刚体定轴转动练习题及答案

合集下载

第3章 刚体的定轴转动 习题答案

第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'

0
r dr
2
3
0
r dr

刚体的定轴转动习题解答

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

05刚体的定轴转动习题解答.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。

若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。

简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。

4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。

大学物理AⅠ刚体定轴转动习题答案及解法

大学物理AⅠ刚体定轴转动习题答案及解法

《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。

1环的质量分布均匀。

2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。

长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。

(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。

(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。

(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。

大学物理同步训练第2版第三章刚体定轴转动详解

大学物理同步训练第2版第三章刚体定轴转动详解

mg
3g 1 cos L 1 1 1 cos mL2 2 2 2 3 L
可知当 从 0 至 90 度的过程中,角速度从小到大。 5. (☆)如图 3 所示,A、B 为两个相同的绕着轻绳的定滑轮。A 滑 轮挂一质量为 m 的物体,B 滑轮受拉力 G,而且 G=mg。设 A、B 两 滑轮的角加速度分别为βA 和βB,不计滑轮轴的摩擦,则有 (A) A B (C) A B 答案:C 分析: (定性)由于物体 m 有向下的加速度,故作用于物体上的绳子张力小于 mg,即小于 右边绳子的张力(=mg) ,故 A 滑轮受到的力矩小于 B 滑轮,故 A B 。 (定量)设圆盘转动惯量为 I ,参考计算题第 1 题的计算过程,可得 A、B 圆盘的转动角加 速度为 (B) A B (D)开始时 A B ,以后 A B
mg TA ma mgR mgR A ; GR I B B TA R I A 2 I mR I R a A
故 A B 。 6. 一轻绳跨过一具有水平光滑轴、转动惯量为 J 的定滑轮, 绳的两端分别悬 有质量为 m1 和 m2 的物体 (m1<m2) , 如图 4 所示。 绳与轮之间无相对滑动。 若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等 (C)右边大于左边 答案:C 分析: (定性)由于重的物体 m2 最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘 受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。 (定量)参考课本例题( (★)阿特伍德机:P84,例 3-5)可得 (B)左边大于右边 (D)无法判断哪边大
A J B A
6. (☆)如图 10 所示,一静止的均匀细棒,长为 L,质量为 m1,可绕通过棒的端点且垂直 于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 m1L2/3。一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v/2,则 此时棒的角速度应为 答案: 。

第5章 刚体的定轴转动 习题解答


对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得

以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动

2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度

(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2

1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1

t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。

大学物理习题册及解答 第二版 刚体的定轴转动


Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
(2)由垂直轴定理有: J J 1 J MR2
由平行轴定理有:
J
xC
J
yC
2
MR2
zC
3
2 MR 2
PP
xC
(3)复摆的摆动周期为 T 2π J
2
mgl
T 2 2R T 2 3R
T1 4 1.1547
2.力矩的定义式为_M_____r__F_.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1 (B) 1
分析:
2as
2 0
2 02
a r
0 r0
s
r
N
2
13.3圈
02 0.024rad / s2 2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力

刚体的定轴转动(带答案)

欢迎阅读页脚内容刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C(D 2、(本题静止开的? [ A ](A (B (C (D 3. (A ) (B ) (C )页脚内容(D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题设A (A )βA (C )βA 6、(本题(A (B (C (D 7、(本题现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ C ](A)只有机械能守恒。

(B)只有动量守恒。

(C)只有对转轴O的角动量守恒。

(D)机械能、动量和角动量均守量。

8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,(A9、(本题(A)ω(C)ω10、ω[ C ](A(C)减少(D)不能确定11、(本题3分)0133如图所示,一静止的均匀细棒,长为 ,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML2,一质量为m,速率为v的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V,则此时棒的角速度应为 [B ](A(312、中心(A(C13、(A(B(C14、页脚内容有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

C (1),(2),(3)都是正确,(4)错误。

D (1),(2),(3),(4)都正确。

6、如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为ML 2/3。

一质量为m 、速度为V 的子弹在水平内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为V 21,则此棒的角速度 应为:( ) AML mV ; B 23ML mV ; C 35ML mV ; D 47ML mV ; 7、一人张开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的 ( )A.转速加大,转动动能不变;B.角动量加大;C.转速和转动动能都减小;D.角动量保持不变;8、有a 、b 两个半径相同,质量相同的细圆环,其中a 环的质量均匀分布,而b 环的质量分布不均匀,若两环对过环心且与环面垂直轴的转动惯量分别为a I 和bI ,则 ( )A.a b I I >;B. a b I I <;C. a b I I =;D.无法确定a I 和bI 的相对大小。

9、下列说法正确的是: ( )A.系统的动量守恒,它的角动量也一定守恒;B.系统的角动量守恒,它的动量也必定守恒;C.系统的角动量守恒,它的机械能也一定守恒;D.以上表述均不正确;10、如图所示。

一悬线长为l ,质量为m 的单摆和一长为l ,质量为m 能绕水平轴自由转动的均匀细杆,现将摆球和细杆同时从与竖直方向成θ角的位置由静止释放,当它们运动到竖直位置时,摆球和细杆的角速度之间的关系为 ( )A.12ωω>;B.12ωω=;C.12ωω<; D.无法确定;二、填空题 1、如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒。

原因是 。

木球击中后的升高过程中,对木球、子弹、细棒、地球的系统是 守恒。

2、刚体的转动惯量取决于下列三个因素:(1) ;(2) ;(3) 。

3、一根均匀棒,长为λ,质量为m ,可绕通过其一端且与其垂直的固定轴在铅直面内自由转动。

开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于 ,初角加速度等于 。

已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231λm 。

4、长为1m 、质量为600g 的均匀细杆,可绕过其中心且与杆长垂直的轴水平转动。

设杆的转速为30rev.min -1,其转动动能为 。

5、一根长为λ,质量为m 的均匀棒,可绕通过其一端且与其垂直的固定轴在铅直面内自由转动,干的另一端与一质量也为m 的小球固连。

当系统从水平位置由静止转过角度θ时,则系统的角速度为ω= ;动能为kE = 。

在此过程中力矩所作的功为A= 。

6、半径为r = 1.5 m 的飞轮,初角速度1010-⋅=s rad ω,角加速度25rad s β-=-⋅,则在t = 时角位移为零,而此时边缘上点的线速度=υ 。

7、一冲床的飞轮,转动惯量为225I kg m =⋅,并以角速度010/rad s ωπ=转动。

在带动冲头对板材做成型冲压过程中,所需的能量全部由来飞轮提供。

已知冲压一次,需做功4000J,则在冲压过程之末飞轮的角速度为ω= 。

三、判断题1、对于定轴转动的刚体,其转动惯量的大小与它的质量、质量分布以及定轴的位置有关。

判断下列说法的正误。

(1)形状、大小相同的均匀刚体总质量越大,转动惯量越大。

( )(2)总质量相同的刚体,质量分布离转轴越远;转动惯量越大。

()(3)同一刚体,转轴不同,质量对轴的分布不同,因而转动惯量也不同。

()2、若一系统所受的合外力为零,则该系统动量和角动量必定守恒。

()3、若一系统所受的合外力矩为零,则该系统机械能和角动量必定守恒。

()4、刚体定轴转动时,其动能的改变只与外力做功有关而与内力无关。

()四、计算题1、如图所示。

一个劲度系数为k的轻质弹簧与一轻柔绳相连接,该绳跨过一半径为R,转动惯量为I的定滑轮,绳的一段悬挂一质量为m的物体。

开始时,弹簧无伸长,物体由静止释放。

滑轮与轴之间摩擦可以忽略不计。

试求:(1)当物体下落h时,其速度多大?(2)物体下落的最大距离h。

max2、质量为M,长为l的直杆,可绕水平轴o无摩擦的转动。

设一质量为m的子弹沿水平方向飞来,恰好射入杆的下端,若直杆(连同子弹)的最大摆角为60θ=o,时求子弹入射的初速度0υ。

3、一半径为R的均匀球体,绕通过其一直径的光滑轴匀速转动。

若它的半径由R自动收缩为R/2,求其周期的变化。

(球体绕直径转动惯量为2=,R为半径,m为总质量)I mR2/54、一飞轮以转速1500/min=转动,受到制动后均匀地减速,经n r=后静止。

试求:t s50(1)角加速α和飞轮从制动开始到静止所转过的转数N;(2)制动开始后25=时飞轮的角速度ω;t s(3)设飞轮的半径1=时飞轮边缘上一点的r mt s=,则在25速度υ和加速度a。

5、一长度为L ,质量为M 的均匀细棒,放在粗糙的水平面上。

细棒与水平面的摩擦系数为μ,令细棒最初以角速度0ω绕通过细棒的一端且垂直于细棒的轴旋转,求经过多长时间细棒停止转动?刚体定轴转动答案一、 选择题1、C ;2、A ;3、B ;4、C ;5、B ;6、B ;7、D ;8、D ;9、D ;10、C ;二、 填空题1、角动量;在该过程中系统所受的合外力矩为零;机械能。

2、刚体的总质量;质量的分布;转轴的位置。

3、0;3/(2)g l 。

4、0.246J5、;(3sin )/2mgl θ;(3sin )/2mgl θ。

6、4 s ;-15 m/s 。

7、25.8rad/s三、 判断题1、(1)×(2)√(3)√2、×;3、×;4、√四、 计算题1、(1)υ=(2)()max 2/h mg k =2、033()()33M m M m L m m υω++==3、'4'/4T T ωω=⇒=4、(1)2/rad s απ=;625N r =; (2)25/rad s ωπ=;(3)25/r m s υωπ==;2222625/,/nt a r m s a r m s ωπαπ====,arctan /n t a a β= 5、02/3t L g ωμ=。

相关文档
最新文档