圆内接四边形教案

合集下载

北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计

北师大版数学九年级下册《圆的内接四边形》教学设计一. 教材分析北师大版数学九年级下册《圆的内接四边形》是本节课的主要内容。

通过学习,学生能够理解圆的内接四边形的性质,并能够运用这些性质解决相关问题。

本节课的内容是九年级数学的重要知识点,也是高考的考点之一。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、圆的性质等基础知识。

但圆的内接四边形的性质较为复杂,需要学生通过实例探究、推理归纳等方法来理解和掌握。

同时,学生需要具备一定的空间想象能力和逻辑思维能力。

三. 教学目标1.理解圆的内接四边形的性质。

2.能够运用圆的内接四边形的性质解决相关问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的内接四边形的性质。

2.如何运用圆的内接四边形的性质解决实际问题。

五. 教学方法1.实例探究:通过具体的图形,引导学生探究圆的内接四边形的性质。

2.推理归纳:引导学生运用已知的数学知识,推理归纳出圆的内接四边形的性质。

3.小组讨论:学生在小组内讨论如何运用圆的内接四边形的性质解决实际问题。

六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解圆的内接四边形的性质。

2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察圆的内接四边形,引发学生的思考。

2.呈现(10分钟)利用教学课件,呈现圆的内接四边形的性质,引导学生直观地理解。

3.操练(10分钟)让学生通过观察、思考、推理等方法,归纳出圆的内接四边形的性质。

4.巩固(10分钟)通过一些相关的练习题,巩固学生对圆的内接四边形性质的理解。

5.拓展(10分钟)引导学生运用圆的内接四边形的性质解决实际问题,培养学生的运用能力。

6.小结(5分钟)对本节课的内容进行总结,强调圆的内接四边形的性质及其运用。

7.家庭作业(5分钟)布置一些相关的作业,让学生进一步巩固所学知识。

数学圆内接四边形教案

数学圆内接四边形教案

数学圆内接四边形教案数学圆内接四边形教案圆内接四边形一、教学目标:掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。

二、教学重点和难点:重点:圆内接四边形的性质定理。

难点:圆内接四边形性质定理的准确、灵活应用。

三、教学过程():1、带领学生复习圆内接三角形和三角形的外接圆的概念。

2、利用几何画板:①②(1)探索:如图,点D在⊙O上(和A、C不重合)移动,试讨论∠D和∠B的大小关系?(学生对第一种情况比较熟悉,但对于第二种情况做适当的提示:利用几何画板把D点在圆上移动!)通过学生的思维,可归纳出∠D和∠B的大小关系是互补。

利用此时的几何图形,由学生模仿圆内接三角形的定义得到圆内接四边形的概念并用电脑加以显示。

立即让学生利用给出的圆内接四边形的定义把刚才的结论重新归纳,从而得到定理:圆内接四边形的对角互补。

(书写符号语言)(2)对定理进行巩固①如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=140°,则∠BAD= °∠BCD=°②如图,已知AB是圆O的直径,∠BAC=40°,D是弧AB上的`任意一点,那么∠D的度数是°(3)外角的引入紧接着前面的练习,和学生共同研究探索题:(对于上面的探究性应用题,针对不同层次的学生都可以得到一定的发挥)当学生最后得到∠E的度数后,立即提问:从∠A= 70°到求出∠E=110°,在整个过程中,哪个角起了关键的作用?从而把学生的注意力转向外角∠DCF(目的是让学生明白学习定理的原因)并且引导学生讨论∠DCF和∠A的大小关系?从而得到∠DCF=∠A的结论。

利用几何画板的优势,隐藏⊙O2和线段DE、EF 得到外角的基本图形再引导学生得出外角和内对角的定义,让学生把刚才的结论归纳成定理即:圆内接四边形的任何一个外角都等于它的内对角。

(书写符号语言)(4)对定理进行必要的巩固练习如图,⊙O1和⊙O2都经过A、B两点,图中有两组相等的角,每组有三只角相等,你发现了吗?【数学圆内接四边形教案】。

人教A版选修4《圆内接四边形的性质与判定定理》教案及教学反思

人教A版选修4《圆内接四边形的性质与判定定理》教案及教学反思

人教A版选修4《圆内接四边形的性质与判定定理》教案及教学反思一、教案设计1. 教学目标本节课教学目标:•了解圆内接四边形的定义和特征;•掌握圆内接四边形的性质和判定方法;•能够灵活运用所学知识解决相关问题。

2. 教学重难点本节课教学重点:•圆内接四边形的性质;•圆内接四边形的判定方法。

本节课教学难点:•理解和应用圆内接四边形的判定方法;•熟练运用所学知识解决相关问题。

3. 教学过程•导入:通过一道生动有趣并与课题相关的问题,引起学生的兴趣和注意力。

–问题:如何判断一个四边形是在圆内接的?–分组讨论,交流自己的想法•讲授主要知识点:–圆内接四边形的定义和性质;–圆内接四边形的判定方法。

•引导思考:通过实例演练,引导学生思考如何判定一个四边形是否在圆内接。

–示例:已知四边形ABCD,若AC与BD的交点为O,且$\\angle AOB,\\angle COD$为直角角,AB=18cm,BC=24cm,CD=30cm,求证:ABCD是圆内接四边形。

–与学生共同讨论解题方法,引导学生思考判定圆内接的方法。

•小结应用:完成课堂练习,巩固所学知识。

•拓展延伸:组织学生开展课外拓展练习,挑选出难度适中的题目进行解答。

4. 教学方法本节课采用“问题导向”教学方法,从问题出发,引导学生自主探究和学习圆内接四边形。

此外,还采用了教师讲解+讲解题思路 + 实例演示 + 小组讨论 + 课堂练习的教学方法,以增强学生的学习兴趣和实践能力。

5. 教学评估本节课评估主要包括以下两个方面:•课堂练习评估:考核学生是否掌握了课上所讲的方法和技巧,能否熟练运用所学知识解决相关问题。

•教学效果评估:统计学生的学习成绩,从中评价本节课的教学效果和是否达到了教学目标。

二、教学反思本节课采用了以问题为导向的教学方法,通过一个有趣的问题引导学生主动思考、积极参与讨论,从而激发学生的学习兴趣,使学生更好地掌握所学知识。

在教学过程中,引导学生思考解题方法,从问题出发,让学生在实践中学习,并且根据学生的表现,及时适当调整教学方法,并在课堂上帮助学生完成练习,最大程度地保证每个学生都能理解所学内容,掌握相关技能。

3.6圆内接四边形-浙教版九年级数学上册教案

3.6圆内接四边形-浙教版九年级数学上册教案

3.6 圆内接四边形-浙教版九年级数学上册教案一、教学目标1.了解圆内接四边形的性质;2.学会求解圆内接四边形的周长和面积;3.培养学生分析问题和解决问题的能力。

二、教学重难点1.圆内接四边形的性质;2.求解圆内接四边形的周长和面积。

三、教学内容及重点A. 圆内接四边形的性质1.圆内接四边形的四个角是直角;2.对角线相等;3.短对角线 bisect 长对角线;4.短对角线上的中线等于长对角线的一半。

B. 求解圆内接四边形的周长和面积1.求周长:可以通过圆的周长与圆内接四边形的关系,求出圆内接四边形的周长。

即圆内接四边形的周长等于四个弧长之和。

2.求面积:可以通过将四边形分成两个直角三角形,计算两个直角三角形的面积之和,进而得到圆内接四边形的面积。

1.讲解:通过多媒体展示和图形演示,让学生了解圆内接四边形的性质和求解方法;2.实践:组织学生进行小组或个人练习,巩固所学知识;3.交流:组织学生交流练习中的问题和思路,促进合作学习。

五、教学过程A. 圆内接四边形的性质1.引入:通过练习题和图形演示,让学生观察圆内接四边形的性质;2.讲解:梳理圆内接四边形的性质,引导学生理解和掌握。

B. 求解圆内接四边形的周长和面积1.讲解:介绍求解圆内接四边形周长和面积的方法;2.练习:组织学生在小组内完成练习题,检查练习结果并指出问题;3.思考:让学生思考如何将所学知识应用到实际问题中。

六、教学资源1.课件:多媒体PPT;2.教材:浙教版九年级数学上册;3.练习册:浙教版九年级数学上册练习册。

七、作业1.巩固练习册中的习题;2.布置一个实际生活中的问题,要求学生通过所学知识解决。

本课主要介绍了圆内接四边形的性质和求解方法。

通过讲解、实践和交流,有效地促进了学生的学习和掌握。

在布置作业时,针对实际问题的解决,可以更加贴近学生的生活实际,激发学生的兴趣和动力,从而提高教学效果。

九年级数学下册《圆的内接四边形》教案、教学设计

九年级数学下册《圆的内接四边形》教案、教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆的内接四边形的性质及其应用,特别是对角互补定理的理解和应用。
2.难点:将圆的内接四边形的性质与实际问题相结合,解决复杂的几何问题。
(二)教学设想
1.引入新课:通过生活中常见的圆形物体(如硬币、圆桌等)引导学生观察和思考,激发学生对圆的内接四边形的兴趣。接着展示一些内接四边形的实例,让学生初步感知内接四边形的特点。
作业要求:
1.学生在完成作业时,要认真审题,确保解题过程清晰、简洁。
2.培养良好的学习习惯,书写规范,保持作业整洁。
3.遇到问题要积极思考,可以与同学讨论,也可以向教师请教。
4.家长要关注学生的学习进度,鼓励孩子独立完成作业,培养自主学习能力。
5.课堂练习:布置一定数量的课堂练习题,让学生当堂完成,巩固所学知识。教师及时批改并给予反馈,针对学生的错误进行有针对性的讲解。
6.拓展延伸:针对学有余力的学生,提供一些拓展性的问题和实际应用案例,激发学生的探究欲望,培养他们的创新思维。
7.评价反思:在教学过程中,注重过程性评价,关注学生的参与度、合作交流能力、问题解决能力等方面。课后,教师和学生共同反思教学效果,为下一步教学提供参考。
1.基础巩固题:完成课本第56页的练习题第1、2、3题,要求学生在理解圆的内接四边形性质的基础上,正确解答相关问题。
2.能力提升题:完成课本第57页的练习题第4、5题,鼓励学生运用对角互补定理解决实际问题,提高解题技巧。
3.拓展思考题:思考并解答以下问题:
a.除了对角互补定理,你还能发现圆的内接四边形的其他性质吗?
二、学情分析
九年级学生已经具备了一定的几何基础,掌握了圆的基本概念和相关性质,能够运用这些知识解决一些简单问题。在此基础上,学生对圆的内接四边形的学习将更具挑战性。他们需要将已知的圆的性质与四边形的性质相结合,理解圆的内接四边形的独特性质,并学会运用这些性质解决实际问题。在这个过程中,学生可能会遇到一些困难,如对内接四边形对角互补性质的理解、解决实际问题时思路的拓展等。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,激发学生的学习兴趣,提高他们的自信心,使他们在探索和解决问题中不断成长。

浙教版初中数学初三数学上册《圆内接四边形》教案及教学反思

浙教版初中数学初三数学上册《圆内接四边形》教案及教学反思

浙教版初中数学初三数学上册《圆内接四边形》教案及教学反思教案教学目标•理解什么是圆内接四边形;•掌握圆内接四边形的性质和判定方法;•能够应用圆内接四边形的性质解决问题。

教学重点•圆内接四边形的性质和判定方法。

教学难点•解决带有圆内接四边形的综合问题。

教学过程1.导入环节(5分钟)•引导学生回顾前面所学过的圆的相关知识,如圆的定义、圆的性质等。

•引入本节课的主题——圆内接四边形,帮助学生认识什么是圆内接四边形。

2.讲解环节(25分钟)•介绍圆内接四边形的定义和性质。

•讲解圆内接四边形的判定方法。

•指导学生通过绘图分析解决带有圆内接四边形的问题。

3.练习环节(20分钟)•给出若干道练习题,帮助学生巩固对圆内接四边形的掌握。

•引导学生自主思考、组合解决带有圆内接四边形的问题,提高综合解决问题的能力。

4.检测环节(10分钟)•设计一定数量的考试题目,检测学生对圆内接四边形的掌握情况。

5.总结反思(5分钟)•结合本节课的学习情况和学生表现,总结本节课的主要内容和重点难点。

•引导学生对自己本次学习的不足以及如何提高学习效果进行反思,并给出相应的建议与引导。

教学反思本节课的教学内容是圆内接四边形,本人是采用了国内外公认的教学法-问题解决法来进行本次课堂的教学。

在经过本人多次的教学实践之后,发现这种教学法的确非常适合解决数学类的难题,并且也极大地提高了学生们的主动性和创造性。

具体来看,本人采用了以下教学策略:1.提出问题。

在本节课的教学过程中,本人首先是通过提出学生们非常熟悉、且较为感兴趣的问题——什么是圆内接四边形来引入本课程的主题。

此时有时会将一些问题转换为生活中的实际问题,引导学生能够理解学习内容和学科间的内在联系,加以升华。

2.引入知识。

在本人引入了本节课程的主题之后,还会针对圆内接四边形的概念和性质进行深入而详细的讲解。

这样不仅能够激活学生的学习兴趣,还可以提供一些基础理论,使学生可以较好地理解圆内接四边形的性质和判定方法。

人教版九年级数学上册教案:24.1.4圆内接四边形课堂优秀教学案例

人教版九年级数学上册教案:24.1.4圆内接四边形课堂优秀教学案例
五、案例亮点
1.创设生活化的情境导入
本教学案例以校园操场的跑道为背景,创设生活化的情境导入,使学生能够从现实生活的实例中感受到圆内接四边形的实际应用,从而激发他们的学习兴趣。这种导入方式充分体现了数学与生活的紧密联系,有助于提高学生对数学知识的应用意识。
2.问题导向的教学策略
本案例以问题导向的教学策略为核心,通过设计不同难度层次的问题,引导学生逐步深入探讨圆内接四边形的性质。这种策略有助于培养学生的逻辑思维能力和解决问题的能力,使学生在解决问题的过程中掌握知识、发展能力。
3.引导学生总结:在问题解决后,引导学生总结圆内接四边形的性质,提高他们的归纳总结能力。
(三)小组合作
小组合作是本节课的重要教学策略,通过分组讨论、合作探究,培养学生的团队协作能力和交流沟通能力。
1.分组讨论:将学生分成若干小组,让他们在组内讨论问题,共同探究圆内接四边形的性质。
2.交流分享:鼓励小组代表在全班分享本组的讨论成果,促进学生之间的交流与互动。
5.知识与技能、过程与方法、情感态度与价值观的全面培养
本教学案例在教学内容与过程中,充分关注知识与技能、过程与方法、情感态度与价值观的全面培养。通过讲授新知、学生小组讨论、总结归纳等环节,引导学生掌握圆内接四边形的性质,提高解题能力。同时,注重培养学生的合作意识、创新意识和数学应用意识,使他们在学习过程中形成正确的价值观。
3.教师评价:教师对学生进行全面的评价,包括知识掌握、技能运用、合作交流等方面,以激励学生不断进步。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将运用生动的生活实例和问题情境,引导学生从已知的几何知识出发,自然过渡到本节课的主题——圆内接四边形。
1.生活实例引入:展示一幅校园操场的图片,让学生观察并思考:“为什么操场上的跑道是椭圆形而不是圆形?椭圆形内接四边形有哪些特殊性质?”通过这个实例,让学生感受到圆内接四边形在实际生活中的应用,激发他们的学习兴趣。

数学教案-圆的内接四边形

数学教案-圆的内接四边形

数学教案-圆的内接四边形一、教学目标1.让学生理解圆的内接四边形的定义及判定定理。

2.培养学生运用圆的内接四边形的性质解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象力。

二、教学重点与难点重点:圆的内接四边形的性质及判定定理。

难点:运用圆的内接四边形的性质解决实际问题。

三、教学过程1.导入新课师:同学们,我们先来回顾一下圆的性质。

请大家说出圆的几个重要性质。

生1:圆的直径所对的圆周角是直角。

生2:圆的半径垂直于弦,则这条弦被半径平分。

生3:圆的弦所对的圆周角等于弦所对的圆心角的一半。

师:很好,那么我们今天要学习的是圆的内接四边形,请大家思考一下,什么是圆的内接四边形呢?2.探索新知师:我们先来观察一个图形,请大家看大屏幕。

这是一个圆,圆内有四条弦,它们分别连接圆上的四个点,构成了一个四边形。

我们称这个四边形为圆的内接四边形。

师:那么,圆的内接四边形有什么性质呢?请大家根据图形,尝试找出一些性质。

生1:我发现,圆的内接四边形的对角互补。

生2:我还发现,圆的内接四边形的对边平行。

师:很好,同学们已经找到了圆的内接四边形的一些性质。

下面我们来看一下圆的内接四边形的判定定理。

定理:一个四边形是圆的内接四边形,当且仅当它的对角互补。

师:请大家理解定理的内容,然后思考一下,如何证明一个四边形是圆的内接四边形?3.课堂练习师:下面我们来做一个练习题。

请大家看大屏幕,这是一个圆的内接四边形ABCD,已知∠BAC=60°,求∠BCD的度数。

生1:根据圆的内接四边形的性质,我们知道∠BAC和∠BCD互补,所以∠BCD=180°-∠BAC=180°-60°=120°。

师:很好,同学们已经掌握了圆的内接四边形的性质。

下面我们来解决一些实际问题。

4.实际问题师:请大家看大屏幕,这是一个实际问题。

在一个圆形花坛中,有四条小路相交于圆心O,其中两条小路的延长线分别交圆于A、B 两点,另外两条小路的延长线分别交圆于C、D两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 知识结构
2. 重点、难点分析
重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的
外角和它的内对角的相互对应位置.
3. 教法建议
本节内容需要一个课时.
(1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
(2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.
一、教学目标:
(一)知识目标
(1)了解圆内接多边形和多边形外接圆的概念;
(2)掌握圆内接四边形的概念及其性质定理;
(3)熟练运用圆内接四边形的性质进行计算和证明.
(二)能力目标
(1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
(2)通过定理的证明探讨过程,促进学生的发散思维;
(3)通过定理的应用,进一步提高学生的应用能力和思维能力.
(三)情感目标
(1)充分发挥学生的主体作用,激发学生的探究的热情;
(2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
二、教学重点和难点:
重点:圆内接四边形的性质定理.
难点:定理的灵活运用.
三、教学过程设计
(一)基本概念
如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
(二)创设研究情境
问题:一般的圆内接四边形具有什么性质?
研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)
教师组织、引导学生研究.
1、边的性质:
(1)矩形:对边相等,对边平行.
(2)正方形:对边相等,对边平行,邻边相等.
(3)等腰梯形:两腰相等,有一组对边平行.
归纳:圆内接四边形的边之间看不出存在什么公同的性质.
2、角的关系
猜想:圆内接四边形的对角互补.
(三)证明猜想
教师引导学生证明.(参看思路)
思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢
∠A=,∠C=
∴∠A+∠C=
思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢
这时有2(α+β+γ+δ)=360°
所以α+β+γ+δ=180°
而β+γ=∠A,α+δ=∠C,
∴∠A+∠C=180°,可得,圆内接四边形的对角互补.
(四)性质及应用
定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.
(对A层学生应知,逆定理成立,4点共圆)
例已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F.
求证:CE∥DF.
(分析与证明学生自主完成)
说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的训练,培养学生发散思维,勇于创新.
巩固练习:教材P98中1、2.
(五)小结
知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.
思想方法:①“特殊——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.
(六)作业:教材P101中15、16、17题;教材P102中B组5题.
探究活动
问题:已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙A上(不与B、C重合)一点,直线BD与⊙O相交于点E.试问:当点D在⊙A上运动时,能否判定△C ED的形状?说明理由.
分析要判定△CED的形状,当运动到BD经过⊙A的圆心A时,此时点E与点A重合,可以发现△CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠D及∠CED的大小保持不变,△CED的形状保持不变.
提示:分两种情况
(1)当点D在⊙O外时.证明△CDE∽△CAD’即可
(2)当点D在⊙O内时.利用圆内接四边形外角等于内对角可证明△CDE∽△CAD’即可
说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换;
(2)本题为图形形状判定型的探索题,结论的探索同样运用图形运动思想,证明结论将一般位置转化成特殊位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法;
(3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证明方法不同时,也要进行分类讨论.本题中,如果将直线BD运动到使点E在BD的反向延长线上时,△CDE仍然是等腰三角形.。

相关文档
最新文档