中考数学复习《分式方程及其应用》经典题型(含答案)
中考数学压轴题专题-分式方程(解析版)

决胜2021中考数学压轴题全揭秘精品专题05分式方程及应用【考点1】解分式方程【例1】(2020·湖南郴州·中考真题)解方程:24111x x x =+-- 【答案】x=3. 【解析】 【分析】观察可得方程最简公分母为(x 2-1),去分母,转化为整式方程求解,结果要检验. 【详解】 解:24111x x x =+-- 去分母得,2(1)41x x x +=+- 解得,x=3,经检验,x=3是原方程的根, 所以,原方程的根为:x=3. 【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.【变式1-1】(2020·内蒙古通辽·中考真题)解方程:232x x=-. 【答案】6x =. 【解析】 【分析】首先去掉分母,观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 【详解】去分母,得()232x x =-, 去括号,得236x x =-, 移项,合并同类项,得6x -=-, 化x 的系数为1,得6x =, 经检验,6x =是原方程的根, ∴原方程的解为6x =. 【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.【变式1-2】(2020·山东莘县·初三学业考试)解方程:214111x x x++=--. 【答案】原方程无解. 【解析】 【分析】观察可得最简公分母是(x ﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:方程的两边同乘(x ﹣1)(x+1),得2(1)4(1)(1)x x x +-=+-,解得x=1.检验:把x=1代入(x ﹣1)(x+1)=0. 所以原方程的无解. 【点睛】本题考查解分式方程.【考点2】已知分式方程的解,求字母参数的值【例2】(2020·临潭县第二中学初三二模)若x=4是分式方程213a x x -=-的根,则a 的值为( ) A .6 B .-6C .4D .-4【答案】A 【解析】 【分析】把x =4代入方程进行求解即可. 【详解】 由题意得:24a -=143-, 解得:a =6, 故选A. 【点睛】本题考查了分式方程的解,熟练掌握分式方程解的意义是解题的关键.【变式2-1】若关于x 的分式方程1的解为x =2,则m 的值为( )A .5B .4C .3D .2【答案】B【解析】∵关于x 的分式方程1的解为x =2,∴x =m ﹣2=2, 解得:m =4. 故选:B .点睛:此题主要考查了分式方程的解,正确解方程是解题关键. 【考点3】分式方程的特殊解问题【例3】(2020·四川眉山·中考真题)关于x 的分式方程11222kx x-+=--的解为正实数,则k 的取值范围是________.【答案】2k >-且2k ≠ 【解析】 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】 解:11222k x x-+=-- 方程两边同乘(x-2)得,1+2x-4=k-1, 解得22k x +=222k +≠,022k +> 2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.【变式3-1】(2020·四川广元·中考真题)关于x 的分式方程2021mx +=-的解为正数,则m 的取值范围是_____________. 【答案】m<2且m≠0 【解析】 【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m 的范围. 【详解】解:去分母得:m+4x-2=0, 解得:x =24m-, ∵关于x 的分式方程2021mx +=-的解是正数, ∴24m->0, ∴m<2, ∵2x-1≠0, ∴22-104m-⨯≠, ∴m≠0,∴m 的取值范围是m<2且m≠0. 故答案为:m<2且m≠0. 【点睛】本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.【变式3-2】(2020·湖北荆门·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定【答案】A 【解析】 【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解. 【详解】关于x 的分式方程2322(2)(3)x kx x x +=+--+ 得x=217k -, ∵41x -<<- ∴21471k --<<- 解得-7<k <14∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3 ∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数, 故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法. 【考点4】分式方程的无解(增根)问题【例4】(2020·山东潍坊·中考真题)若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.【答案】3. 【解析】 【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值. 【详解】解:去分母得:()332x m x =++-,整理得:21x m =+, ∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=, ∴2x =,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =, 故答案为:3. 【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.【变式4-1】(2020·四川遂宁·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0, 解得:m =﹣3, 故选:D . 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 【考点5】分式方程的应用问题【例5】(2020·吉林长春·中考真题)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤? 【答案】2万斤 【解析】 【分析】由题意设该村企去年黑木耳的年销量为x 万斤,则今年黑木耳的年销量为3x 万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设该村企去年黑木耳的年销量为x 万斤 依题意得80360203x x+= 解得:2x =经检验2x =是原方程的根,且符合题意. 答:该村企去年黑木耳的年销量为2万斤. 【点睛】本题考查分式方程的应用,根据题意找准等量关系,正确列出分式方程是解题的关键.【变式5-1】(2020·江苏泰州·中考真题)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度. 【答案】75km/h 【解析】 【分析】根据题意,设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,由等量关系列出方程,解方程即可得到答案. 【详解】解:设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,则2563060 1.5x x-=, 解得:50x =,检验:当50x =时,1.50x ≠, ∴50x =是原分式方程的解;∴走路线B 的平均速度为:50 1.575⨯=(km/h ); 【点睛】本题考查分式方程的应用,以及理解题意的能力,解题的关键是以时间做为等量关系列方程求解.【变式5-2】(2020·贵州黔西·中考真题)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆. 【解析】 【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可; (2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根. 答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得 y=a+(60﹣a ), y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍, ∴60﹣a≤2a , ∴a≥20.∵y=﹣300a+36000. ∴k=﹣300<0, ∴y 随a 的增大而减小. ∴a=20时,y 最大=30000元. ∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大. 【点睛】本题考查分式方程的应用;一元一次不等式的应用.1.(2020·四川广元·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C 【解析】 【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0,经检验,m=0是原方程的解,并且满足m 2-2m≥0, 当m 2-2m <0时,m-3=-6,解得m=-3,不满足m 2-2m <0,舍去. 故输入的m 为0. 故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 2.(2020·甘肃初三一模)关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠【答案】D 【解析】 【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 【详解】分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.3.(2020·四川宜宾·中考真题)学校为了丰富学生的知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学书的本数相等,设文学类图书平均每本x 元,则列方程正确的是( )A .15000120008x x =- B .15000120008x x =+ C .15000120008x x =- D .15000120008x x=+ 【答案】B【解析】【分析】设文学类图书平均每本x 元,根据购买的书本数相等即可列出方程.【详解】设文学类图书平均每本x 元,依题意可得150********x x=+ 故选B .【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.4.(2020·辽宁朝阳·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x ⨯=⨯- 【答案】B【解析】【分析】 根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+ 故选:B .【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.5.(2020·辽宁鞍山·中考真题)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x =-D .2403006x x=+ 【答案】B【解析】【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.【详解】解:根据题意得:2403006x x =+, 故选B .【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.6.(2020·湖北荆门·中考真题)已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数B .负数C .零D .无法确定 【答案】A【解析】【分析】先解出关于x 的分式方程得到x=63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解. 【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+ 得x=217k -, ∵41x -<<-∴21471k --<<- 解得-7<k <14∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.7.(2020·重庆市教科院巴蜀实验学校)关于x 的方程1242k x x x -=--的解为正数,则k 的取值范围是( )A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠- 【答案】C【解析】【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【详解】解:分式方程去分母得:(24)2k x x --=, 解得:44k x +=, 根据题意得:404k +>,且424k +≠, 解得:4k >-,且4k ≠.故选C .【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.8.(2018·四川巴中·中考真题)若分式方程231222x a x x x x -+=--有增根,则实数a 的取值是( ) A .0或2B .4C .8D .4或8【答案】D【解析】【分析】先把分式方程化为整式方程,确定分式方程的增根,代入计算即可.【详解】解:方程两边同乘x (x ﹣2),得3x ﹣a+x=2(x ﹣2),由题意得,分式方程的增根为0或2,当x=0时,﹣a=﹣4,解得,a=4,当x=2时,6﹣a+2=0,解得,a=8,故选D .【点睛】本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.9.(2020·山东济南·中考真题)代数式31x -与代数式23x -的值相等,则x =_____. 【答案】7【解析】【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【详解】 解:根据题意得:3213x x =--, 去分母得:3x ﹣9=2x ﹣2,解得:x =7,经检验x =7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.10.(2020·内蒙古呼和浩特·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【解析】【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.【详解】解:∵()222x x x x -=-, ∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x , 去分母得:()2282x x x -=-, 去括号得:22282x x x -=-,移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4.【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法.11.(2020·广东广州·中考真题)方程3122x x x =++的解是_______. 【答案】32【解析】【分析】根据分式方程的解法步骤解出即可.【详解】 3122x x x =++ 左右同乘2(x +1)得: 2x =3解得x =32.经检验x =32是方程的跟. 故答案为: 32. 【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.12.(2020·黄冈市启黄中学初三二模)关于x 的分式方程21311x a x x --=--的解为非负数,则a 的取值范围为_______.【答案】4a ≤且3a ≠【解析】【分析】 根据解分式方程的方法和方程21311x a x x --=--的解为非负数,可以求得a 的取值范围. 【详解】 解:21311x a x x--=--, 方程两边同乘以1x -,得()2131x a x -+=-,去括号,得2133x a x -+=-,移项及合并同类项,得4x a =-,关于x 的分式方程21311x a x x--=--的解为非负数,10x -≠, ∴()40410a a -≥⎧⎨--≠⎩, 解得,4a ≤且3a ≠,故答案为:4a ≤且3a ≠.【点睛】本题主要考查根据分式方程的根求解参数,难度系数稍微有点大,但是是必考点.13.(2020·山东乐陵·初三二模)若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为_____.【答案】1或12【解析】 分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a --=3时,分式方程无解, 则a=1,故关于x 的分式方程333x a x x +-+=2a 无解,则a 的值为:1或12. 故答案为1或12. 点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键. 14.(2020·四川内江·中考真题)若数a 使关于x 的分式方程2311x a x x ++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________ 【答案】40【解析】【分析】根据分式方程的解为正数即可得出a ≤5且a≠3,根据不等式组的解集为0y ≤,即可得出a>0,找出0<a ≤5且a≠3中所有的整数,将其相乘即可得出结论.【详解】 解:分式方程2311x a x x ++=--的解为x=52a -且x≠1, ∵分式方程2311x a x x++=--的解为非负数, ∴502a -≥且52a -≠1. ∴a ≤5且a≠3.()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩①② 解不等式①,得0y ≤.解不等式②,得y<a.∵关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤, ∴a>0.∴0<a ≤5且a≠3.又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为124540⨯⨯⨯=.故答案为:40.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键.15.(2020·黑龙江大庆·中考真题)解方程:24111x x x -=-- 【答案】3【解析】【分析】去分母化成整式方程,求出x 后需要验证,才能得出结果;【详解】 24111x x x -=--, 去分母得:214x x -+=,解得:3x =.检验:把3x =代入1x -中,得-=-=≠13120x ,∴3x =是分式方程的根.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.16.(2020·陕西中考真题)解分式方程:2312xx x--=-.【答案】x=45.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:方程2312xx x--=-,去分母得:x2﹣4x+4﹣3x=x2﹣2x,移项得:-5x=-4,系数化为1得:x=45,经检验x=45是分式方程的解.【点睛】本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.17.(2020·湖南中考真题)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【答案】该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.【解析】【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G 下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:600x﹣60015x=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15x =15×4=60,答:该地4G 的下载速度是每秒4兆,则该地5G 的下载速度是每秒60兆.【点睛】本题主要考察的是分式方程的应用;解答此题,首先确定5G 与4G 下载的速度关系,在根据题意找出下载600兆的公益片所用时间的等量关系,是解答此题的关键.18.(2020·辽宁丹东·中考真题)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?【答案】八年级捐书人数是450人.【解析】【分析】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据七年级人均捐书数量是八年级人均捐书数量的1.5倍,列出方程求解并检验即可.【详解】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据题意得,180018001.5150x x=⨯+, 解得,300x =,经检验,300x =是原方程的解,∴ x+150=400+150=450,答:八年级捐书人数是450人.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程求解并检验.19.(2020·山东淄博·中考真题)如图,著名旅游景区B 位于大山深处,原来到此旅游需要绕行C 地,沿折线A→C→B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A 地到景区B的笔直公路.请结合∠A =45°,∠B =30°,BC =100≈1.4≈1.7等数据信息,解答下列问题: (1)公路修建后,从A 地到景区B 旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?【答案】(1)从A地到景区B旅游可以少走35千米;(2)施工队原计划每天修建0.14千米.【解析】【分析】【详解】解:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,AB⊥CD,sin30°=CDBC,BC=1000千米,∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),在直角△ACD中,AD=CD=50(千米),AC==50(千米),∴AB=50+50(千米),∴AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).答:从A地到景区B旅游可以少走35千米;(2)设施工队原计划每天修建x千米,依题意有,﹣=50,解得x=0.14,经检验x=0.14是原分式方程的解.答:施工队原计划每天修建0.14千米.(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.20.(2020·湖北恩施·中考真题)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】(1)购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.【解析】【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,根据总价=单价×数量结合总价不超过8500元,以及A 品牌足球的数量不小于B 品牌足球数量的2倍,即可得出关于m 的一元一次不等式组,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据题意,得 90072020x x =- 解得:x=100经检验x=100是原方程的解x-20=80答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元.(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,则W=100m+80(90-m)=20m+7200∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元. ∴()2072008500290m m m +≤⎧⎨≥-⎩解不等式组得:60≤m ≤65所以,m的值为:60,61,62,63,64,65即该队共有6种购买方案,当m=60时,W最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.。
初三中考数学复习分式方程及其应用专项复习训练含答案

2019 初三中考数学复习分式方程及其应用专项复习训练7x2m-11.对于 x 的分式方程x-1+5=x-1有增根,则 m 的值为 ( C )A .1B. 3C.4D.5212.方程=的解为( C )A .x=3B .x=4C.x=5D.x=- 5.已知=2k-1x3是分式方程kx-=2 的解,那么实数 k 的值为 ( D )3x-1xA.-1 B .0C.1D.24.在求 3x 的倒数的值时,嘉淇同学误将3x 看作了 8x,她求得的值比正确答案小 5.依上述情况,所列关系式建立的是 ( B )A.1 =1-5B.1=1+5 C.1=8x-5 D.1=8x+53x8x3x8x3x3x5.2019 年,在创立文明城市的进度中,乌鲁木齐市为美化城市环境,计划栽种树木 30 万棵,因为志愿者的加入,实质每日植树比原计划多20%,结果提早 5天达成任务,设原计划每日植树x 万棵,可列方程是 ( A )30303030A.x -(1+20%)x=5B. x-20%x=530303030C.20%x+5=xD.(1+20%)x-x=56.以下对于 x 的方程中,属于分式方程的个数是 ( B )13x1x x2①-2x +3x=0;②b2+b=1;③x2-1=2;④x+4=6.第1页/共4页x -2 17.若数 a 使对于 x 的不等式2≤-2x +2,有且 有四个整数解,且使关7x +4>-aa2于 y 的分式方程 y -2+2-y =2 有非 数解, 所有 足条件的整数 a 的 之和 是(B)A .3B .1C .0D .-3. 察分析以下方程: ① + 2=3;②x +6=5;③x +12=7,⋯ 利用它 所8x xx x含的 律,写出 一 方程中的第n 个方程是 __x + n (n +1)=2n +1__.x.分式方程 2=3的解是 __x =9__. 9 x -3 x.已知对于 x 的分式方程k+x +k=1 的解 数, k 的取 范 是 10 x +1 x -11__k >- 2且 k ≠0 .11.端午 那一天,“味美早饭馆 ”的粽子打 9 折销售,小 的 去 店 粽子花了 54 元 ,比平 多 了 3 个,求平 每个粽子 多少元? 平 每个粽子54 54x 元,列方程 __ x +3=0.9x __.12.解分式方程:2x1(1)x -2=1-2-x ; 解: x =- 1.x +14(2)x -1+1-x 2=1.解:方程的两 同乘 (x -1)(x +1),得 (x +1)2-4=(x -1)(x +1),解得 x =1,验:把 x=1 代入 (x- 1)(x+1)=0,因此原方程无解.13.某校为了丰富课外体育活动,购置了排球和跳绳.已知排球的单价是跳绳的单价的 3 倍,购置跳绳共开支 750 元,购置排球共开支 900 元,购置跳绳的数目比购置排球的数目多 30 个.求跳绳的单价.750900解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得x -3x=30,解方程,得 x=15.经查验: x=15 是原方程的根,且符合题意.答:跳绳的单价是15 元.14.为了响应“十三五”规划中提出的绿色环保的建议,某校文印室提出了每一个人都践行“双面打印,节俭用纸”.已知打印一份资料,假如用 A4 厚型纸单面打印,总质量为 400 克,将其所有改成双面打印,用纸将减少一半;假如用A4 薄型纸双面打印,这份资料的总质量为160 克,已知每页薄型纸比厚型纸轻0.8 克,求A4 薄型纸每页的质量. (墨的质量忽视不计 )解:设 A4 薄型纸每页的质量为x 克,则 A4 厚型纸每页的质量为 (x+0.8)克,根400160据题意,得x+0.8=2×x,解得 x=3.2,经查验: x=3.2是原分式方程的解,且符合题意.答: A4 薄型纸每页的质量为 3.2 克.15.某内地城市为了落实国家“一带一路”战略,促使经济发展,加强对外贸易的竞争力,把距离港口 420 km 的一般公路升级成了同样长度的高速公路,结果汽车行驶的均匀速度比本来提升了 50%,行驶时间缩短了 2 h,求汽车本来的均匀速度.420420解:设汽车本来的均匀速度是x km/h,依据题意得x -(1+50%)x=2,解得x =70.经查验: x =70 是原方程的解.答:汽车本来的均匀速度是 70 km/h.16.某饰品店老板去批发市场购置新款手链,第一次购置手链共用 100 元,按该手链的订价 2.8 元销售,并很快售完.因为该手链深得年青人喜欢, 十分热销,第二次去购置手链时,每条的批发价已比第一次高0.5 元,共用去了 150 元,所购数目比第一次多10 条.当这批手链售出 54时,出现滞销,便以订价的 5 折售完节余的手链.试问该老板第二次销售手链是赔钱了,仍是赚钱了(不考虑其余要素 )?若赔钱,赔多少?若赚钱,赚多少?解:设第一次批发价为 x 元/条,则第二次的批发价为 (x +0.5)元/条.依题意得 (x100+0.5)(10+ x )=150,解得 x 1=2,x 2=2.5.经查验 x 1=2,x 2=2.5 都是原方程的根.因为当 x =2.5 时,第二次的批发价就是 3 元/条,而零售价为 2.8 元,∴ x=2.5 不合题意,舍去.故第一次的批发价为2 元/条.第二次的批发价为 2.5 元条.第二次共批发手链 15041= 60(条.第二次的收益为××+×××/2.55 60 2.8 5 60 2.8 0.5)-150=1.2(元).∴老板第二次销售手链赚了1.2 元.。
2022年中考复习《列方程解应用题(分式方程)》专项练习附答案

列方程解应用题〔分式方程〕1、〔2021泰安〕某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也参加该电子元件的生产,假设乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:首先设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程.解答:解:设甲车间每天能加工x个,那么乙车间每天能加工1.3x个,根据题意可得:+=33,应选:B.点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.2、〔2021•铁岭〕某工厂生产一种零件,方案在20天内完成,假设每天多生产4个,那么15天完成且还多生产10个.设原方案每天生产x个,根据题意可列分式方程为〔〕A.B.C.D.考点:由实际问题抽象出分式方程.分析:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意可得等量关系:〔原方案20天生产的零件个数+10个〕÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.解答:解:设原方案每天生产x个,那么实际每天生产〔x+4〕个,根据题意得:=15,应选:A.点评:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3、〔2021•钦州〕甲、乙两个工程队共同承包某一城市美化工程,甲队单独完成这项工程需要30天,假设由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?假设设乙队单独完成这项工程需要x天.那么可列方程为〔〕A.+=1 B.10+8+x=30 C.+8〔+〕=1D.〔1﹣〕+x=8考点:由实际问题抽象出分式方程.分析:设乙工程队单独完成这项工程需要x 天,由题意可得等量关系:甲10天的工作量+甲与乙8天的工作量=1,再根据等量关系可得方程10×+〔+〕×8=1即可. 解答:解:设乙工程队单独完成这项工程需要x 天,由题意得: 10×+〔+〕×8=1.应选:C .点评:此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,找出题目中的等量关系,再列出方程,此题用到的公式是:工作效率×工作时间=工作量.4、(2021年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
分式方程应用题含答案(经典)

分式方程 应用题专题1、温〔州〕--福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.解:设通车后火车从福州直达温州所用的时间为x 小时. 依题意,得29833122x x =⨯+. 解这个方程,得14991x =. 经检验14991x =是原方程的解. 148 1.6491x =≈.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 解:设每盒粽子的进价为x 元,由题意得20%x ×50-〔x2400-50〕×5=350 化简得x 2-10x -1200=0解方程得x 1=40,x 2=-30〔不合题意舍去〕经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.答: 每盒粽子的进价为40元.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 D 〕A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 D 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本,那么李强平均每分钟清点(10)x +本,依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 C 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完解:设原来每天加固x 米,根据题意,得 926004800600=-+x x .去分母,得 1200+4200=18x 〔或18x =5400〕解得 300x =.检验:当300x =时,20x ≠〔或分母不等于0〕.∴300x =是原方程的解.答:该地驻军原来每天加固300米.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x 天,那么乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x=1解这个方程,得x =25经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了通过这段对话,请你求出该地驻军原来每天加固的米数.20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为22402240220x x-=-.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程240024008(120)x x-=+% .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少? 解:设第五次提速后的平均速度是x 公里/时,那么第六次提速后的平均速度是〔x +40〕公里/时.根据题意,得:x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?解:设第一次购书的进价为x 元,那么第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x += 解得:5x =经检验5x =是原方程的解所以第一次购书为12002405=〔本〕. 第二次购书为24010250+=〔本〕第一次赚钱为240(75)480⨯-=〔元〕第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=〔元〕所以两次共赚钱48040520+=〔元〕答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,那么提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分解这个方程,得80x =.5分经检验,80x =是所列方程的根.6分80 3.2256∴⨯=〔千米/时〕. 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,那么提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 那么 列车提速后的速度为=256〔千米/时〕答:列车提速后的速度为256千米/时.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,那么乙队单独完成需要2x 天.根据题意得111220x x +=,解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意.∴应付甲队30100030000⨯=〔元〕.应付乙队30255033000⨯⨯=〔元〕.∴公司应选择甲工程队,应付工程总费用30000元.17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里,那么乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去∴31=+x答: 甲工程队每周铺设管道2公里,那么乙工程队每周铺设管道3公里18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是20千米/时.。
2020届中考复习数学真题汇编8:分式方程及应用(有答案)

1. (2020四川省遂宁市,9,4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为( ).A .36369201.5x x +-=B .3636201.5x x -=C .36936201.5x x -=+D .36369201.5x x ++=【答案】A .【解析】相等关系:原计划种植亩数-实际种植亩数=20. 由题意可得方程36369201.5x x +-=.注意 此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错.2. (2020四川省自贡市,3,4分)方程211x x -+=0的解是 ······························ ( ) A .1或-1B .-1C .0D .1【答案】D3. (2020天津市,8,3分)分式方程xx 332=-的解是( ) A.x=0 B.x=3 C.x=5 D.x=9【答案】D4. (2020年山东省济宁市)解分式方程22311x x x++=--时,去分母后变形正确的为( ) A. 2+(x +2)=3(x -1) B. 2-x +2=3(x -1)C. 2-(x +2)=3D. 2-(x +2)=3(x -1) 【答案】D5. (2020贵州遵义,7,3分)若x =3是分式方程2102a x x --=-的根,则a 的值是 ( ) A .5 B .-5 C .3 D .-3【答案】A【解析】解:根据方程根的意义,将x =3代入分式方程得:2103a --=,即转换成关于a 的一元一次方程,解得a =5,故选A .6.(2020湖南常德,7,3分)分式方程23122x x x+=--的解为( ) A. 1 B. 2 C. 13 D. 0 【答案】A1. (2020四川省巴中市,14,3分)分式方程322x x=+的解x = . 【答案】 4.2. (2020山东省德州市,14,4分)方程的解为x = .【答案】23. (2020湖南省长沙市,16,3分)分式方程572x x =-的解为________. 【答案】5x =-【解析】4. (2020四川省凉山州市,16,4分)分式方程233x x =-的解是 .【答案】9x =【解析】解:方程两边乘(3)x x -,得239x x =-;移项,合并得9x =,故答案为9x =.5.(2020山东省威海市16,3分)分式方程2313-1--=-xx x 的解为 . 【答案】x =4.【解析】方程两边同乘以(x -3),得1-x = -1-2(x -3).解得x =4.经检验,x =4是原方程的解.6.(2020浙江省温州市,14,5分)方程231x x =+的根是________. 【答案】x=27. (2020江苏淮安,9,3分)方程031=-x 的解是 。
初三中考数学复习分式方程专项复习练习含答案与解析

x- 3
3- m
3-m
=3-m,即 x= 3 ,原方程无解,即此时存在 x= 3 =3,m=- 6.
7. 解:方程两边同乘以 (x-1),得 2=1+x-1,解得 x=2,把 x=2 代入原方 程检验: ∵左边=右边, ∴x=2 是分式方程的根 8. 解:方程两边同乘 x-2,1-3(x-2)=- (x-1),即 1-3x+6=- x+1,则 -2x=- 6,得 x=3.检验,当 x=3 时, x-2 ≠,0所以原方程的解为 x=3 【解析】分式方程同乘 (x-2)去分母转化为整式方程. 9. 解:去分母得 x+1=2x-14,解得 x=15, 经检验 x=15 是分式方程的解
y 900 (2)小明家与图书馆之间的路程最多是 y 米,根据题意可得 60≤180×2,解得 y≤ 60,0 则小明家与图书馆之间的路程最多是 600 米
【解析】 (1)根据等量关系:小明步行回家的时间=骑车返回时间+ 10 分钟,列 分式方程求解即可; (2)根据 (1)中计算的速度列出不等式解答即可.
【解析】 (1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x
万平方米.根据 “实际每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任
务”列出方程; (2)设平均每年绿化面积增加 a 万平方米.则由 “完成新增绿化面
积不超过 2 年”列出不等式. 13. 解:设甲队每天筑路 5x 公里,乙队每天筑路 8x 公里,根据题意得
m
无解,求 m 的值.
x-5 10-2x
12. 某市为创建全国文明城市,开展 “美化绿化城市 ”活动,计划经过若干年使城 区绿化总面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积 是原计划的 1.6 倍,这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完 成,那么实际平均每年绿化面积至少还要增加多少万平方米?
分式方程应用题含答案(经典)
分式方程 应用题专题1、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要2、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400)解得 300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.3、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 解这个方程,得x =25经检验,x =25是所列方程的根通过这段对话,请你求出该地驻军原来每天加固的米数.4、某项工程,需要在规定的时间内完成。
若由甲队去做,恰能如期完成;若由乙队去做,需要超过规定日期三天。
现在由甲乙两队共同做2天后,余下的工程由6. 金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的5若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.乙队独自去做,恰好在规定的日期内完成,求规定的日期是多少天6.某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,求乙单独完成后一半任务所需时间.7.有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?7、一项工作A独做40天完成,B独做50天完成,先由A独做,再由B独做,共用46天完成,问A、B各做了几天?14.某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。
中考数学总复习《分式方程》专项练习题及答案
中考数学总复习《分式方程》专项练习题及答案班级:___________姓名:___________考号:____________一、单选题1.分式方程3x﹣2x−1=0的解为()A.x=1B.x=2C.x=3D.x=4 2.分式方程3x=2x−1的解为()A.x=1B.x=2C.x=3D.x=4 3.下列算式中,你认为正确的是().A.ba−b−ab−a=−1B.1÷ba·ab=1C.3a−1=13a D.1(a+b)2⋅a2−b2a−b=1a+b4.若关于x的方程m−1x−2=x2−x有增根,则m的值为()A.3B.2C.1D.-15.2019年受各种因素的影响,猪肉市场不断上升。
据调查今年5月份的价格是1月份猪肉价格的1.25倍,小英妈妈用20元钱在5月份购得猪肉比在1月份购得的猪肉少0.4斤,设今年1月份的猪肉每斤是x元,根据题意,下列方程中正确的是()A.20x= 201.25x- 0.4B.201.25x=20x- 0.4C.20x+ 0.4 = 201.25x D.201.25x=20x+ 0.46.若关于x的分式方程x+ax−2+a2=12x−4无解,则a的值为()A.−32B.2C.−32或2D.−32或﹣27.x=−1是下列哪个分式方程的解()A.2x+1=1x B.x+1x2−1=0C.2x+1−1x+2=0D.2x−1+1x+2=08.解分式方程1x−1+1=0,正确的结果是()A.x=0B.x=1C.x=2D.无解9.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为()A.1200x+40= 800x B.1200x−40=800xC .1200x = 800x−40D .1200x= 800x+4010.若关于x 的分式方程 x x−2 =2﹣ m2−x 的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,311.分式方程 1x−3+1=x 3−x的解为( )A .无解B .x = 1C .x = −1D .x = −212.以下说法:①关于x 的方程x+ 1x =c+ 1c的解是x=c (c≠0);②方程组 {xy +yz =63xz +yz =23的正整数解有2组; ③已知关于x ,y 的方程组 {x +3y =4−ax −y =3a ,其中﹣3≤a≤1,当a=1时方程组的解也是方程x+y=4﹣a 的解;其中正确的有( ) A .②③B .①②C .①③D .①②③二、填空题13.关于x 的分式方程 m x−2+3x−2=1 有增根,则m 的值为 .14.分式方程 1x+1+1x−1=0 的解是 .15.若关于y 的方程32−y =4+my−2+1无解,则m 的值为 .16.解分式方程 x x 2−1+x 2−1x =43 时设 xx 2−1=y ,则方程化为关于 y 的整式方程是 17.小王与小李约定下午3点在学校门口见面,为此,他们在早上8点将自己的手表对准,小王于下午3点到达学校门口,可是小李还没到,原来小李的手表比正确时间每小时慢4分钟.如果小李按他自己的手表在3点到达,则小王还需要等 分钟(正确时间)18.方程 2x 2−x =3x−2+1 的解是 .三、综合题19.一个批发兼零售的文具店规定:凡一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,小明来该店购买铅笔,如果给学校九年级学生每人购买1支,那么只能按零售价付款,需用150元;如果多购买60支,那么可以按批发价付款,同样需用150元.(1)这个学校九年级的学生总数在什么范围内?(2)如果按批发价购买360支与按零售价购买300支所付款相同,那么这个学校九年级学生有多少人?20.小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.(1)设小琳速度为v(m/s),写出小琳跑完全程所用的时间t(s)与速度v(m/s)之间的函数关系式;(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程,小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?21.某超市计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用6400元购进甲种水果的数量与用8000元购进乙种水果的数量一样多.(1)求甲、乙两种水果每千克的进价分别是多少元?(2)该超市根据平常的销售情况确定,购进两种水果共2000千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过34200元.购回后,该超市决定将甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则该超市应如何进货,才能获得最大利润,最大利润是多少?22.今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元.(1)求购买一个A型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进A型和B型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,A型垃圾桶售价比第一次购买时提高了8%,B型垃圾桶按第一次购买时售价的9折出售,如果此次购买A型和B型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个B型垃圾桶?23.近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?24.为感受数学的魅力,享受学习数学的乐趣,我校开展了首届校园数学节活动,让学生体会“学数学其乐无穷,用数学无处不在,爱数学终身受益”.现年级决定购买A、B两种礼品奖励在此次数学活动中的优秀学生,已知A种礼品的单价比B种礼品的单价便宜3元,已知用3600元购买A种礼品的数量是用1350元购买B种礼品的数量的4倍.(1)求A种礼品的单价;(2)根据需要,年级组准备购买A、B两种礼品共150件,其中购买A种礼品的数量不超过B种礼品的3倍.设购买A种礼品m件,所需经费为W元,试写出W与m的函数关系式,并请你根据函数关系式求所需的最少经费.参考答案1.【答案】C2.【答案】C3.【答案】D4.【答案】D5.【答案】B6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】A13.【答案】-314.【答案】x=015.【答案】-716.【答案】3y2-4y+3=017.【答案】3018.【答案】x=−1 319.【答案】(1)解:设这个学校九年级学生有x人依题意,得:{x⩽300x+60>300解得:240<x⩽300.答:这个学校九年级的学生总数大于240且小于等于300.(2)解:设铅笔的零售价为y元,则批发价为300 360y元依题意,得:150300360y−150y=60解得:y=1 2经检验,y=12是原分式方程的解,且符合题意∴150y=300.答:这个学校九年级学生有300人. 20.【答案】(1)解:由题意t= 100v(2)解:设小琳速度为xm/s ,则晓明的速度为1.25xm/s由题意: 100x ﹣1001.25x=4解得x=5经检验:x=5是分式方程的解 1.25x= 254答:小琳、晓明两人匀速跑步的速度分别为5m/s , 254m/s .21.【答案】(1)解:设甲种水果的进价是x 元,则乙种水果的进价是(x +4)元 根据题意,得8000x+4=6400x解得经检验,x =16是原分式方程的解 ∴x +4=20答:甲、乙两种水果的进价分别是16元 、20元.(2)解:设购进甲种水果a 千克,则购进乙种水果(2000−a)千克,利润为w 元w =(20−16)a +(25−20)(2000−a)=−a +10000∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过34200元 ∴{a ≤3(2000−a),16a +20(2000−a)≤34200, 解得w 随着a 的增大而减小 ∴当a =1450时w 取得最大值 此时2000−a =550答:超市进货甲种水果1450千克,乙种水果550千克,才能获得最大利润 ,最大利润是8550元.22.【答案】(1)解:设购买一个 A 型垃圾桶需 x 元,则购买一个 B 型垃圾桶需 (x +30) 元.由题意得: 2500x =2000x+30×2 .解得: x =50 .经检验 x =50 是原分式方程的解. ∴x +30=80 .答:购买一个 A 型垃圾桶、 B 型垃圾桶分别需要50元和80元. (2)解:设此次购买 a 个 B 型垃圾桶,则购进 A 型垃圾桶 (50−a) 个 由题意得: 50×(1+8%)(50−a)+80×0.9a ≤3240 . 解得 a ≤30 .∵a是整数∴a最大为30.答:此次最多可购买30个B型垃圾桶.23.【答案】(1)解:设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:6000 x=7500 x+300解得:x=1200经检验得:x=1200是原方程的解则x+300=1500答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.(2)解:设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:1200y+1500(30﹣y)≤42000y≥10答:至少进货甲种空气净化器10台.24.【答案】(1)解:设A种笔记本的单价为x元,则B种笔记本的单价为(x+3)元由题意得:3600x=4×1350x+3解得:x=6经检验:x=6是方程的解,且符合题意答:A种礼品的单价为6元;(2)由(1)可知,B种笔记本的单价为9元由题意得:W=6m+9(150-m)=-3m+1350又∵-3<0∴W随m的增大而减小又∵A种礼品的数量不超过B种礼品的3倍∴m≤3(150−m),解得:m≤112.5∵m为整数∴当m=112时W最小值=1014.答:所需的最少经费为1014元.。
中考数学复习分式及分式方程(含答案)
12讲分式及分式方程一、单选题(共11题;共22分)1.(2017•包头)计算()﹣1所得结果是()A. ﹣2B.C.D. 22.(2017•广州)计算(a2b)3• 的结果是()A. a5b5B. a4b5C. ab5D. a5b63.(2017•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A. 2a5﹣aB. 2a5﹣C. a5D. a64.(2014•义乌市)在式子,,,中,x可以取2和3的是()A. B. C. D.5.(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A. a=4B. a>4C. a<4D. a≠46.(2017•桂林)若分式的值为0,则x的值为()A. ﹣2B. 0C. 2D. ±27.(2017•天津)计算的结果为()A. 1B. aC. a+1D.8.(2017•滨州)分式方程﹣1= 的解为()A. x=1B. x=﹣1C. 无解D. x=﹣29.(2013•深圳)分式的值为0,则()A. x=﹣2B. x=±2C. x=2D. x=010.(2012•绍兴)化简可得()A. B. ﹣ C. D.11.(2017•新疆)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A. = B. = C. = D. =二、填空题(共19题;共19分)12.(2017•宁波)分式方程的解是________13.(2017•湖州)要使分式有意义,的取值应满足________.14.(2017•淮安)方程=1的解是________.15.(2017•黑龙江)函数y= 中,自变量x的取值范围是________.16.(2017•连云港)分式有意义的x的取值范围为________.17.(2017•咸宁)化简:÷ =________.18.(2017•桂林)分式与的最简公分母是________.19.(2017•武汉)计算﹣的结果为________.20.(2017•镇江)当x=________时,分式的值为零.21.(2017•巴中)分式方程= 的解是x=________.22.(2017•宿迁)若关于x的分式方程= ﹣3有增根,则实数m的值是________.23.(2017•南京)分式在实数范围内有意义,则x的取值范围是________.24.(2017•怀化)计算:=________.25.(2017•南充)如果=1,那么m=________.26.(2017•天水)若式子有意义,则x的取值范围是________.27.(2017•绵阳)关于x的分式方程= 的解是________.28.(2017•黄冈)化简:(+ )• =________.29.(2017•枣庄)化简:÷ =________.30.(2017·衢州)计算:________三、解答题(共4题;共20分)31.(2017·台州)先化简,再求值:,其中32.(2017•邵阳)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.33.(2017•湖州)解方程:.34.(2017·金华)(本题6分) 解分式方程: .四、计算题(共9题;共50分)35.(2017•大庆)解方程:+ =1.36.(2017•济宁)解方程:=1﹣.37.(2017•眉山)解方程:+2= .38.(2017•连云港)化简• .39.(2017•宿迁)先化简,再求值:+ ,其中x=2.40.(2017•天水)计算题(1)计算:﹣14+ sin60°+()﹣2﹣(π﹣)0(2)先化简,再求值:(1﹣)÷ ,其中x= ﹣1.41.(2017•黔东南州)先化简,再求值:(x﹣1﹣)÷ ,其中x= +1.42.(2017•自贡)先化简,再求值:(a+ )÷ ,其中a=2.43.(2017•成都)化简求值:÷(1﹣),其中x= ﹣1.答案解析部分一、单选题1.【答案】D【解析】【解答】解:()﹣1= =2,故选:D.【分析】根据负整数指数幂的运算法则计算即可.2.【答案】A【解析】【解答】解:原式=a6b3• =a5b5,故选:A.【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.3.【答案】D【解析】【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.4.【答案】C【解析】【解答】解:A、的分母不可以为0,即x﹣2≠0,解得:x≠2,故A错误;B、的分母不可以为0,即x﹣3≠0,解得:x≠3,故B错误;C、被开方数大于等于0,即x﹣2≥0,解得:x≥2,则x可以取2和3,故C正确;D、被开方数大于等于0,即x﹣3≥0,解得:x≥3,x不能取2,故D错误.故选:C.【分析】根据二次根式的性质和分式的意义:被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.5.【答案】D【解析】【解答】依题意得:a﹣4≠0,解得a≠4.故答案为:D.【分析】分式有意义的条件是分母不为0.6.【答案】C【解析】【解答】解:由题意可知:解得:x=2故答案为:C【分析】分式值为0的条件为分子为零,分母不为0.7.【答案】A【解析】【解答】解:原式= =1,故选A.【分析】根据分式的运算法则即可求出答案.8.【答案】C【解析】【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.9.【答案】C【解析】【解答】解:由题意,得x2﹣4=0,且x+2≠0,解得x=2.故选:C.【分析】分式的值为零:分子等于零,且分母不等于零.10.【答案】B【解析】【解答】解:原式= ==﹣.故选B.【分析】先把原式通分,再把分子相减即可.11.【答案】B【解析】【解答】解:设原计划平均每天生产x台机器,根据题意得,= .故选B.【分析】设原计划平均每天生产x台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程即可.二、填空题12.【答案】x=1【解析】【解答】解:去分母得:2(2x+1)=3(3-x).去括号得:4x+2=9-3x.移项得:4x+3x=9-2.合并同类项得:7x=7.系数化为1得:x=1.经检验x=1是分式方程的解.故答案为:x=1.【分析】将分式方程转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解。
中考数学考点07分式方程及其应用总复习(解析版)
分式方程及其应用【命题趋势】在中考中.解分式方程常以选择题、填空题和计算题考查;分式方程的实际应用再选择题考查列方程.解答题多与不等式、函数的实际应用结合考查。
【中考考查重点】一、能解可化一元一次方程的分式方程二、能根据具体问题的实际意义.检验方程的解是合理考点一:解分式方程1.(2021•广州)方程=的解为()A.x=﹣6B.x=﹣2C.x=2D.x=6【答案】D【解答】解:去分母.得x=2x﹣6.∴x=6.经检验.x=6是原方程的解.故选:D.2.(2021•贵池区模拟)分式方程+2=的解是()A.1B.0C.﹣1D.无解【答案】D【解答】解:去分母.得1+2x﹣2=2﹣x.整理.得3x=3.解.得x=1.经检验.x=1不是原方程的解.所以原方程无解.故选:D.3.(2021•饶平县校级模拟)在下列方程中.()是分式方程.A.=1B.C.D.【答案】A【解答】解:A、是分式方程.故此选项符合题意;B、不是分式方程.是整式方程.故此选项不符合题意;C、不是分式方程.故此选项不符合题意;D、不是分式方程.是整式方程.故此选项不符合题意;故选:A.4.(2020•郴州)解方程:=+1.【答案】x=3.【解答】解:=+1.方程两边都乘(x﹣1)(x+1).得x(x+1)=4+(x﹣1)(x+1).解得x=3.检验:当x=3时.(x﹣1)(x+1)=8≠0.故x=3是原方程的解.考点二:分式方程的实际应用行程问题时间速度路程= 工程问题 工作完成时间工作效率工作总量= (当题干中没有给出具体工作总量时.默认工作总量为1)购买问题总量单价总价= 航行问题顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度【提分要点】双检验:1.检验是否为分式方程的解; 2.检验是否符号实际问题 5.(2021•黔西南州)高铁为居民出行提供了便利.从铁路沿线相距360km 的甲地到乙地.乘坐高铁列车比乘坐普通列车少用3h .已知高铁列车的平均速度是普通列车平均速度的3倍.设普通列车的平均速度为xkm /h .依题意.下面所列方程正确的是( ) A . B . C .D .=3【答案】B【解答】解:设普通列车的平均速度为xkm /h .则高铁的平均速度是3xkm /h . 根据题意得:﹣=3.故选:B .6.(2021•黔东南州模拟)2020年在抗击“新型冠状病毒”期间.甲、乙两人准备帮助某抗疫指挥中心整理一批新到的物资.甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后.乙需再单独整理30分钟才能完工.设乙单独整理这批物资需要x分钟完工.则根据题意列得方程()A.B.C.D.【答案】B【解答】解:设乙单独整理x分钟完工.根据题意得:+=1.故选:B.7.(2021•市中区三模)开学在即.由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同.且第一次购买口罩的单价是第二次购买口罩单价的1.5倍.则第二次购买口罩的单价是元.【答案】【解答】解:8000÷2=4000(元).设第二次购买口罩的单价是x元.则第一次购买口罩的单价是1.5x元.依题意得:+=6000.解得:x=.经检验.x=是原方程的解.且符合题意.故答案为:.8.(2020•沈河区一模)某服装商预测一种应季衬衫能畅销市场.就用4000元购进一批衬衫.面市后果然供不应求.该服装商又用9000元购进了第二批这种衬衫.所购数量是第一批购进数量的2倍.但单价贵了5元.则该服装商第一批进货的单价是元.【答案】40【解答】解:设第一批进货的单价为x元/件.由题意2×=.解得x=40.经检验.x=40是原分式方程的解.且符合题意.答:第一次进货单价为40元/件.故答案为:40.1.(2021秋•遵化市期中)下列哪个是分式方程()A.﹣﹣3x=6B.﹣1=0C.﹣3x=5D.2x2+3x=﹣2【答案】B【解答】解:A、﹣﹣3x=6是整式方程.故本选项错误;B、﹣1=0是分式方程.故本选项正确;C、﹣3x=5是整式方程.故本选项错误;D、2x2+3x=2是整式方程.故本选项错误.故选:B.2.(2021秋•江油市期末)一艘轮船在两个码头之间航行.顺水航行81km所需的时间与逆水航行69km所需的时间相同.已知水流速度是速度2km/h.则轮船在静水中航行的速度是()A.25km/h B.24km/h C.23km/h D.22km/h【答案】A【解答】解:设轮船在静水中航行的速度是xkm/h.则轮船顺水航行速度为(x+2)km/h.轮船逆水航行速度为(x﹣2)km/h.依题意得:=.解得:x=25.经检验.x=25是原方程的解.且符合题意.故选:A.3.(2021•张湾区模拟)某单位向一所希望小学赠送1080本课外书.现用A、B两种不同的包装箱进行包装.单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本.则根据题意列得方程为()A.B.C.D.【答案】C【解答】解:根据题意.得:.故选:C.4.(2021•安阳二模)中国标准动车组“复兴号”是世界上商业运营时速最高的动车组列车.达到世界先进水平.安全、舒适、快速是它的显著优点.从安阳东站到北京西站的距离是516千米.乘坐复兴号动车组列车将比乘坐特快列车节省2小时6分钟.已知复兴号动车组的平均速度比特快列车快100千米/小时.设复兴号动车组的平均速度为x千米/小时.根据题意可列方程()A.﹣=2.6B.﹣=2C.﹣=D.﹣=2【答案】B【解答】解:设“复兴号”的速度为x千米/时.则特快列车的速度为(x﹣100)千米/时.根据题意得:﹣=2.故选:B.5.(2021秋•铁岭县期末)解下列分式方程:(1)+4=;(2)﹣1=.【答案】(1)x=3是增根.分式方程无解(2)x=﹣.【解答】解:(1)去分母得:2﹣x+4(x﹣3)=﹣1.解得:x=3.检验:把x=3代入得:x﹣3=0.∴x=3是增根.分式方程无解;(2)去分母得:x(x+2)﹣(x+2)(x﹣2)=1.解得:x=﹣.检验:把x=﹣代入得:(x+2)(x﹣2)≠0.∴分式方程的解为x=﹣.1.(2021•阿坝州)已知关于x的分式方程=3的解是x=3.则m的值为()A.3B.﹣3C.﹣1D.1【答案】B【解答】解:把x=3代入分式方程=3.得.整理得6+m=3.解得m=﹣3.故选:B.2.(2021•百色)方程=的解是()A.x=﹣2B.x=﹣1C.x=1D.x=3【答案】D【解答】解:∵=.∴.去分母.得3(x﹣1)=2x.去括号.得3x﹣3=2x.移项.得3x﹣2x=3.合并同类项.得x=3.经检验:当x=3时.3x(x﹣1)≠0.∴这个分式方程的解为x=3.故选:D.3.(2021•巴中)关于x的分式方程﹣3=0有解.则实数m应满足的条件是()A.m=﹣2B.m≠﹣2C.m=2D.m≠2【答案】B【解答】解:﹣3=0.方程两边同时乘以2﹣x.得m+x﹣3(2﹣x)=0.去括号得.m+x﹣6+3x=0.合并同类项得.4x=6﹣m.∵方程有解.∴x≠2.∴6﹣m≠8.∴m≠﹣2.故选:B.4.(2021•兴安盟)若关于x的分式方程+=2无解.则a的值为()A.﹣1B.0C.3D.0或3【答案】A【解答】解:+=2.方程两边同时乘以x﹣3.得2﹣(x+a)=2(x﹣3).去括号得.2﹣x﹣a=2x﹣6.移项、合并同类项得.3x=8﹣a.∵方程无解.∴x=3.∴9=8﹣a.∴a=﹣1.故选:A.5.(2021•鄂尔多斯)2020年疫情防控期间.鄂尔多斯市某电信公司为了满足全体员工的需要.花1万元购买了一批口罩.随着2021年疫情的缓解.以及各种抗疫物资充足的供应.每包口罩下降10元.电信公司又花6000元购买了一批口罩.购买的数量比2020年购买的数量还多100包.设2020年每包口罩为x元.可列方程为()A.B.C.D.【答案】C【解答】解:设2020年每包口罩为x元.根据题意可得:.故选:C.6.(2021•株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十.粝米三十…”(粟指带壳的谷子.粝米指糙米).其意为:“50单位的粟.可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升).若按照此“粟米之法”.则可以换得的粝米为()A.1.8升B.16升C.18升D.50升【答案】C【解答】解:根据题意得:3斗=30升.设可以换得的粝米为x升.则=.解得:x==18(升).经检验:x=18是原分式方程的解.答:有3斗的粟(1斗=10升).若按照此“粟米之法”.则可以换得的粝米为18升.故选:C.7.(2020•阜新)在“建设美丽阜新”的行动中.需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响.实际施工时每天的工效比原计划增加25%.结果提前30天完成这一任务.设实际每天铺xm管道.根据题意.所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=30【答案】B【解答】解:设实际每天铺xm管道.则原计划每天铺m管道.根据题意.得﹣=30.故选:B.8.(2021•大庆)解方程:+=4.【答案】x=1【解答】解:给分式方程两边同时乘以2x﹣3.得x﹣5=4(2x﹣3).解得x=1.检验:把x=1代入2x﹣3≠0.所以x=1是原分式方程的解.1.(2014•日照校级模拟)下列说法:①解分式方程一定会产生增根;②方程=0的根为2;③方程的最简公分母为2x(2x﹣4);④x+=1+是分式方程.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解答】解:①解分式方程不一定会产生增根;②方程=0的根为2.分母为0.所以是增根;③方程的最简公分母为2x(x﹣2);所以①②③错误.根据分式方程的定义判断④正确.故选:A.2.(2021•安徽模拟)若x=6是分式方程的根.则a的值为()A.6B.﹣6C.4D.﹣4【答案】C【解答】解:将x=6代入分式方程可得:=.解得a=4.故选:C.3.(2021•郯城县模拟)分式方程=0的解是()A.1B.﹣1C.±1D.无解【答案】B【解答】解:去分母得:x2﹣1=0.解得:x=1或x=﹣1.检验:把x=1代入得:x﹣1=0;把x=﹣1代入得:x﹣1≠0.∴x=1是增根.x=﹣1是分式方程的解.故选:B.4.(2021•西湖区校级三模)某生产厂家更新技术后.平均每天比更新技术前多生产3万件产品.现在生产50万件产品与更新技术前生产40万件产品所需时间相同.设更新技术前每天生产产品x万件.则可以列方程为()A.B.C.D.【答案】A【解答】解:∵更新技术前每天生产产品x万件.∴更新技术后每天生产产品(x+3)万件.依题意得:=.故选:A.5.中国高铁目前是世界高铁的领跑者.无论里程和速度都是世界最高的.郑州、北京两地相距约700km.乘高铁列车从郑州到北京比乘特快列车少用3.6h.已知高铁列车的平均行驶速度是特快列车的2.8倍.设特快列车的平均行驶速度为xkm/h.则下面所列方程中正确()A.﹣=3.6B.﹣=3.6C.﹣=3.6D.=3.6﹣【答案】A【解答】解:设特快列车的平均行驶速度为xkm/h.则高铁列车的平均行驶速度为2.8xkm/h.依题意得:﹣=3.6.故选:A.6.(2020•河北模拟)某学校食堂需采购部分餐桌.现有A、B两个商家.A商家每张餐桌的售价比B商家的优惠20元.若该校花费4400元采购款在B商家购买餐桌的张数等于花费4000元采购款在A商家购买餐桌的张数.则A商家每张餐桌的售价为()A.197元B.198元C.199元D.200元【答案】D【解答】解:设A商家每张餐桌的售价为x元.则B商家每张餐桌的售价为(x+20)元.根据题意列方程得:=.解得:x=200经检验:x=200是原分式方程的解.则A商家每张餐桌的售价为200元.故选:D.7.(2021•碑林区校级模拟)解方程:=1﹣.【答案】x=﹣12【解答】解:方程两边同时乘以(x+2)(x﹣3)得:x(x﹣3)=(x+2)(x﹣3)﹣3(x+2).解得:x=﹣12.检验:当x=﹣12时.(x+2)(x﹣3)≠0.∴x=﹣12是原分式方程的解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
注意:
1)增根:使分式方程中的分母为0的根即为增根.
2)在列分式方程解应用题时,不仅要检验所的解是否满足方程式,
还要检验是否符合题意。
3)解分式方程的基本思路是将分式方程化为整式方程,具体做法是
“去分母”,即方程两边同乘最简公分母
中考数学复习《分式方程及其应用》经典题型(含答案)
知识点一:分式方程及其解法
1.定义:分母中含有未知数的方程叫做分式方程.
变式练习:在下列方程中,①3210x;②24xy;③411xx,其中是分
式方程的是③.
2.解分式方程
基本思路:分式方程 整式方程
变式练习:将方程12211xx转化为整式方程可得:1-2=2(x-1).
解法步骤:
(1)去分母,将分式方程化为整式方程;
分两步,第一步将各个分母因式分解,第二步方程两边都乘以最简公分母(最
简公分母是指各个分母系数的最小公倍数与所有字母最高次幂的积),得整式方
程。
(2)解所得的整式方程;
移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未
知数的值;
(3) 检验:
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,
扩大了未知数的取值范围,可能产生增根).验根时把整式方程的根代入最简
公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式
方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也
要带进去检验。
方程两边同乘以
最简公分母
约去分母
注意:若遇到互为相反数时.不要忘了改变符号
2
变式练习1:分式方程3x+1=2x的解是________.
【解析】方程两边同乘x(x+1),得3x=2(x+1),
去括号得,3x=2x+2,
移项得,3x-2x=2,
合并同类项得,x=2,
经检验,
x
=2是原分式方程的解.
变式练习2:若分式方程101x有增根,则增根为1.
变式练习3:2+x2-x+16x2-4=-1.
【解析】去分母得:-(x+2)2+16=4-x2,
去括号得:-x2-4x-4+16=4-x2,
解得:x=2,
经检验x=2是增根,
分式方程无解
变式练习3:小明解方程1x-x-2x=1的过程如图.请指出他解答过程中的错误,
并写出正确的解答过程.
解:方程两边同乘x得1-(x-2)=1 ……①
去括号得1-x-2=1 ……②
合并同类项得-x-1=1 ……③
移项得-x=2 ……④
解得x=-2 ……⑤
∴原方程的解为:x=-2 ……⑥
【解析】:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步
骤⑥少检验;正确解法为:方程两边同乘以x,得:1-(x-2)=x,去括号得:
1-x+2=x,移项得:-x-x=-1-2,合并同类项得:-2x=-3,解得:x
=32,经检验x=32是分式方程的解,则方程的解为x=32
知识点二 :分式方程的应用
1.列分式方程解应用题的一般步骤
(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答.
在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又
要检验所求未知数的值是不是符合题目的实际意义.
3
变式练习1:某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一
送三”促销活动,若整箱购买,购买一箱送三瓶,这相当于每瓶比原价便宜了
0.6元.问该品牌饮料一箱有多少瓶?
解:设该品牌饮料一箱有x瓶,依题意,得
x26-326x
=0.6,
化简,得x2+3x-130=0,
解得x1=-13(不合题意,舍去),x2=10,
经检验:x=10符合题意.
答:该品牌饮料一箱共有10瓶.
变式练习2:某工程队修建一条长1200 m的道路,采用新的施工方式,工效提
升了50%,结果提前4天完成任务.
(1)求这个工程队原计划每天修建道路多少米?
(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建
道路的工效比原计划增加百分之几?
.解:(1)设这个工程队原计划每天修建道路x米.
由题意得:x1200-x%)501(1200=4,
解得x=100,
经检验,x=100是原分式方程的解,且符合实际意义.
答:这个工程队原计划每天修建道路100米;
(2)由题意得,1200÷100=12(天),
又∵1200÷(12-2)=120(米),
∴120-100100×100%=20%.
答:实际平均每天修建道路的工效比原计划增加20%.
变式练习3:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提
出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型
纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果
用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸
轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根
据题意,得:400x+0.8=2×160x,解得:x=3.2,经检验:x=3.2是原分式方程
的解,且符合题意,答:A4薄型纸每页的质量为3.2克
变式练习4:为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,
4
建成后,铁路运行里程由现在的120 km缩短至114 km,城际铁路的设计平均时
速要比现行的平均时速快110 km,运行时间仅是现行时间的25,求建成后的城际
铁路在A,B两地的运行时间.
解:设城际铁路现行速度是x km/h.由题意得:120x×25=114x+110,解这个方程得:
x=80.经检验:x=80是原方程的根,且符合题意.则120x×25=12080×25=
0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6 h
变式练习5:某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,
按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅
销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,
所购数量比第一次多10条.当这批手链售出45时,出现滞销,便以定价的5折售
完剩余的手链.试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其他因
素)?若赔钱,赔多少?若赚钱,赚多少?
解:设第一次的批发价为x元/条,则第二次的批发价为(x+0.5)元/条.依题意
得(x+0.5)(10+100x)=150,解得x1=2,x2=2.5.经检验x1=2,x2=2.5都是
原方程的根.由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8
元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条,第二次的批发
价为2.5元/条,第二次共批发手链=1502.5=60(条),第二次的利润=(45×60×2.8
+15×60×2.8×0.5)-150=1.2(元).所以该老板第二次售手链赚了1.2元