七年级数学期末检测卷_2
浙江省宁波市慈溪市2023—2024学年七年级上学期期末数学检测试卷(有答案)

(第16题)三、解答题(第17、18、19题各6分,第题12分,共66分)17.计算:(1);317(2)2--÷-(1)画线段、射线;AD CB (1)比较和的大小,并说明理由;EOF ∠EOB ∠(1)若线段a的长为5,线段b的长为3,则线段a和线段七年级数学学科答案及评分标准一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)12345678910ACDBBBADCD二、填空题(每小题4分,共24分)1112131415162023255-65°或45°31.5注:第15题写对一个答案给2分,写对2个答案给4分三、解答题(第17、18、19题各6分,第20、21题各8分,第22、23题各10分,第24题12分,共66分)17.解(1)317(2)2--÷-()1782=--÷21=(2)257363912⎛⎫⨯-+⎪⎝⎭2573636363912=⨯-⨯+⨯242021=-+25=18.解:(1)()2123x x -=++去括号,得2126x x -=++移项,得2162x x -=++21.解(1)“精品杨梅”有4盒,最重的一盒杨梅(2)平分OD AOF∠答:甲、乙两地间的里程数为7.25公里.24.解(1)3阶相等(2)和3第一次操作后得3,a a >∴ 3,3a -又它们“2阶相等”当时,,解得∴33a ->63a -=9a =当时,,解得33a -<()333a a --=- 4.5a =(3)2和5,3和和和74,52821,58358。
七年级上册数学期末检测卷 二

第1页(共8页)xx 县20 —20 学年度第一学期期末教学质量监测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分150分,考试时间120分钟。
)题号Ⅰ Ⅱ总分 总分人一 二三 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共48分)一、选择题(本大题12个小题,每小题4分,共48分.请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里.)1.31的相反数是( ) A .-31B .-3C .3D .31 2.下列合并同类项正确的是( ). A. 07722=-ba b aB .xy y x 725=+C .731022=-x xD .422633x x x =+ 3.下列几何体,主视图是三角形的是( )A .B .C .D .4.单项式2-ab π的系数和次数分别是 ( )A .-1,4B .π,4C .1,4D .π-,35.安岳县人口大约160万.这个数用科学记数法表示为( ) A .160×104B .2106.1⨯C .6106.1⨯D .71016.0⨯得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页(共8页)6.如图1,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠AOD =35°,则∠AOB 等于( )A .70°B .105°C .140°D .135°7.从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成7个三角形,则n 的值为( ) A . 6 B .7 C .8 D .98.在一条直线上,依次有A ,B ,C ,D 四点,如果点B 是线段AC 的中点,点C 是线段BD 的中点.则下列说法错误..的是( ) A .AB =31AD B .AB >CD C .AB =21BD D .AD =3BC 9.已知2)3(-a 与b +2互为相反数,则a b 的值为( )A .6B .-8C .8D .-610.若有理数a 、b 在数轴上对应的点如图2所示,则下列结论中正确的是( ) A .0>-a bB .b a >C .0>+b aD .0>-b a11.下列说法正确的个数有( ).①绝对值大于2且小于5的的所有整数有5个;②如果一个角与它的余角相等,那么这个角的补角是135°;③当我们在植树的时候,要整齐地栽一行树,只要确定两端树坑的位置就可以了.这一方法用数学知识解释为“两点确定一条直线”;④用四舍五入法将1.5046精确到0.01为1.5.A. 1个B. 2个C. 3个D. 4个12.如图3,AB ∥EF ,则α、β、γ之间的关系为( ) A .γβα+=B .180=-+βγα C .90=-+αγβD .90=-+γβα图3ABCEF βγαB第3页(共8页)第Ⅱ卷(非选择题 共102分)二、填空题(本大题6个小题,每小题4分,共24分.请把答案直接填在题中的横线上.)13.-2的倒数是 .14.如果代数式)3()522+-+mx x x (中不含x 的一次项,则m = . 15.已知x x 32+的值是7,则1932++x x 的值为 .16.将如图4所示的正方体的展开图重新折叠成正方体,和“你”字相对的汉字是 . 17.如图5,∠1=∠2,DE ∥BC ,则下列结论:①BD ∥FG ,②∠ADE =∠C ,③BD 平分∠ABC ,④∠ADB +∠CFG =180°,其中正确的结论有 .(填序号)18.古希腊的毕达哥拉斯和他的学派不仅证明了“三角形内角之和等于两个直角”,还发现了完美数,即“除其本身以外全部因数之和等于本身”的数.我们把小于它本身的因数叫做这个自然数的真约数.如6的所有真约数是1,2,3,而且6=1+2+3.就把6叫做完美数.则下列数64,52,28中是完美数的是 .BC第4页(共8页)三、解答题(本大题共7个小题,共78分,解答应写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分12分)计算下列各题: (1)124332125⨯⎪⎭⎫⎝⎛-- (2)180°-67°43′38″(3)415.881232223---)(---÷⎥⎦⎤⎢⎣⎡⨯20.(本小题满分10分)先化简,再求值:已知多项式A =2244y xy x +-,B =225y xy x -+ .求:(1)A -4B (2)在(1)的结论下,求当x =81,y =1时代数式的值.第5页(共8页)21.(本小题满分10分)如图6是一些棱长均为2cm 的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.(1)请画出从正面和左面看到的这个几何体的形状图; (2)这个几何体的体积是 cm 3.22.(本小题满分10分)已知:如图7,∠1+∠2=180°,∠3=∠C ,求证:∠A =∠4. 证明:∵∠1+∠CFD =180°,(邻补角定义) ∠1+∠2=180° (已知)∴∠CFD =∠2 ( )∴CF ∥BE ( ) ∴∠C =∠BED ( ) ∵∠3=∠C (已知)∴∠3=∠BED (等量代换) ∴AB ∥CD ( ) ∴∠A =∠4 ( )得 分 评 卷 人图6主视图 左视图B432F1 G H D EA C 图7///////////密///////封///////线///////内///////不///////要///////答///////题///////////分评卷人23.(本小题满分11分)如图8,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)比较大小:∠AOD∠BOC(填“>”、“=”、“<”)(2)若∠BOD=35°,则∠AOC= ;若∠AOC=135°,则∠BOD= ;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.图8第6页(共8页)第7页(共8页)24.(本小题满分12分)某电动车厂计划平均每天生产n 辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产(1)用含n 的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖50元;少生产一辆扣80元.当n =50时,该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实际每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,试说明在此方式下这一周工人的工资总额与按日计件的工资总额哪一个更多?25.(本小题满分13分)如图9,已知数轴上点A表示的数为-12,点B表示的数是6.动点P从点A出发,以每秒6个单位长度的速度沿着数轴向右匀速运动;动点Q从B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t(t>0)秒.(1)用含t的代数式表示点P、Q对应的数.(2)若P、Q同时出发,问当P、Q之间的距离是6个单位长度时,P、Q表示的数各是多少?(3)若P、Q同时出发,多少秒时,点P、Q到原点的距离相等?第8页(共8页)。
人教版七年级数学下册期末综合素质评价含答案 (2)

人教版七年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.【教材P 140练习T 3变式】下列调查中,适宜采用全面调查方式的是( )A .调查春节晚会的收视情况B .调查一批新型节能灯泡的使用寿命C .调查我校某班学生喜欢上数学课的情况D .调查某类烟花爆竹燃放的安全情况2.【教材P 61复习题T 6变式】在实数π,-227,9,38中,是无理数的是( )A .πB .9C .-227D .383.【2022·广东】如图,直线a ∥b ,∠1=40°,则∠2=( )A .30°B .40°C .50°D .60°4.已知a ,b 两个实数在数轴上的对应点的位置如图所示,则下列各式一定成立的是( )A .a -1>b -1B .3a >3bC .-a >-bD .a +b >a -b5.【2022·梧州】不等式组⎩⎨⎧x >-1,x <2的解集在数轴上表示为( )6.【教材P 86复习题T 9变式】如图,将四边形ABCD 先向左平移3个单位长度,再向下平移3个单位长度,那么点D 的对应点D ′的坐标是( )A .(0,1)B .(6,1)C .(6,-1)D .(0,-1)7.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用135米这种布料生产这批盲盒(不考虑面料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是( )A.⎩⎨⎧x +y =135x =3yB.⎩⎨⎧x +y =135x =2×3yC.⎩⎨⎧x +y =1353x =yD.⎩⎨⎧x +y =1352×x =3y 8.若关于x 的不等式组⎩⎪⎨⎪⎧2x <3(x -3)+1,3x +24>x +a 有四个整数解,则a 的取值范围是( ) A .-114<a ≤-52 B .-114≤a <-52 C .-114≤a ≤-52 D .-114<a <-529.某校现有学生1 800人,为了增强学生的法律意识,学校组织全体学生进行了一次普法测试.现抽取部分测试成绩(得分取整数)作为样本,进行整理后分成五组,并绘制成频数分布直方图(如图).根据图中提供的信息,下列判断不正确的是( )A .样本容量是48B .估计本次测试全校在90分以上的学生约有225人C .样本中70.5~80.5分这一分数段内的人数最多D .样本中50.5~70.5分这一分数段内的人数所占百分比是25%10.已知方程组⎩⎨⎧x +y =1-a ,x -y =3a +5的解x 为正数,y 为非负数,给出下列结论:①-1<a ≤1;②当a =-53时,x =y ;③当a =-2时,方程组的解也是方程x +y =5+a 的解.其中正确的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共24分)11.-5的绝对值是________,116的算术平方根是________.12.下列命题:①不相交的直线是平行线;②同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④对顶角相等.其中是真命题的有________(填序号).13.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P 的坐标是________.14.某冷饮店一天售出各种口味雪糕量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味的雪糕________支.15.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是________.16.【教材P31习题T6变式】如图是一块长方形场地,AB=18米,AD=11米,A,B两个入口处的小路的宽都为1米,两小路汇合处的路宽为2米,其余部分种植草坪,则草坪面积为________平方米.17.【2022·贺州】若实数m,n满足|m-n-5|+2m+n-4=0,则3m+n=________.18.杭州市将举办亚运会,为加强学校体育工作,某学校决定购买一批篮球和足球共100个.已知篮球和足球的单价分别为120元和90元,根据需求,篮球购买的数量不少于40个.学校可用于购买这批篮球和足球的资金最多为10 260元,则有________种购买方案.三、解答题(19~21题每题10分,22~24题每题12分,共66分)19.【教材P57习题T5变式】计算下列各题:(1)35+23-|35-23|;(2)(-2)2-327+|3-2|+ 3.20.解方程组或不等式组:(1)⎩⎨⎧6x +5y =31,①3x +2y =13;② (2)⎩⎪⎨⎪⎧3(x +2)+5(x -4)<2,①2(x +2)≥5x +63+1.②21.如图,已知AD ⊥BC 于点D ,点E 在AB 上,EF ⊥BC 于点F ,∠1=∠2,试说明DE ∥AC .22.【2022·武汉】为庆祝中国共青团成立100周年,某校开展四项活动:A 项参观学习,B 项团史宣讲,C 项经典诵读,D 项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动,该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如图所示两幅不完整的统计图.(1)本次调查的样本容量是________,B 项活动所在扇形的圆心角的大小是________,条形统计图中C 项活动的人数是________;(2)若该校约有2 000名学生,请估计其中意向参加“参观学习”活动的人数.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点分别为A(3,2),B(-3,1),C(2,-2),则“水平底”a=6,“铅垂高”h=4,“矩面积”S=ah=24.根据所给定义解决下列问题:(1)若已知点D(1,2),E(-2,1),F(0,6),则这三点的“矩面积”S=________;(2)若点D(1,2),E(-2,1),F(0,t)三点的“矩面积”S为18,求点F的坐标.24.某冬奥会纪念品专卖店计划同时购进“冰墩墩”和“雪容融”两种毛绒玩具,据了解,8只“冰墩墩”和10只“雪容融”的进价共计2 000元;10只“冰墩墩”和20只“雪容融”的进价共计3 100元.(1)求“冰墩墩”和“雪容融”两种毛绒玩具每只进价分别是多少元.(2)该专卖店计划恰好用3 500元购进“冰墩墩”和“雪容融”两种毛绒玩具(两种均购买),求专卖店共有几种采购方案.(3)若“冰墩墩”和“雪容融”两种毛绒玩具每只的售价分别是200元,100元,则在(2)的条件下,请选出利润最大的采购方案,并求出最大利润.答案一、1.C 2.A 3.B 4.C 5.C6.D 点拨:由题图可知D 点的坐标为(3,2),向左平移3个单位长度,再向下平移3个单位长度,即横坐标减3,纵坐标减3,∴即D ′(0,-1),故选D .7.D8.B 点拨:先解不等式组,得8<x <2-4a .在这个解集中,要包含四个整数,在数轴上表示如图.则这四个整数解为9,10,11,12.从图中可知12<2-4a ≤13.即-114≤a <-52.9.D10.B 点拨:解方程组得⎩⎨⎧x =3+a ,y =-2a -2.①由题意得,3+a >0,-2a -2≥0,解得-3<a ≤-1,①不正确;②当a =-53时,x =3+a =43,y =-2a -2=43,∴x =y ,②正确;③当a =-2时,x +y =1-a =3,5+a =3,③正确.二、11.5;14 12.④ 13.(-3,2) 14.150 15.35°16.160 点拨:由题图可知,长方形ABCD 中去掉小路后,草坪正好可以拼成一个新的长方形,且它的长为(18-2)米,宽为(11-1)米.所以草坪的面积应该是长×宽=(18-2)×(11-1)=160(平方米).17.7 18.3三、19.解:(1)原式=35+23-35+23=4 3.(2)原式=2-3+2-3+3=1.20.解:(1)②×2,得6x +4y =26,③①-③,得y =5.将y =5代入①,得6x +25=31,则x =1.所以原方程组的解为⎩⎨⎧x =1,y =5.(2)解不等式①,得x <2;解不等式②,得x ≥-3.所以原不等式组的解集为-3≤x <2.21.解:因为AD ⊥BC 于点D ,EF ⊥BC 于点F ,所以∠EFB =∠ADB =90°,所以AD ∥EF ,所以∠1=∠ADE .又因为∠1=∠2,所以∠2=∠ADE ,所以DE ∥AC .22.解:(1)80;54°;20;(2)2 000×3280=800(人).答:该校意向参加“参观学习”活动的人数约为800人.23.解:(1)15(2)由题意可得“水平底”a =1-(-2)=3.当t >2时,“铅垂高”h =t -1,则3(t -1)=18,解得t =7,故点F 的坐标为(0,7);当1≤t ≤2时,“铅垂高”h =2-1=1,此时“矩面积”S =3≠18,故此种情况不符合题意;当t <1时,“铅垂高”h =2-t ,则3(2-t )=18,解得t =-4,故点F 的坐标为(0,-4).综上所述,点F 的坐标为(0,7)或(0,-4).24.解:(1)设“冰墩墩”毛绒玩具每只进价为x 元,“雪容融”毛绒玩具每只进价为y元,由题意得⎩⎨⎧8x +10y =2 000,10x +20y =3 100解得⎩⎨⎧x =150,y =80.答:“冰墩墩”毛绒玩具每只进价为150元,“雪容融”毛绒玩具每只进价为80元.(2)设购进“冰墩墩”毛绒玩具m 只,购进“雪容融”毛绒玩具n 只,由题意得150m +80n =3 500,整理得15m +8n =350.因为m ,n 为正整数,所以⎩⎨⎧m =2,n =40或⎩⎨⎧m =10,n =25或⎩⎨⎧m =18,n =10.所以专卖店共有3种采购方案.(3)当m =2,n =40时,利润为2×(200-150)+40×(100-80)=900(元);当m =10,n =25时,利润为10×(200-150)+25×(100-80)=1 000(元); 当m =18,n =10时,利润为18×(200-150)+10×(100-80)=1 100(元). 因为900<1 000<1 100,所以利润最大的采购方案为购进“冰墩墩”毛绒玩具18只,购进“雪容融”毛绒玩具10只,最大利润为1 100元.。
人教版七年级数学上册期末测试卷(2套)附答案

A.B.C.D.人教版七年级数学上册期末测试卷(带答案)一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( )A .3B . 13C .-3D . 13- 3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯ 5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程时,去分母后正确的是 ( ) A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1) 8.如果,,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -25113--=x x x y 3=)1(2-=y z9. 如图1,把一个长为、宽为的长方形()沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .B .C .D .图1 图2第9题10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ()第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式14.多项式223368x kxy y xy --+-不含xy 项,则k = ;15.若x=4是关于x的方程5x-3m=2的解,则m= .16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 .(用含m ,n 的式子表示)m n m n >2m n-m n -2m2nm nnn17.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2 cm,则线段DC= . 18.钟表在3点30分时,它的时针和分针所成的角是.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看从左面看从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)(1) 3x2+6x+5-4x2+7x-6, (2) 5(3a2b-ab2)—(ab2+3a2b)22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫ ⎝⎛-(4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y—0.7=6.5—1.3y(3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE试求 ∠COE 的度数。
河北省唐山市路南区2022学年度第二学期期末教学质量测试 七年级数学(含答案)

路南区2022学年第二学期期末质量检测七年级数学(人教版)(2022.7)注意事项:1.本试卷共25个题,满分100分,考试时间为90分钟.2.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答非选择题时,将答案写在答题卡上.写在本试卷上无效.卷I (选择题,共34分)一、精心选一选:(本大题共14个小题,1-6小题每小题3分,7-14小题每小题2分,共34分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点()2021,2022P -在( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图,在数轴上表示的不等式解集为( )A .75x >B .75x <C .75x ≥D .75x ≤3.如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B 相对货船A 的位置,那么货船A 相对港口B 的位置可描述为( )A .(南偏西50°,35海里)B .(北偏西40°,35海里)C .(北偏东40°,35海里)D .(北偏东50°,35海里) 4.国务院决定于2020年11月1日零时开展第七次全国人口普查,人口调查采用普查方式的理由是( )A .人口调查的数目不太大B .人口调查需要获得全面准确的信息C .人口调查具有破坏性D .受条件限制,无法进行抽样调查5.如果点()5,P y -在第三象限,则y 的取值范围是( )A .0y ≤B .0y ≥C .0y <D .0y >6.若整数a a <<a 可以是( )A .1B .2C .5D .37.为了解某市1600多万民众的身体健康状况,从中任意抽取1000人进行调查,在这个问题中,这1000人的身体健康状况是( )A .个体B .总体C .样本D .样本容量 8.已知a b >,则下列结论中正确的是( ) A .22a b +<+B .33a b -<-C .44a b -<-D .22a b <。
初中七年级数学第二学期期末考试试卷含答案(标准)

B ′C ′D ′O ′A ′O DC BA (第8题图)初中七年级数学第二学期期末考试试卷(标准)班级 姓名 分数(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 78 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AAS D .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率(第16题图)为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n 正面朝上的次数m 正面朝上的频率nm 布丰4040 2048 0.5069德·摩根4092 2048 0.5005费勤10000 4979 0.4979那么估计抛硬币正面朝上的概率的估计值是 .16.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC全等且有一个公共顶点的格点△CBA''';在图②中画出与△ABC全等且有一条公共边的格点△CBA''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)xx-3(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)OACPP′B(第16题图)能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④6.如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )(A)1(B)-1(C)2(D)-27.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场8.若使代数式312m -的值在-1和2之间,m 可以取的整数有( )(A )1个 (B )2个 (C )3个 (D )4个9.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( ).(A ) (B ) (C ) (D ) 10.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想 方法叫做( ).(A )代入法(B )换元法(C )数形结合(D )分类讨论二、填空题(每题3分,共30分)1.若∠1与∠2互余,∠2与∠3互补,若∠1=630,则∠3=2.已知P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则2005()a b +的值为 3.根据指令[s,A](s≥0,0º<A<180º),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s .现机器人在直角坐标系的坐标原点,且面对x 轴正方向(1)若给机器人下了一个指令[4,60º],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(-5,5). 4.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是 .5.一个多边形的每一个外角都等于360,则该多边形的内角和等于 6. 已知2(234)370x y x y +-++-=,则x= ,y=7.已知方程组11235mx ny mx ny ⎧+=⎪⎨⎪+=⎩的解是32x y =⎧⎨=-⎩,则m= ,n= 8.若点(m-4,1-2m )在第三象限内,则m 的取值范围是 .9.绝对值小于100的所有的整数的和为a ,积为b ,则20042005a b +的值为 .-1 0 1-1 0 1 -1 0 1 -1 0 1 第10题图第4题图对54D3E 21C B A人都版七年级数学下学期末模拟试题(三)1. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-2. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3. 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )(A )1种 (B )2种 (C )3种 (D )4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )A.m =1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=3 7. 一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 8. 如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.4 9. 下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。
【沪科版】七年级数学下期末试题附答案(2)
一、选择题1.下列各式中正确的是( )A .若a b >,则11a b -<-B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <a B .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a 3.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7 B .①×2+②×3 C .①×7-②×5 D .①×3-②×2 4.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a 5.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( ) A .31t -= . B .33t -=C .93t =D .91t = 6.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元7.已知01m <<,则m 、2m 、1m ( ) A .21m m m >> B .21m m m >> C .21m m m >> D .21m m m>> 8.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7)9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 10.下列各数中是无理数的是( )A .227B .1.2012001C .2πD 8111.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣312.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( )A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题13.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________.14.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.15.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________16.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 17.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.18.8的相反数是_____;16的平方根为_____;()34-的立方根是_____.19.如图,添加一个你认为合适的条件______使//AD BC .20.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____. 三、解答题21.解下列不等式: (1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩22.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩. 23.解方程组:(1)35,24;x y x y +=⎧⎨-=⎩ (2)3(1)1,5(1)2 1.x y y x --=⎧⎨-=+⎩24.如图1,一只甲虫在55⨯的方格(每一格的边长均为1)上沿着网格线运动它从A 处出发去看望B ,C ,D 处的其他甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为()1,4A B →++;从C 到D 记为()1,2C D →+-(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A D →(_______,_______);C B →(_______,______).(2)若甲虫的行走路线为A B C D A →→→→,甲虫每秒钟行走2个单位长度,请计算甲虫行走的时间.(3)若这只甲虫去P 处的行走路线为()2,0A E →+,()2,1E F →++,()1,2F M →-+,()2,1M P →-+.请依次在图2上标出点E ,F ,M ,P 的位置. 25.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
北师大版数学七年级下册第二学期期末 达标测试卷(含答案)
第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。
七年级数学下册期末考试真题卷含答案解析(2)
七年级数学下册期末考试真题卷一.选择题(共10小题,满分30分,每小题3分)1.计算的结果是()A.﹣9B.C.D.92.下列微信表情图标属于轴对称图形的是()A.B.C.D.3.北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,未来在亚太地区定位精度将优于5米,测速精度优于0.1米/秒,授时精度优于10纳秒,10纳秒为0.00000001秒,0.00000001用科学记数法表示为()A.0.1×10﹣7B.1×10﹣8C.1×10﹣7D.0.1×10﹣8 4.一只不透明的袋子里装有4个黑球,2个白球,每个球除颜色外都相同,则事件“从中任意摸出3个球,至少有1个球是黑球”的事件类型是()A.随机事件B.不可能事件C.必然事件D.无法确定5.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.106.连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.7.下列说法正确的是()A.一个角的补角一定大于这个角B.延长射线ABC.过点A作AB∥CD∥EFD.对顶角相等从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为,那么盒子内白色乒乓球的行通道,(1)请用代数式表示喷泉的面积并化简;(2)喷泉建成后,需给人行通道铺上地砖方便旅客通行,若每块地砖的面积是平方米,则刚好铺满不留缝隙,求需要这样的地砖多少块.22.(7分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等,AC,BD相交于点P,PD⊥CD,垂足为D.小明根据自己步行的路程CD长为16m,测出标语AB的长度也为16m,请说明理由.23.(8分)掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率.(1)点数为2.(2)点数为奇数.(3)点数大于1且小于6.24.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.25.(12分)如图,四边形ABCD中,AB∥CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D.2.C.3.B.4.C.5.B.6.B.7.D.8.B.9.A.10.C.二.填空题(共4小题,满分12分,每小题3分)11.4.12.116.13.4.14.5.三.解答题(共11小题,满分78分)15.解:(1)原式=(a2+2ab+b2)+(a2﹣b2)﹣2ab =a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.16.解:如图,△ABC为所作.17.解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).18.解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.19.解:(1)由图可知,A市和B市之间的路程是360km,故答案为:360;(2)根据题意可知快车速度是慢车速度的2倍,设慢车速度为x km/h,则快车速度为2x km/h,2(x+2x)=360,解得,x=602×60=120,则a=120,点M的横坐标、纵坐标的实际意义是两车出发2小时时,在距B市120km处相遇;(3)快车速度为120km/h,到达B市的时间为360÷120=3(h),方法一:当0≤x≤3时,y1=﹣120x+360,当3<x≤6时,y1=120x﹣360,y2=60x,当0≤x≤3时,y2﹣y1=20,即60x﹣(﹣120x+360)=20,解得,x=,﹣2=,当3<x≤6时,y2﹣y1=20,即60x﹣(120x﹣360)=20,解得,x=,﹣2=,所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.方法二:设快车与慢车迎面相遇以后,再经过t h两车相距20km,当0≤t≤3时,60t+120t=20,解得,t=;当3<t≤6时,60(t+2)﹣20=120(t+2)﹣360,解得,t=.所以,快车与慢车迎面相遇以后,再经过或h两车相距20km.20.(1)证明:∵∠D与∠1互余,∴∠D+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠D+∠1+∠COD=180°,∴∠D+∠AOD=180°,∴ED∥AB;(2)解:∵ED∥AB,∴∠AOF=∠OFD=70°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF﹣∠COF=25°.21.解:(1)由图可得,喷泉面积为:(3a+b﹣2b)(a+3b﹣2b)=(3a﹣b)(a+b)=3a2+2ab﹣b2;(2)[(3a+b)(a+3b)﹣(3a2+2ab﹣b2)]÷=(3a2+10ab+3b2﹣3a2﹣2ab+b2)×=(8ab+4b2)×=80a+40b,答:需要这样的地砖(80a+40b)块.22.解:CD=AB=16米,理由如下:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD=PB,在△ABP与△CDP中,,∴△ABP≌△CDP(ASA),∴CD=AB=16米.23.解:(1)P(点数为2)=;(2)点数为奇数的有3种可能,即点数为1,3,5,则P(点数为奇数)==.(3)点数大于1且小于6的有3种可能,即点数为2,3,4,5,则P(点数大于2且小于6)==.24.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.25.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∴∠ACD=60°,∵AB∥CD,∴∠BAC=∠ACD=60°;(2)证明:在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC+∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.。
【鲁教版】七年级数学上期末试题(及答案)(2)
一、选择题1.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C.检测武汉市的空气质量D.了解北斗导航卫星的设备零件的质量情况2.要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300是()A.总体B.个体C.样本D.样本容量3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批袋装食品是否含有防腐剂B.对一批导弹的杀伤半径的调查C.了解某校学生的身高情况D.对重庆市居民生活垃圾分类情况的调查4.如图为在电脑屏幕上出现的色块图,它的形状是由6个颜色不同的正方形,如果中间最小的正方形边长为1,则所拼成的长方形的面积是()A.144 B.154 C.143 D.1695.江陵县青少年活动中心组织实验中学七年级第一批学生前往宜昌参加研学旅行,需要与旅行社联系车辆.如果每辆旅游大巴坐45人,则有28人没有座位,如果每辆坐50人,只有一辆车空12个座位无人坐,其余车辆全部坐满,设有x辆旅游大巴,则可列方程()A.45x+28=50x﹣12 B.45x﹣28=50x+12C.45x﹣28=50x﹣12 D.45x+28=50x+126.如图所示,将正整数1至2020按一定规律排列成数表,平移表中带阴影的方框,方框中三个数的和可能是()A.2018 B.2019 C.2013 D.20407.如图,棋盘上有黑、白两色棋子若干,如果在一条至少有两颗棋子的直线(包括图中没有画出的直线)上只有颜色相同的棋子,我们就称“同棋共线”.图中“同棋共线”的线共有( )A .12条B .10条C .8条D .3条8.把根绳子对折成一条线段AB ,在线段AB 取一点P ,使13AP PB =,从P 处把绳子剪断,若剪断后的三段绳子中最长的一段为24cm ,则绳子的原长为( ) A .32cmB .64cmC .32cm 或64cmD .64cm 或128cm 9.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定10.如图,将一个边长为m 的正方形纸片剪去两个小长方形,得到一个类似“9”的图案,再将剪下的两个小长方形无缝隙地拼成一个新的长方形,则新长方形的周长可表示为( )A .59m n -B .5.58m n -C .45m n -D .58m n - 11.如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .29.8mmB .30.03mmC .30.02mmD .29.98mm 12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为______人.14.请你举出一个适合抽样调查的例子:________________________;并简单说说你打算怎样抽样:________________________________________.15.我们知道,无限循环小数都可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,由0.30.3333=⋅⋅⋅,可知,10 3.3330.3333x x -=⋅⋅⋅-⋅⋅⋅=,即103x x -=,解方程得13x =,即10.33=.仿此方法,将0.65化成分数是________. 16.2019年4月4日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心,在未开始检票入场前,已有1200名足球爱好者排队等待入场,假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人,如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,则___________分钟后排队现象消失.17.如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°.(1)求∠BOC 的度数.(2)求∠DOE 的度数.18.如图所示,一系列图案均是长度相同的火柴棒按一定的规律拼搭而成:第1个图案需7根火柴棒,第2个图案需13根火柴棒,……,依此规律,第15个图案需_______根火柴棒.19.如图,是北京S1线地铁的分布示意图,其中桥户营、四道桥、金安桥、苹果园四站在同一条直线上.如果在图中以正东为正方向建立数轴,桥户营站、苹果园站表示的数分别 ,2,那么金安桥站表示的数是___________.是420.如图是一个正方体的表面展开图,则折成正方体后,与点M重合的点是点______.三、解答题21.新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成如图的频数分布表和频数分布直方图:a.线上垃圾分类知识测试频数分布表成绩分组50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100频数39m128c.成绩在80≤x<90这一组的成绩为80,81,82,83,83,85,86,86,87,88,88,89根据以上信息,回答下列问题:(1)本次抽样调查样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2000人,若达到测试成绩80分为良好,那么估计小明所在的社区良好的人数约为人;(4)若达到测试成绩前十五名的可以颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?22.国庆期间,七(1)班的明明、丽丽等同学随家长一同到吉水进士文化园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等7名同学和他们的9名家长共16人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.23.如图,已知点M是线段AB的中点,点E将AB分成:3:4AE EB=的两段,若2cmEM=,求线段AB的长度.24.小明房间窗户的窗帘如图所示,它是由两个四分之一圆组成(半径相同).(1)用代数式表示窗户能射进阳光的面积S是(结果保留π);(2)当31,22a b==时,求窗户能射进阳光的面积是多少(取3π≈)?25.计算(1)75241126⎛⎫-⨯-- ⎪⎝⎭ (2)()()22184235++---⨯26.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将从正面、左面、上面看这堆货物得到的平面图形画了出来.你能根据这三个图形帮他清点一下箱子的数量吗?你是怎么清点的?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A 、了解我校初一(1)班学生的视力情况,必须准确,故适合普查;B 、企业招聘,对应聘人员进行面试,必须准确,故适合普查;C 、检测武汉市的空气质量,适合抽样调查;D 、了解北斗导航卫星的设备零件的质量情况,必须准确,故适合普查.故选:C .【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.D解析:D【分析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.【详解】根据样本及样本容量的定义可知,题目中300是样本容量.故选:D .【点睛】本题难度较低,主要考查学生对总体、个体、样本、样本容量.理清概念是关键. 3.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意; B 、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意; C 、了解某校学生的身高情况,最适宜采用全面调查(普查);D 、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意; 故选:C .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 4.C解析:C【分析】由题可知,由于矩形色块图中全是正方形,则右下角两个小正方形一样大小,而顺时针方向每个大正方形边长都增大1,根据等量关系计算即可;【详解】设右下方两个并排的正方形的边长为x ,则231x x x x x +++=+++,解得:4x =,∴长方形的长为3113x +=,宽为2311x +=,∴长方形面积为1311143⨯=;故答案选C.【点睛】本题主要考查了一元一次方程的应用,准确计算是解题的关键.5.A解析:A【分析】等量关系为:45×汽车辆数+28=50×汽车辆数﹣12.依此列出方程即可求解.【详解】解:设有x辆汽车,根据题意得:45x+28=50x﹣12.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解题的关键是找出题目中的相等关系.6.C解析:C【分析】设中间数为x,则另外两个数分别为x-1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【详解】解:设中间数为x,则另外两个数分别为x-1、x+1,∴三个数之和为(x-1)+x+(x+1)=3x.根据题意得:3x=2018、3x=2019、3x=2013、3x=2040,解得:x=67223(舍去),x=673,x=671,x=680.∵673=84×8+1,∴2019不合题意,舍去;∵671=83×8+7,∴三个数之和为2013.∵680=85×8,∴2040不合题意,舍去;故选:C.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.7.B解析:B【分析】把问题转化两白棋子共线和两黑棋子共线两种情形求解即可.【详解】结合图形,从横行、纵行、斜行三个方面进行分析;一条直线上至少有两颗棋子并且颜色相同,如下,共有10条:故选B .【点睛】本题考查了新定义问题,准确理解新定义的内涵,并灵活运用分类的思想是解题的关键. 8.C解析:C【分析】由于题目中的对折没有明确对折点,所以要分A 为对折点与B 为对折点两种情况讨论,讨论中抓住最长线段即可解决问题.【详解】解:如图∵13AP PB =, ∴2AP=23PB <PB ①若绳子是关于A 点对折,∵2AP <PB∴剪断后的三段绳子中最长的一段为PB=30cm ,∴绳子全长=2PB+2AP=24×2+23×24=64cm ; ②若绳子是关于B 点对折,∵AP <2PB∴剪断后的三段绳子中最长的一段为2PB=24cm∴PB=12 cm∴AP=12×143=cm∴绳子全长=2PB+2AP=12×2+4×2=32 cm ;故选:C .【点睛】本题考查的是线段的对折与长度比较,解题中渗透了分类讨论的思想,体现思维的严密性,在今后解决类似的问题时,要防止漏解.9.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.10.A解析:A【分析】根据图形给出的已知条件列出算式,进行整式加减即可得结论.【详解】解:由图可得,新长方形的长为()(2)23m n m n m n -+-=-,宽为113(3)222m n m n -=-,则新长方形的周长为13592322592222m n m n m n m n ⎫⎫⎛⎛-+-⨯=-⨯=- ⎪ ⎪⎝⎝⎭⎭. 故选A .【点睛】本题考查了整式的加减,解决本题的关键是观察图形正确列出算式.11.A解析:A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm .∵29.8mm 不在该范围之内,∴不合格的是A .故选:A .【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.1100【分析】用该校的总人数乘以成绩为良和优的人数所占的百分比即可【详解】根据题意得:(人)答:其中成绩为良和优的总人数估计为1100人故答案为:1100【点睛】本题考查了条形统计图和用样本估计总解析:1100【分析】用该校的总人数乘以成绩为“良”和“优”的人数所占的百分比即可.【详解】根据题意得:85252000110018728525+⨯=+++(人), 答:其中成绩为“良”和“优”的总人数估计为1100人.故答案为:1100.【点睛】本题考查了条形统计图和用样本估计总体,根据条形统计图计算出“良”和“优”的人数所占的百分比是解题的关键.14.对某种品牌灯泡使用寿命调查我们可以根据某一批次的灯泡中随机抽取部分进行测试实验对某种品牌灯泡使用寿命调查随机抽取部分进行测试实验【分析】根据问题特点得出适合抽样调查的方式进而举例得出答案【详解】根据解析:对某种品牌灯泡使用寿命调查,我们可以根据某一批次的灯泡中随机抽取部分进行测试实验.对某种品牌灯泡使用寿命调查,随机抽取部分进行测试实验.【分析】根据问题特点,得出适合抽样调查的方式,进而举例得出答案.【详解】根据适合抽样调查的特点,适合抽样调查的例子可以为:对某种品牌灯泡使用寿命调查,我们可以根据某一批次的灯泡中随机抽取部分进行测试实验.故答案为对某种品牌灯泡使用寿命调查,随机抽取部分进行测试实验.【点睛】本题主要考查了全面调查与抽样调查,解决问题的关键是掌握全面调查(普查)的优缺点.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.15.【分析】设表示出然后相减解得出关于的一元一次方程再求解即可【详解】解:设则即解方程得即故答案为:【点睛】本题考查了解一元一次方程读懂题目信息理解无限循环小数转化为分数的方法是解题的关键解析:65 99.【分析】设0.65x,表示出100x,然后相减解得出关于x的一元一次方程,再求解即可.【详解】解:设0.65x,则10065.65x,10065.650.65x x,即9965x,解方程得,6599 x,即065 99.65.故答案为:65 99.【点睛】本题考查了解一元一次方程,读懂题目信息,理解无限循环小数转化为分数的方法是解题的关键.16.【分析】设每分钟赶来的足球爱好者人数为人由4个检票口同时检票15分钟后排队现象消失列出方程可求每分钟赶来的足球爱好者人数再设7个检票口同时检票分钟排队现象消失列出方程可求解【详解】设每分钟赶来的足球 解析:【分析】设每分钟赶来的足球爱好者人数为x 人,由4个检票口同时检票,15分钟后排队现象消失,列出方程,可求每分钟赶来的足球爱好者人数,再设7个检票口同时检票,y 分钟排队现象消失,列出方程,可求解.【详解】设每分钟赶来的足球爱好者人数为x 人,由题意可得:151********x +=⨯⨯,∴80x =,∴每分钟赶来的足球爱好者人数为80人,设7个检票口同时检票,y 分钟排队现象消失,由题意可得:801200740y y +=⨯⨯,∴6y =,答:7个检票口同时检票,6分钟排队现象消失,故答案为:6.【点睛】本题考查了一元一次方程的应用,找出等量关系列出正确的方程是本题的关键. 17.(1)∠BOC =50°;(2)∠DOE =45°【分析】(1)由角平分线的定义得∠DOB =∠AOB =70°再由∠BOC =∠BOD ﹣∠COD 即可得出结果;(2)由角平分线的定义得∠COE =∠BOC =25解析:(1)∠BOC =50°;(2)∠DOE =45°【分析】(1)由角平分线的定义得∠DOB =12∠AOB =70°,再由∠BOC =∠BOD ﹣∠COD ,即可得出结果;(2)由角平分线的定义得∠COE =12∠BOC =25°,再由∠DOE =∠COE +∠COD ,即可得出结果.【详解】解:(1)∵OD 平分∠AOB ,∴∠DOB =12∠AOB =12×140°=70°, ∴∠BOC =∠BOD ﹣∠COD =70°﹣20°=50°;(2)∵OE 平分∠BOC ,∴∠COE =12∠BOC =12×50°=25°, ∴∠DOE =∠COE +∠COD =25°+20°=45°.【点睛】本题考查了角平分线的定义、角的计算等知识;熟练掌握角平分线的定义是解题的关键.18.273【分析】根据第1个图案需7根火柴7=1×(1+3)+3第2个图案需13根火柴13=2×(2+3)+3第3个图案需21根火柴21=3×(3+3)+3得出规律第n个图案需n(n+3)+3根火柴再把解析:273【分析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把15代入即可求出答案.【详解】解:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第15个图案需:15×(15+3)+3=273(根);故答案为:273.【点睛】此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题.19.0【分析】由桥户营站苹果园站表示的数分别是2计算出两点之间的距离为6求出一个单位长度表示的数是2即可得到答案【详解】∵桥户营站苹果园站表示的数分别是2∴桥户营站与苹果园站的距离是2-(-4)=6∵桥解析:0【分析】-,2,计算出两点之间的距离为6,求出一个单由桥户营站、苹果园站表示的数分别是4位长度表示的数是2,即可得到答案.【详解】∵桥户营站、苹果园站表示的数分别是4-,2,∴桥户营站与苹果园站的距离是2-(-4)=6,∵桥户营站与苹果园站之间共有三个单位长度,÷=,∴每个单位长度表示632∴金安桥表示的数是2-2=0,故答案为:0.【点睛】此题考查数轴上两点之间的距离,数轴上点的平移规律,有理数的加减法计算,掌握数轴上两点之间的距离公式是解题的关键.20.D三、解答题21.(1)50;18;(2)见解析;(3)800;(4)可以领到【分析】(1)根据题意,可以得到样本容量,然后即可计算出m的值;(2)根据频数分布表中的数据和m的值,可以将频数分布表补充完整;(3)根据题目中的数据,可以得到样本中良好的人数百分比为12+850,进一步即可估计出小明所在的社区良好的人数;(4)根据题目中的数据,可以得到88分是第多少名,从而可以得到居民A是否可以领到“垃圾分类知识小达人”奖章.【详解】解:(1)由题意可得,随机抽取了50名居民进行线上垃圾分类知识测试.本次抽样调查样本容量为50,表中m的值为:m=50﹣3﹣9﹣12﹣8=18,故答案为:50,18;(2)由(1)值m的值为18,由频数分布表可知80≤x<90这一组的频数为12,补全的频数分布直方图如图所示;(3)随机抽取了50名居民进行线上垃圾分类知识测试.达到测试成绩80分为良好,良好的人数有:12+8=20(人)良好的百分比为=20100%=40% 502000×40%=800(人),即小明所在的社区良好的人数约为800人,故答案为:800;(4)由题意可得,88分是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.【点睛】本题考查样本和样本容量,频率直方分布图,用样本估计总体,掌握样本和样本容量,频率直方分布图,用样本估计总体等知识是解题的关键.22.(1)明明他们一共去了6个成人,4个学生;(2)买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,购票总费用为372元.【分析】(1)根据题意,可以找出题目中的等量关系,列出相应的方程,从而可以解答本题;(2)根据题意可以算出团购的费用,然后与(1)中320比较大小,即可解答本题;(3)根据题意,可以知道学生按照学生票购买,成人按团体票购买最省钱,然后求出相应的费用即可解答本题.【详解】解:(1)设一共去了x个成人,则学生(10-x)人,40x+0.5×40×(10-x)=320,解得,x=6.∴10-x=10-6=4,答:明明他们一共去了6个成人,4个学生;(2)买团体票更省钱,理由:∵购买团体票时,花费为:40×0.6×13=312(元),∵312<320,∴买团体票更省钱;(3)购买13张团体票,3张学生票更省钱,费用为:40×0.6×13+3×0.5×40=312+60=372(元),答:购票总费用为372元.【点睛】本题考查一元一次方程的应用,解答此类问题的关键是明确题意,找出所题目中的等量关系,列出相应的方程.23.线段AB的长为28cm.【分析】由点E将AB分成:3:4AE EB=的两段,设AE=3k,BE=4k,可用k表示AB=7k,由点M是线段AB的中点,AM=17AB=22k,由EM=AM-AE=71322k k k-==2cm,求出k=4cm即可.【详解】解:∵点E将AB分成:3:4AE EB=的两段,设AE=3k,BE=4k,∴AB=AE+BE=3k+4k=7k,∵点M是线段AB的中点,∴AM=17AB=22k,∴EM=AM-AE=71322k k k-==2cm,∴k=4cm,∴AB=7k=7×4=28cm .∴线段AB 的长为28cm .【点睛】本题考查线段比例,线段中点,掌握线段的比例问题解题法法,线段中点,会利用线段差构造等式解决问题是解题关键.24.(1)2122ab b π-;(2)98 【分析】(1)根据“窗户能射进阳光的面积=长方形的面积-窗帘的面积”,列式即可;(2)根据(1)得出的式子,再把a 、b 的值代入计算即可求出答案.【详解】解:(1)窗帘的面积是22121()222b b ππ=. ∵窗户能射进阳光的面积=长方形的面积-窗帘的面积,∴窗户能射进阳光的面积是2122ab b π-; (2)由(1)得:2122S ab b π=-, 当32a =,12b =时,窗户能射进阳光的面积是: 22131119223222228S ab b π⎛⎫=-≈⨯⨯-⨯⨯≈ ⎪⎝⎭. 【点睛】本题考查了列代数式以及代数式求值,注意利用长方形和圆的面积公式解决问题. 25.(1)30;(2)-13【分析】(1)使用乘法分配律使得计算简便;(2)有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)75241126⎛⎫-⨯--⎪⎝⎭ =7524+24+241126-⨯⨯⨯ =14+20+24-=30(2)()()22184235++---⨯ =1816295+--⨯+--=1816245-.=13【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.8个,理由见解析.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:从图可得箱子的个数有8个,如图:.【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03-04学年上期七年级数学期末检测卷
班级________ 姓名________________ 座号________
题号 一 二 三 四 五 六 总分
得分
卷首语:请同学们拿到试卷后,不必紧张,用半分钟整理一下思路,要相信我能行。
一、填空:(每小题2分,共26分)
1、3的相反数是______,-5的绝对值是______。
2、位于数轴上原点的左边,且与原点距离为4个单位长度的数是______。
3、单项式-31a2b的系数是______,次数是______。
4、猜谜语:添一笔,增百倍,减一笔,少九成。(打一数词)______。
5、在今年的全国通俗歌手大奖赛中,十位评委对一名歌评分分别为9.65、9.41、9.76、9.75、9.73、9.81、9.67、
9.64、9.79、9.69,那么在去掉一个最高分后,该名歌手平均得分是______。
6、小明所在班级共有50名同学,在期末民主评选“校先进班干部”时,他获得42张选票,则小明得票的频
数是:______,频率为:______。
7、找规律,在横线上填上适当的两个数:
98,95,96,97,94,99,____,____。
8、如果一个角的余角是30。36ˊ,那么这个角是______。
9、时钟在2点正时,其时针和分针所成的角的大小为:______。
10、请写出一个只含有一个字母,且常数项为负数的二次三项式:____________________________________。
11、如图1,线段CD是线段AB经过向左平移______格,
再向下平移______格后得到的。
12、如图2,大正方形是由两个小正方形和两个小长方形拼
成的,这个大正方形的面积是____________________。
13、如图3,要得到AB//CD的结论,则需添加一个角相等的条件是:______________________(只写一个
正确的条件即可,每多写一个正确的条件有1分的加分,错误的则反扣1分)
二、选择题:(每题只有一个正确答案,每题3分)
14、下列各数据中,哪个是近似数( )
A、七年级的数学课本共有200页; B、小李称得体重67千克;
C、1纳米相当于1毫米的一百万分之一; D、期末数学考试时间120分钟。
15、下列运算中,正确的是( )
A、3a+2b=5ab; B、3÷23×32=3;
C、3x2__2x2=1; D、(-3)-(-4)=1;
16、如图4,过∠AOB的顶点O引两条射线OC,OD,
则图中共有多少个角?( )
A、3个; B、4个; C、5个; D、6个。
17、物体的形状如图5所示,则此物体的俯视图是( )
18、下列各组中,属于同类项的是( )
A、23a2b与32ab2; B、x2y与x2z; C、2mnp与 2mn; D、21pq 与qp。
19、下列事情中,不可能发生的事情是( )
A、我们班级的同学将会出现一位科学家; B、明天会下雨;
C、从装有5个红球,3个蓝球的口袋中,摸出3个白球;
D、今天是星期二,明天是星期三;
20、下面一些角中,可以用一副三角尺画出来的角是( )
(1)15°的角, (2)65º的角, (3)75º的角,(4)135º的角,(5)145º的角。
A、(1)(3)(4); B、(1)(3)(5); C、(1)(2)(4); D、(2)(4)(5);
21、成人的身份证号码为18位数,35表示福建,05表示泉州,82表示晋江,接下来的四位数表示出生年份,
后两位数表示月份,最后两位是日期,最后一位数是识别码,倒数第二位代表性别,奇数表示男性,有一个
人的身份证号码是350582198107206019,下列说法正确的是( )
A、不是泉州晋江人; B、81年7月20日出生,男性,晋江人;
C、是泉州晋江人,女性; D、72年6月1日出生,男性。
三、计算题:(22、23题各3分,24题4分,共10分)
22、-48×(-61+43-121) 23、4×(-3)2+(-6)÷(-2)
24、[2-(-3)2] ×[(-1)2002-(1-0.5×31)]
四、解答题:(每题4分,共12分)
25、化简:-7ab2+3a2b-5-3a2b+3+8ab2
26、先化简,再求值:
2x2+(-x2+3xy+2y2)-(x2-xy+2y2),其中x=21,y=3.
27、如图6,已知AB│AC,垂足为A,AD∥BC,且∠1=30º,试求∠2与∠B的度数。
五、应用题:(每题5分,共15分)
28、如下图,6个一样大的小正方形纸片,现要把它们粘贴在一起,拼成一个正方体的平面展开图,然后折成
一个正方体。
(1)你认为应该怎样粘贴才是正方体的平面展开图?请在下面方格纸中画你的图。(要求画一个即可,每多画
一个有1分的加分,最多可加3分)
(2)在你所画的一个平面展开图中,把1、2、3、4、5、6这六个数分别填入六个正方形中,使得翻折成正方
体后,相对的两个面上的数字的和都相等。
29、现代营养学家用身体质量指数来判断人体的健康状况。这个指数等于人体体重(千克)与人体身高(米)
平方的商。一个健康人的身体质量指数在20~25之间;身体质量指数低于18,属于不健康的瘦;身体质量
指数高于30,属于不健康的胖。
(1)若一个人的体重为W(千克),身高为h(米),请求他的身体质量指数P。(即用含W、h的代数式表示
P)
(2)张老师的身高是1.71米,体重68千克。请你判断张老师的健康状况,并说明理由。(可使用计算器)
30、从八十年代开始,中国体育代表团在历届亚运会上都取得很好的成绩,连续六届金牌数都是亚洲第一。下
表是最近六届亚运会我国代表团的金牌情况:
届 数 时间·地点 第九届 1982·伊朗 第十届 1986·韩国 第十一届 1990·中国 第十二届 1994·日本 第十三届 1998·泰国 第十四届
2002·韩国
金牌数
61 94 183 125 129 150
(1)请根据上表制作折线统计图。
(2)从你画的统计图中,你能得到什么结论?说说你的理由。
六、探索题:(31题5分,32题8分)
31、计算:
3×(-1)= ,(-5)×(-1)= ,
4
1
×(-1)= ,0×(-1)= ,
做完上题,你能发现什么规律?
32、棋盘上的学问:古时候,在某个王国有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上
了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放一
些米粒吧。第1格放1粒米;第2格放2粒米;第3格放4粒米;然后是8粒,16粒,32粒„„如此类推
一直放到64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑。大臣说:“就怕您的国库没有这么多米!”
请你用计算器计算:
(1)第64格应放上多少粒米?(用科学计数法表示)
(2)如果每1千粒米重25克,则(1)中的大米共多少克?(保留6位有效数字)
(3)如果每人每天吃500克米,则(2)中的大米可供13亿人吃上多少年?
(4)通过计算你有何体会?
友情提示:请同学做完试卷后,再认真仔细地检查一遍,预祝你考出好成绩!