(结果精确到0.1千元)? 【答案】(1)圆1M 、圆2M 的半径分别为34.6米、16.1米;(2)1M 的半径与圆2M 的半径分别为30米与20米时,总造价最低,最低总造价为84263.9π≈千元. 【分析】(1)直接利用锐角三角函数的定义可计算出两圆的半径; (2)设1M ADα,可得24M ADπα,其中0,4πα⎛⎫∈ ⎪⎝⎭,然后得出总造价y (千元)关于α的函数表达式,并利用基本不等式可求出y 的最小值,利用等号成立求出对应的tan α的值,即可计算出两圆的半径长.【详解】(1)依题意,圆1M的半径1tan 306034.6M B AB =⋅==(米), ()tan 60tan 4531tan15tan 604521tan 60tan 4513--=-===++圆2M 的半径(260tan1560216.1M C =⋅=≈(米) ,答:圆1M 、圆2M 的半径分别为34.6米、16.1米; (2)设1M ADα,则24M ADπα,其中0,4πα⎛⎫∈ ⎪⎝⎭,故景观步道的总造价为260tan 0.8260tan 0.94y ππαπα⎛⎫=⋅⋅⋅+⋅⋅-⋅ ⎪⎝⎭.1tan 2128tan 9128tan 911tan 1tan απαπααα⎡⎤-⎛⎫⎛⎫=+⋅=+-+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦()()18181281tan 1712281tan 17841tan 1tan παπαπαα⎡⎤⎡⎤=++-≥⋅+⋅=⎢⎥⎢⎥++⎣⎦⎣⎦(当且仅当()1tan 0,12α=∈时取等号), 当()1tan 0,12α=∈时,1tan 1tan 41tan 3πααα-⎛⎫-== ⎪+⎝⎭, 答:设计圆1M 的半径与圆2M 的半径分别为30米与20米时,总造价最低,最低总造价为84263.9π≈(千元).【点睛】本题考查直线与圆的位置关系,考查利用基本不等式求最值,解题的关键就是建立函数模型的解析式,考查分析问题和解决问题的能力,属于中等题.【考点5】圆与圆的位置关系一、单选题1.(2020·上海·高三专题练习)已知,x y R ∈,且2220x y x ++<,则( ). A .22680x y x +++< B .22680x y x +++> C .22430x y x +++< D .22430x y x +++>【答案】B【分析】借助圆与圆关系确定选择. 【详解】222212(1)0x y x x y ++<∴++<,表示圆心为1(1,0)C -,半径为11r =的圆内部的点,范围记为P2222680(3)1x y x x y +++<∴++<表示圆心为2(3,0)C -,半径为21r =的圆内部的点,因为1212||2C C r r ==+,所以两圆外切,P 在A 中所表示的点的范围外,所以A 不成立; 2222680(3)1x y x x y +++>∴++>表示圆心为2(3,0)C -,半径为21r =的圆外部的点,因为1212||2C C r r ==+,所以两圆外切,P 在B 中所表示的点的范围内,所以B 成立; 2222430(2)1x y x x y +++<∴++<表示圆心为3(2,0)C -,半径为31r =的圆内部的点,因为121312||||1r r C C r r -<=<+,所以两圆相交,P 中有些点在C 中所表示的点的范围外,所以C 不恒成立; 2222430(2)1x y x x y +++>∴++>表示圆心为3(2,0)C -,半径为31r =的圆外部的点,因为121312||||1r r C C r r -<=<+,所以两圆相交,P 中有些点在D 中所表示的点的范围外,所以D 不恒成立; 故选:B【点睛】本题考查两圆位置关系,考查综合分析判断能力,属中档题.2.(2022·上海·高三专题练习)若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是( ) A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞D .(25,9)(11,)--+∞【答案】D【分析】求出两圆的圆心坐标与半径,再由圆心距与半径间的关系列式求解. 【详解】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k ,则k >﹣25,圆心坐标为(3,4 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则|C 1C 2|1或|C 1C 2|1,即51或51, 解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞). 故选:D .【点睛】本题考查圆与圆位置关系的判定及应用,考查数学转化思想方法,考查计算能力,是基础题.3.(2022·上海黄浦·模拟预测)已知圆C :25cos 35sin x y θθ=-+⎧⎨=+⎩(θ为参数),与圆C 关于直线0x y +=对称的圆的普通方程是( ). A .22(3)(2)25x y ++-= B .22(2)(3)25x y -++= C .22(3)(2)5x y ++-= D .22(3)(2)5x y ++-=【答案】A【分析】根据题意得圆C 的普通方程为22(2)(3)25x y ++-=,与圆C 对称的圆的圆心和圆C 的圆心关于直线0x y +=对称,半径和圆C 相同,求解计算即可.【详解】圆C :25cos 35sin x y θθ=-+⎧⎨=+⎩(θ为参数)转化为普通方程为22(2)(3)25x y ++-=,圆心为(2,3)-,半径为5,设圆C 关于直线0x y +=对称的圆的圆心为(,)a b ,半径为5, 所以点(2,3)-与点(,)a b 关于0x y +=对称,所以()230223112a b b a -+⎧+=⎪⎪⎨-⎪⨯-=-⎪+⎩,解得32a b =-⎧⎨=⎩, 所以对称的圆的圆心为(3,2)-,半径为5, 故对称的圆的普通方程是22(3)(2)25x y ++-=. 故选:A. 二、填空题4.(2020·上海·高三专题练习)若圆2225x y +=与圆22680x y x y m +-++=的公共弦长为8,则m =________.【答案】55-或5【分析】将两圆的方程相减即可得到两圆公共弦所在的直线方程,根据弦长与半径以及弦心距之间的关系即可得到d =|25|10m +=3.从而解得m =﹣55或5. 【详解】解:x 2+y 2=25① x 2+y 2﹣6x +8y +m =0② 两式相减得6x ﹣8y ﹣25﹣m =0.圆x 2+y 2=25的圆心为(0,0),半径r =5.。
苏科版与华师版初中数学教材《圆》的比较

2016年第12期科学大众·科学教育Popular Science本文就以《圆》为素材,通过对华师大版教材与苏科版教材在教材编写理念、教材结构、内容分布和典型案例等的比较分析,阐述这两种教材的异同点。
一、两个版本教科书中“圆”的章节编排比较研究华师大版教材的《圆》放在九年级下册的第二章。
在学完代数的《二次函数》后进行,主要内容是圆及其有关概念、圆的性质、与圆有关的位置关系以及圆中的计算问题。
主要特点是从实际问题出发,让学生在实践活动中引入相关教学内容,加强合情推理与逻辑推理的融合,加强数学说理的内容,培养学生几何思维能力。
苏科版教材的《中心对称图形(二)》放在九年级上册的第五章。
在代数学习完《二次根式》《一元二次方程》,几何学习完《图形与证明(二)》后进行。
主要内容是圆的有关性质、与圆有关的位置关系、正多边形与圆以及圆中的计算问题。
在本章中,对于圆的某些性质,先引导学生通过合情推理探索、发现结论,再用演绎推理的方法证明“同样的结论”,体现了合情推理与演绎推理的相互协调,相辅相成。
两本教材大部分内容是相同的,但时间安排有一定差距。
例如:华师版教材在讲完《圆》后安排《几何的回顾》作为几何的总结,苏教版教材把这一部分内容作为几何的最后一个部分;苏教版教材加入了“正多边形与圆”、“切线的性质”等有关内容。
另外有的内容虽然相同,但其知识点的深度不一样,例如“垂径定理”的内容中华师大版引入了垂径定理的推论,而苏科版中只是对垂径定理进行了简单介绍。
二、两个版本教科书中“圆的引入”的比较华师版教材中以扇形统计图入手,让同学们通过动手操作探索,通过图形直观认识“弦”、“弧”等概念;利用圆是旋转对称图形的性质来研究圆心角、弧、弦之间的关系;利用圆是轴对称图形来发现“垂径定理”。
在这里强调学生的以往经验,强调学生的直观感受。
苏科版教材从画圆出发,借助学生的感性认识,通过描述圆的发生过程给出圆的定义,然后用集合的观点将平面内的点分为三类:点在圆内、点在圆上、点在圆外,掌握点与圆的位置关系。
2025年华师大新版高二数学下册月考试卷含答案
2025年华师大新版高二数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、高二年级有14个班;每个班的同学从1到50排学号,为了交流学习经验,要求每班学号为14的同学留下来进行交流,这里运用的是()A. 分层抽样。
B. 抽签抽样。
C. 随机抽样。
D. 系统抽样。
2、已知i为虚数单位,计算=()A. 1-iB. 1+iC. -1+iD. -1-i3、【题文】在四边形中,则该四边形的面积为()A.B.C. 5D. 104、【题文】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是()A. (0,)B. (+∞)C. (]D. (]5、【题文】已知抛物线的焦点与椭圆的一个焦点重合,过点的直线与抛物线交于两点,若则的值()A.B.C.D. 36、三棱锥中,分别是的中点,则四边形是()A. 菱形B. 矩形C. 梯形D. 正方形7、若z1=(m2+m+1)+(m2+m﹣4)i,m∈R,z2=3﹣2i,则m=1是z1=z2的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件8、下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是()A. y=-3|x|B. y=C. y=log3x2D. y=x-x29、从数字(1) (2) (3) (4) (5)中,随机抽取(3)个数字(()允许重复())组成一个三位数,其各位数字之和等于(9)的概率为(() ())A. ( dfrac {13}{125})B. ( dfrac {16}{125})C. ( dfrac {18}{125})D. ( dfrac {19}{125})评卷人得分二、填空题(共9题,共18分)10、关于下列命题:①若一组数据中的每一个数据都加上同一个数后;方差恒不变;②满足方程f'(x)=0的x值为函数f(x)的极值点;③命题“p且q为真”是命题“p或q为真”的必要不充分条件;④若函数f(x)=log a x的反函数的图象过点(-1,b),则a+2b的最小值为⑤点P(x,y)是曲线y2=4x上一动点,则的最小值是.其中正确的命题的序号是____(注:把你认为正确的命题的序号都填上).11、如图中椭圆内的圆的方程为x2+y2=1,现借助计算机利用如图程序框图来估计该椭圆的面积,已知随机输入该椭圆区域内的1000个点(x,y)时,输出的i=800,则由此可估计该椭圆的面积为____.12、已知函数f(x)=x3-x2-x,则f(-a2)与f(-1)的大小关系为 ____;13、若p是q的充分不必要条件,则¬p是¬q的____条件14、由y=x3, y2=x围成的平面图形绕x轴旋转一周所得到的旋转体的体积为____.15、命题“若ab=0,则a、b中至少有一个为零”的逆否命题是 ______ .16、设函数f(x)=+ax,若f(x)在(1,+∞)上单调递减,则a的取值范围是______ .17、已知(10)件产品中有(3)件次品,若任意抽取(3)件进行检验,则其中至少有一件次品的概率是 ______ .18、已知(⊙A) (x^{2}+y^{2}=1) (⊙B) ((x-3)^{2}+(y-4)^{2}=4) (P)是平面内一动点,过(P)作(⊙A) (⊙B)的切线,切点分别为(D) (E) 若(PE=PD) 则(P)到坐标原点距离的最小值为 ______ .评卷人得分三、作图题(共8题,共16分)19、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?20、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)21、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)22、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?23、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)24、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)25、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共4题,共20分)26、已知圆M的半径为圆心在直线y=2x上,圆M被直线x-y=0截得的弦长为求圆M的方程27、某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:且生产吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)28、【题文】在△ABC中,内角A,B,C的对边分别为若(1)求角B;(2)若的面积为求函数的单调增区间29、图为一简单组合体;其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(Ⅰ)求四棱锥B-CEPD的体积;(Ⅱ)求证:BE∥平面PDA.评卷人得分五、计算题(共1题,共9分)30、在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.参考答案一、选择题(共9题,共18分)1、D【分析】根据题意;结合抽样方法的定义;从“每班学号为14的同学留下来进行交流”用的是系统抽样的方法;故C正确;故选D.【解析】【答案】根据题意;结合抽样方法的定义,即抽签抽样;随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取,分层抽样使用于总体中的个体有明显差异,系统抽样用于从容量为N的总体中抽取容量为n的样本;分析学号为14的同学留下来进行交流的过程,进而得到可得答案.2、A【分析】由题意得,=+1=+1=-i+1;故选A.【解析】【答案】将所给的式子分开后,将同乘以i再化简.3、C【分析】【解析】注意到两向量的纵坐标都为2,所以借助坐标系如图,或者注意到分为四个小直角三角形算面积。
2020春华师大版九下数学第27章圆章末复习(共38张PPT)
解:(1)证明:∵OA=OC,AD=OC,∴OA=AD. ∴∠OAC=∠OCA,∠AOD=∠ADO. ∵OD∥AC, ∴∠OAC=∠AOD. ∴∠OAC=∠OCA=∠AOD=∠ADO. ∴∠AOC=∠OAD.∴OC∥AD. ∴四边形 OCAD 是平行四边形.
(2)②∵AD 与⊙O 相切,∴∠OAD=90°. ∵AD∥OC,∴∠AOC=90°. ∴∠B=21∠AOC=45°.
射线 PN 与⊙O 相切于点 Q,动点 A 自 P 点以25 cm/s 的速度沿射线 PM 方
向运动,同时动点 B 也自 P 点以 2 cm/s 的速度沿射线 PN 方向运动,则它
们从点 P 出发
1.5 s或10.5 s
后,AB 所在直线与⊙O 相切.
类型1 遇弦添加弦心距或半径
16.如图,在⊙O 中,半径 OC 与弦 AB 垂直于点 D,且 AB=8,OC
(1)将上述问题中弦 AB 改为直径 AB,如图 1 所示,试证明 BF=BE; (2)如图 2 所示,若直径 AB=10,EO=12OB,作直线 l 与⊙O 相切于点 F,过点 B 作 BP⊥l 于点 P.求 BP 的长.
解:(1)连结 CE,BC,∵CD⊥AB,AD=DE, ∴AC=CE.∴∠CAE=∠CEA. 又∵∠A+∠F=180°,∠CEA+∠CEB=180°, ∴∠CEB=∠F. ∵A︵C=C︵F,∴∠FBC=∠EBC. 又∵BC=BC,∴△CEB≌△CFB(AAS). ∴BE=BF.
A.线段 DB 绕点 D 顺时针旋转一定能与线段 DC 重合 B.线段 DB 绕点 D 顺时针旋转一定能与线段 DI 重合 C.∠CAD 绕点 A 顺时针旋转一定能与∠DAB 重合 D.线段 ID 绕点 I 顺时针旋转一定能与线段 IB 重合
华师大版九年级数学下册《第27章圆》单元检测试卷(含答案解析)
华师大版九年级数学下册第27章圆单元检测试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.下列说法正确的是A. 相等的圆心角所对的弧相等B. 无限小数是无理数C. 阴天会下雨是必然事件D. 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k3.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A. 50°B. 80°C. 90°D. 100°4.如图,已知AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD =6,则BE的长是()A. 4B. 3C. 2D. 15.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°6.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A. B. 5 C. D. 57.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A. B. C. D.8.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC与∠BOC互补,则弦BC的长为()A. 4B. 3C. 2D.9.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有()A. 4个B. 8个C. 12个D. 24个10.如图,已知AB是⊙O的直径,CD是弦且CD⊥AB,BC=6,AC=8,则CD的值是()A. 5B. 4C. 4.8D. 9.6二、填空题(共10题;共30分)11.点A(O,3),点B(4,0),则点O(0,0)在以AB为直径的圆________(填内、上或外).12.在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形的内切圆半径为________.13.圆心角为120°的扇形的半径为3,则这个扇形的面积为________(结果保留π).14.三角形的一边是10,另两边是一元二次方程的x²-14x+48= 0的两个根,则这个三角形内切圆半径是________ .15.如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为________.16.(2011•扬州)如图,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=________17.如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则弧AD的度数是________度18.如图,⊙O中,∠AOB=110°,点C、D是上任两点,则∠C+∠D的度数是 ________°.19.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.20.如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=________.三、解答题(共8题;共60分)21.如图,直径是50cm圆柱形油槽装入油后,油深CD为15cm,求油面宽度AB。
华师大版九年级下册数学全册精品教案
华师大版九年级下册数学全册精品教案一、教学内容1. 第1章:二次函数详细内容:二次函数的性质、二次函数的图像、二次方程与不等式、实际问题中的应用。
2. 第2章:圆详细内容:圆的性质、圆的方程、点到直线的距离、直线与圆的位置关系、圆与圆的位置关系。
3. 第3章:概率与统计详细内容:概率的基本概念、概率的计算、频率与概率、统计图表、数据的分布。
二、教学目标1. 理解并掌握二次函数、圆、概率与统计的基本概念和性质,能运用所学知识解决实际问题。
2. 培养学生的逻辑思维能力和空间想象力,提高学生的运算能力和数据分析能力。
3. 激发学生的学习兴趣,培养合作意识和创新精神,提高学生的数学素养。
三、教学难点与重点1. 教学难点:(1)二次函数的性质及图像的运用;(2)圆的方程及位置关系;(3)概率与统计在实际问题中的应用。
2. 教学重点:(1)二次函数的基本概念和性质;(2)圆的方程和位置关系;(3)概率与统计的基本计算方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规。
2. 学具:直尺、圆规、量角器、计算器、练习本。
五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、圆、概率与统计的概念。
2. 例题讲解:(1)二次函数的性质及图像;(2)圆的方程及位置关系;(3)概率与统计的计算方法。
3. 随堂练习:(1)绘制二次函数图像,分析性质;(2)求解圆的方程,判断圆与圆的位置关系;(3)计算概率,分析统计数据。
4. 知识巩固:通过课后练习,巩固所学知识,提高学生的运用能力。
六、板书设计1. 二次函数的性质与图像;2. 圆的方程及位置关系;3. 概率与统计的计算方法。
七、作业设计1. 作业题目:(1)求二次函数的顶点坐标及对称轴;(2)求解圆的方程,判断圆与直线的位置关系;(3)计算事件的概率,分析统计数据。
2. 答案:(1)顶点坐标:(h,k),对称轴:x=h;(2)圆的方程:一般式或标准式;(3)概率:P(A)=m/n,统计数据:平均数、中位数、众数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:
∴直线l是⊙O的切线
O ┐
A
l
如果直线l是⊙O的切线,点A为切点,那么半径OA与l垂直吗? ∵直线l是⊙O的切线 ∴圆心O到直线l 的距离等于半径 ∴OA是圆心O到直线l的距离 ∴ l⊥OA 2、性质:圆的切线垂直于经过切点的半径。
●
O
A
l
例题欣赏
例1、如右图所示,已知直线AB经过⊙O上的点A,且AB=OA, ∠OBA=45°,直线AB是⊙O的切线吗?为什么? 解:直线AB是⊙O的切线 。理由如下: 在圆O 中, ∵因为AB=OA,∠OBA=45°(已知) ∴∠AOB=∠OBA=45°(等边对等角) 又∵∠OAB+ ∠OBA+ ∠AOB = 180° A B
动手做一做 • 画一个圆O及半径OA,画一条直线l经过⊙O 的半径OA的外 端点A,且垂直于这条半径OA,这条直线与圆有几个交点?
●
O
┐
思考:
A
l
直线l一定是圆O的切线吗?由此,你知道如何画圆的切线吗?
知识归纳
一、圆的切线:
1、定义:经过半径的外端且垂直于这条半径的直线是圆的切线。 条件: (1)经过圆上的一点; (2)垂直于该点半径; ∵l⊥OA,且l 经过⊙O上的A点
●
∵ OA 与⊙D 相切于点E ∴ OE⊥OA
又∵ OC平分∠AOB, DF⊥OB
E
D
∴ DF = DE
又∵ DF⊥OB, 即 d = r ∴ OB是⊙D的切线 。
O
┐
F
B
小结: 1、如何判定一条直线是已知圆的切线?
(1)和圆只有一个公共点的直线是圆的切线;
(2)和圆心的距离等于半径的直线是圆的切线;
知识回顾
直线和圆的位置关系有几种? 用数量关系如何来判断?
⑴ 相 离;
.O d r ┐ .O r d┐
d>r
l
⑵ 相 切;
l
d=r d<r
⑶ 相 交;
.O r ┐ d
l
观察与思考
问题1:下雨天,转动的雨伞上的水滴是 顺着伞的什么方向飞出去的?
问题2:砂轮转动时,火花是沿着砂轮的 什么方向飞出去的?
∴ 直线AC⊥AB 又∵直线AC经过⊙O 上的A点 ∴直线AC是⊙O的切线
练一练
4、如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B
=30°,边BD交圆于点D。BD是⊙O的切线吗?为什么?
解:BD是⊙O的切线 。连结OD。 ∵ OA=OD , ∠BAD=30°(已知)
∴∠ODA=∠A=30°(等边对等角)
O ●
∴∠OAB=180°-∠OBA-∠AOB=90°
∴ 直线AB⊥OA 又∵直线AB经过⊙O 上的A点
∴直线AB是⊙O的切线
练一练
1、判断题:
(1) 垂直于圆的半径的直线一定是这个圆的切线。 ( × ) (2) 过圆的半径的外端的直线一定是这个圆的切线 。( × )
2、以三角形的一边为直径的圆恰好与另一边相切,则此三角 直角 形是__________三角形
练一练
3、如图,AB是⊙O的直径,∠B=45°,AC=AB。 AC是⊙O的切线吗?为什么? 解:AC是⊙O的切线 。理由如下: ∵ AC=AB , ∠B=45°(已知) ∴∠C=∠B=45°(等边对等角) 又∵∠BAC+∠B+∠C = 180° A C B
O ●
∴∠ BAC = 180°-∠B-∠C=90°
∴∠BOD=∠A+∠ODA=60° 又∵∠B+∠BOD+∠BDO = 180° A
●
D
O
C
B
∴∠BDO=180°-∠B-∠BOD=90°
∴ 直线AC⊥AB 又∵直线BD 经过⊙O上的D点 ∴直线BD是⊙O的切线
例题欣赏
例2、如右图所示,已知OC平分∠AOB,D是OC上任意一点, ⊙D与OA相切于点E。那么,OB是⊙D的切线吗?请说明理由。 解:OB是⊙D的切线 。理由如下: 连结DE,过D点作DF⊥OB,垂足为F。 A C
A 、经过圆上的一点; B、 垂直于半径;
(d=r)
(3)过半径外端且和半径垂直的直线是圆的切线;
2、圆的切线有什么性质?
圆的切线垂直于经过切点的半径。
独立 作业
知识的升华
1、课本P63习题23.2 第7题
2、练习册 P45第8题
祝 你 成 功!
结 束 寄 语
下
课
不经历风雨,怎能见彩虹!