常用算法——迭代法

合集下载

计算方法-迭代法讲义

计算方法-迭代法讲义

计算 xi(k1) 时,
x(k 1) j
(
j
i)的值已经算出
所以迭代公式可以修改成:
X (k1) D1LX(k1) D1UX (k) D1b
或写成分量形式
i1
n
x(k1) i
(bi
aij
x
( j
k 1)
aij x(jk) ) / aii
j 1
j i 1
7
把矩阵A 记为 A = D – L – U ,则方程组等价为 (D – L)X = UX+b , 从而有: X = (D – L)-1 UX + (D – L)-1b
2
4.1、雅可比(Jacobi)迭代法
把矩阵A 记为 A = D – L – U ,则方程组等价为
DX = (L+U)X+b ,
若 det(D)0, 则有:
X = D-1(L + U)X + D-1b
得到雅可比迭代矩阵:
BJ = D-1(L + U),b’= D-1b 从而,得到雅可比迭代公式:
注意:这里的对角 矩阵的D-1是非常 容易计算的。
(精度要求)
得到满足要求的近似解。
例子:p.55(p.52)例8 ,10-3的精度,迭代10 次。
3x1x12xx22
5 5
x( 1
k
1)
x(k) 2 3
5 3
x2( k
1)
x(k) 1
2
5 2
x(0 1
x2(0
) )
0 0
6
4.2、高斯-赛德尔迭代法 雅可比方法中
X (k1) D1(L U) X (k) D1b
|| B || 0.62875, || B ||1 0.648065375,

python中的迭代法

python中的迭代法

python中的迭代法Python中的迭代法迭代法是一种常用的问题求解方法,在Python中也有广泛的应用。

它通过重复执行某个过程,逐步逼近问题的解,直到满足预定的条件为止。

本文将介绍Python中迭代法的基本概念、应用场景以及一些常见的迭代法算法。

一、迭代法的基本概念迭代法是一种基于循环的计算方法,通过多次重复执行相同的操作,逐步逼近问题的解。

在Python中,可以使用循环结构(如for循环、while循环)实现迭代法。

迭代法的基本思想是将问题分解为多个小的子问题,通过解决子问题逐步逼近最终解。

二、迭代法的应用场景迭代法在实际问题求解中有广泛的应用,以下是一些常见的迭代法应用场景:1. 数值计算:如求解方程的根、计算数列的和等;2. 优化问题:如求解最优化问题、最小二乘法等;3. 迭代算法:如迭代法求解线性方程组、迭代法求解非线性方程组等;4. 图像处理:如图像的模糊处理、边缘检测等。

三、常见的迭代法算法1. 二分法:二分法是一种简单而常用的迭代法算法,用于求解单调函数的零点。

基本思想是通过不断缩小目标值所在的区间,最终找到目标值的近似解。

例如,可以使用二分法求解一个函数f(x)=0的解。

2. 牛顿法:牛顿法是一种迭代法求解方程根的算法,具有快速收敛的特点。

它通过利用函数的切线逼近方程的解,不断迭代求解。

例如,可以使用牛顿法求解一个函数f(x)=0的解。

3. 雅可比迭代法:雅可比迭代法是一种常用的迭代法求解线性方程组的算法。

它通过将线性方程组转化为迭代形式,逐步逼近方程组的解。

例如,可以使用雅可比迭代法求解线性方程组Ax=b。

4. 高斯-赛德尔迭代法:高斯-赛德尔迭代法是雅可比迭代法的改进算法,具有更快的收敛速度。

它通过使用前一次迭代得到的解来逼近方程组的解,不断迭代求解。

例如,可以使用高斯-赛德尔迭代法求解线性方程组Ax=b。

四、总结迭代法是一种常用的问题求解方法,在Python中也有广泛的应用。

C语言迭代法详细讲解

C语言迭代法详细讲解

迭代法迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。

迭代法又分为精确迭代和近似迭代。

“二分法”和“牛顿迭代法”属于近似迭代法。

迭代算法是用计算机解决问题的一种基本方法。

它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代变量。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

例 1 :一个饲养场引进一只刚出生的新品种兔子,这种兔子从出生的下一个月开始,每月新生一只兔子,新生的兔子也如此繁殖。

如果所有的兔子都不死去,问到第12 个月时,该饲养场共有兔子多少只?分析:这是一个典型的递推问题。

我们不妨假设第 1 个月时兔子的只数为u 1 ,第 2 个月时兔子的只数为u 2 ,第 3 个月时兔子的只数为u 3 ,……根据题意,“这种兔子从出生的下一个月开始,每月新生一只兔子”,则有u 1 = 1 ,u 2 =u 1 +u 1 ×1 = 2 ,u 3 =u 2 +u 2 ×1= 4 ,……根据这个规律,可以归纳出下面的递推公式:u n =u n - 1 × 2 (n ≥ 2)对应u n 和u n - 1 ,定义两个迭代变量y 和x ,可将上面的递推公式转换成如下迭代关系:y=x*2x=y让计算机对这个迭代关系重复执行11 次,就可以算出第12 个月时的兔子数。

迭代法

迭代法
#include<stdio.h>
double F1(double x); //要求解的函数
double F2(double x); //要求解的函数的一阶导数函数
double Newton(double x0, double e);//通用Newton迭代子程序
int main()
{
double x0;
3.五只猴子一起摘了一堆桃子,因为太累了,它们商量决定,先睡一觉再分.一会其中的一只猴子来了,它见别的猴子没来,便将这堆桃子平均分成5份,结果多了一个,就将多的这个吃了,并拿走其中的一份.一会儿,第2只猴子来了,他不知道已经有一个同伴来过,还以为自己是第一个到的呢,于是将地上的桃子堆起来,再一次平均分成5份,发现也多了一个,同样吃了这1个,并拿走其中一份.接着来的第3,第4,第5只猴子都是这样做的.......,
}
double F2(double x) //要求解的函数的一阶导数函数
{
return -sin(x) - 1;
}
double Newton(double x0, double e)//通用Newton迭代子程序
{
double x1;
do
{
x1 = x0;
x0 = x1 - F1(x1) / F2(x1);
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
{

迭代算法举例范文

迭代算法举例范文

迭代算法举例范文迭代算法是一种重复执行一系列步骤,直到满足特定条件的算法。

它是解决问题的常见方法之一,广泛应用于计算机科学和数学领域。

下面将介绍几个迭代算法的例子。

1.计算阶乘:阶乘是指从1到给定数字之间所有整数的乘积。

迭代算法可以用来计算阶乘。

具体步骤如下:- 初始化一个变量factorial为1- 从1开始,迭代递增直到给定数字num。

- 在每次迭代中,将factorial乘以当前的迭代变量i。

- 最终,返回factorial作为结果。

这个算法的时间复杂度是O(n),其中n是给定的数字。

2.查找元素:迭代算法还可以用来查找特定元素在一些数据结构中的位置。

比如,我们可以使用迭代算法在一个数组中查找指定的元素。

具体步骤如下:-迭代数组中的每个元素,直到找到目标元素。

-如果找到目标元素,返回其索引。

-如果遍历完整个数组还未找到目标元素,则返回-1表示不存在。

这个算法的时间复杂度是O(n),其中n是数组的长度。

3.近似求解方程:迭代算法可以用于近似求解方程。

比如,我们可以使用迭代算法来求解平方根。

具体步骤如下:-首先,选择一个初始近似值x。

- 迭代计算x的新近似值,将其设为x_new。

- 重复上述步骤直到x_new与x之间的差的绝对值小于一些阈值。

- 返回x_new作为最终的近似解。

这个算法的时间复杂度取决于迭代的次数,通常称为收敛速度。

对于平方根的近似求解,通常需要多次迭代才能达到足够的精度。

4.图遍历算法:图遍历是一种迭代算法,在图中特定节点或执行一些操作。

常见的图遍历算法包括深度优先(DFS)和广度优先(BFS)。

具体步骤如下:-对于DFS,从图中的一些节点开始,迭代递归遍历该节点的邻居节点,并标记已访问过的节点。

-对于BFS,从图中的一些节点开始,使用一个队列来保存待访问的节点,并按照先进先出的顺序遍历节点。

这些图遍历算法的时间复杂度取决于图的大小和连接情况。

总结:迭代算法是一种重复执行步骤的算法,适用于解决各种问题。

迭代 算法

迭代 算法

迭代算法迭代算法是一种重要的算法思想,它在计算机科学和算法设计中应用广泛。

本文将介绍迭代算法的基本概念、原理和应用,并通过举例解释其工作过程和优势。

一、迭代算法的基本概念迭代算法是一种通过重复计算来逐步逼近目标解的算法。

它通过不断迭代更新当前解,直到满足预设的停止条件。

迭代算法通常包括以下几个关键步骤:初始化、迭代更新和停止条件判断。

二、迭代算法的原理迭代算法的核心思想是通过重复执行特定的计算步骤来逐步改进解的质量。

在每一次迭代中,算法根据当前解的情况进行更新,使得解逐渐趋近于最优解。

迭代算法的效果取决于初始解的选择和迭代更新的策略。

三、迭代算法的应用迭代算法在实际问题中具有广泛的应用。

例如,在数值计算中,迭代算法常用于求解方程、求解优化问题和模拟连续过程等。

在图像处理中,迭代算法可以用于图像增强、边缘检测和图像分割等。

此外,迭代算法还可以应用于机器学习、数据挖掘和人工智能等领域。

四、迭代算法的工作过程迭代算法的工作过程可以简单描述为以下几个步骤:1. 初始化:设置初始解,并初始化迭代次数。

2. 迭代更新:根据特定的更新策略,更新当前解。

3. 停止条件判断:判断当前解是否满足预设的停止条件。

如果满足,则停止迭代;否则,继续迭代更新。

4. 输出结果:输出最终的解。

五、迭代算法的优势相比于其他算法,迭代算法具有以下几个优势:1. 灵活性:迭代算法可以根据问题的特点灵活选择更新策略,适应不同类型的问题。

2. 收敛性:迭代算法通常能够收敛到最优解,尤其是在适当的停止条件下。

3. 可并行性:迭代算法的迭代过程通常可以并行计算,加快算法的收敛速度。

4. 适应性:迭代算法可以通过不断迭代更新来适应问题的变化,提高解的质量。

六、迭代算法的实例应用下面以求解线性方程组为例,介绍迭代算法的具体应用过程。

给定一个线性方程组Ax=b,其中A为系数矩阵,x为未知向量,b 为已知向量。

要求解x的值。

迭代算法的基本思路是不断更新x的值,直到满足预设的停止条件。

迭代法(iterative method

迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。

这种方法通常用于求解方程、优化问题、积分问题等。

迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。

这个终止条件可以是精度要求、迭代次数限制等。

常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。

2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。

3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。

4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。

使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。

同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。

2.2 迭代法


x k +1 = 3 x k + 1
计算结果如下: 计算结果如下:
k=0,1,2,3…….
计算方法
k 0 1 2 3 4
xk
1.5 1.35721 1.33086 1.32588 1.32494
k 5 6 7 8
xk
1.32476 1.32473 1.32Байду номын сангаас72 1.32472
精确到小数点后五位
x = 1.32472
′( x* ) = ϕ ′′( x* ) = L = ϕ ( p−1) ( x* ) = 0, ϕ ( p ) ( x* ) ≠ 0 ϕ 邻域是p阶收敛的。 则迭代过程在 x * 邻域是p阶收敛的。
证: 由于 ϕ ′( x * ) = 0 * ′( x* ) < 1 , 即在 x 邻域 ϕ ϕ ( xk ) 在 x * 处 有局部收敛性, 所以 xk+1 = ϕ( xk ) 有局部收敛性, 将 泰勒展开
计算方法
一、迭代法的基本思想: 迭代法的基本思想: 为求解非线性方程f(x)=0的根,先将其写成便于 的根, 为求解非线性方程 的根 迭代的等价方程
x = ϕ ( x)
的连续函数。 其中ϕ ( x ) 为x的连续函数。 的连续函数
(2.3)
计算方法
即如果数 α 使 f(x)=0, 则也有 α = ϕ (α ) , 反之, 反之, 若α = ϕ (α ) ,则也有 f (α ) = 0 的右端, 任取一个初值 x ,代入式 x = ϕ ( x ) 的右端, 得到 0
ϕ ′( x ) ≤ L < 1
计算方法
则对于任意的初始值 x0 ∈ S ,由迭代公式 收敛于方程的根。 产生的数列 { xn } 收敛于方程的根。 (这时称迭代法在 α 的S邻域具有局部收敛性。) 邻域具有局部收敛性。)

常用算法——迭代法

常用算法——迭代法常用算法,迭代法迭代法(iteration method)是一种通过重复执行相同的步骤来逐步逼近问题解的方法。

它在计算机科学和数学中被广泛应用,可以解决各种问题,比如求近似解、优化问题、图像处理等。

迭代法的基本思想是通过不断迭代的过程,逐渐逼近问题的解。

每一次迭代都会将上一次迭代的结果作为输入,并进行相同的操作,直到满足其中一种停止条件。

在每次迭代中,我们可以根据当前的状态更新变量的值,进而改善我们对问题解的估计。

迭代法最常用的应用之一是求解方程的近似解。

对于一些复杂方程,很难通过解析方法求得解析解,这时我们可以利用迭代法来逼近方程的解。

具体地,我们可以选择一个初始的近似解,然后将其代入方程,得到一个新的近似解。

重复这个过程,直到得到一个满足我们要求的解。

这个方法被称为迭代法求解方程。

另一个常用的迭代法示例是求解优化问题。

在优化问题中,我们需要找到能使一些目标函数取得最大或最小值的变量。

迭代法可以通过不断优化变量值的方法来求解这种问题。

我们可以从一个初始解开始,然后根据目标函数的导数或近似导数的信息来更新变量的值,使得目标函数的值逐步接近最优解。

这种方法被称为迭代优化算法。

迭代法还可以应用于图像处理等领域。

在图像处理中,我们常常需要对图片进行修复、增强或变形。

迭代法可以通过对图片像素的重复操作来达到修复、增强或变形的目的。

例如,如果我们想要修复一张受损的图片,可以通过迭代地修复每个像素点,以逐渐恢复整个图片。

除了上述示例,迭代法还有很多其他应用,比如求解线性方程组、图像压缩、机器学习等。

总之,迭代法是一种非常灵活和强大的算法,可以解决各种问题。

在实际应用中,迭代法的效果往往受到选择合适的初始值、迭代次数和停止条件的影响。

因此,为了获得较好的结果,我们需要在迭代过程中不断优化这些参数。

同时,迭代法也可能会陷入局部最优解的问题,因此我们需要设计合适的策略来避免这种情况。

总的来说,迭代法是一种重要的常用算法,它可以解决各种问题。

CC++程序设计常用算法——迭代法

文档声明:
以下资料均属于本人在学习过程中产出的学习笔记,如果错误或者遗漏之处,请多多指正。

并且该文档在后期会随着学习的深入不断补充完善。

资料仅供学习交流使用。

作者:Aliven888
1、简述
程序设计的关键就是算法,算法简单来说就是程序设计时问题解题步骤或者数据数据的流程。

这里我们将介绍以下几种常用的算法:迭代法、穷举法、递推法、递归发、回溯法、贪婪法、查找算法、排序算法。

本章节主要介绍迭代法。

2、迭代法
迭代法称辗转法,是一种不断用变量旧值经过相同的计算得出新值的过程,常适用于需要重复的去做一组指令的情况;在每次执行完该指令后,都会保存当前的结果值,用于下一次的计算。

特点:
把一个问题复杂的求解过程转化成相对来说比较简单的迭代过程,然后只需要重复执行该过程,就能得到最终的结果。

注意事项:
1. 迭代算法必须要有终止条件,以免陷入死循环。

代码实例:
运行结果:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用算法——迭代法
迭代法是一种常见的算法设计方法,它通过重复执行一定的操作来逐
步逼近问题的解。

迭代法是一种简单有效的求解问题的方法,常用于求解
数值问题、优化问题以及函数逼近等领域。

本文将介绍迭代法的基本概念、原理以及常见的应用场景。

一、迭代法的基本概念
迭代法的思想是通过反复应用一些函数或算子来逐步逼近问题的解。

对于一个需要求解的问题,我们首先选择一个初始解或者近似解,然后通
过不断迭代更新来逼近真实解。

迭代法的核心是找到一个递推关系,使得
每次迭代可以使问题的解越来越接近真实解。

常见的迭代法有不动点迭代法、牛顿迭代法、梯度下降法等。

这些方
法的求解过程都是基于迭代的思想,通过不断逼近解的过程来得到问题的解。

二、迭代法的原理
迭代法的基本原理是通过不断迭代求解迭代方程的解,从而逼近问题
的解。

迭代法的求解过程通常分为以下几个步骤:
1.选择适当的初始解或者近似解。

初始解的选择对迭代法的收敛性和
效率都有影响,一般需要根据问题的特点进行合理选择。

2.构建递推关系。

通过分析问题的特点,构建递推关系式来更新解的值。

递推关系的构建是迭代法求解问题的核心,它决定了每次迭代如何更
新解的值。

3.根据递推关系进行迭代。

根据递推关系式,依次更新解的值,直到满足收敛条件为止。

收敛条件可以是解的变化小于一定阈值,或者达到一定的迭代次数。

4.得到逼近解。

当迭代停止时,得到的解即为问题的逼近解。

通常需要根据实际问题的需求来判断迭代停止的条件。

三、迭代法的应用
迭代法在数值计算、优化问题以及函数逼近等领域有广泛的应用。

下面将介绍迭代法在常见问题中的应用场景。

1.数值计算:迭代法可以用于求解方程的根、解线性方程组、求解矩阵的特征值等数值计算问题。

这些问题的解通常是通过迭代的方式逼近得到的。

2.优化问题:迭代法可以应用于各种优化问题的求解,如最大值最小化、参数估计、模式识别等。

迭代法可以通过不断调整参数的值来逼近问题的最优解。

3.函数逼近:迭代法可以应用于函数逼近问题,通过不断迭代来逼近一个函数的近似解。

迭代法在数值分析中有广泛的应用,如插值、拟合、积分等。

四、迭代法的优缺点
迭代法作为一种常用的算法设计方法,具有以下优点:
1.简单易理解:迭代法的思想简单明了,易于理解和实现。

2.灵活性强:迭代法可以根据问题的特点灵活选择迭代方式,适应不同问题的求解。

3.适用范围广:迭代法适用于多种问题的求解,如数值计算、优化问
题以及函数逼近等。

然而,迭代法也存在一些缺点:
1.收敛性不一定:迭代法求解问题的收敛性不一定保证,需要根据实
际问题选择合适的迭代方式。

2.迭代次数不确定:迭代法的迭代次数不确定,可能需要进行大量迭
代才能得到满意的结果。

3.全局最优解不保证:迭代法通常只能得到局部最优解,对于一些复
杂问题,可能无法得到全局最优解。

总结:
迭代法是一种简单有效的算法设计方法,通过逐步逼近问题的解来求
解各种数值计算、优化问题以及函数逼近等领域。

迭代法的原理是通过不
断迭代求解迭代方程的解,通过迭代过程逐步逼近问题的解。

迭代法的优
点是简单易理解、灵活性强、适用范围广,但也存在一些问题,如收敛性
不一定、迭代次数不确定以及无法得到全局最优解等。

在实际应用场景中,需要根据问题的特点选择合适的迭代方法,并注意迭代停止条件的选择,
以得到满意的结果。

相关文档
最新文档