沥青基碳纤维简介共20页文档

合集下载

沥青基碳纤维和pan碳纤维

沥青基碳纤维和pan碳纤维

沥青基碳纤维和pan碳纤维1.引言1.1 概述在概述部分,我们将介绍沥青基碳纤维和PAN碳纤维的基本概念和背景信息。

沥青基碳纤维和PAN碳纤维都是目前广泛应用于不同领域的高性能纤维材料。

沥青基碳纤维是以改性沥青为基材,在高温条件下碳化得到的连续纤维。

它具有较高的热稳定性、力学性能和疲劳性能,被广泛应用于航空航天、汽车制造、建筑材料等领域。

沥青基碳纤维的制备方法主要包括沥青改性、纺丝、碳化等工艺步骤。

PAN碳纤维是以聚丙烯腈(PAN)为主要原料制备得到的连续纤维。

它具有高强度、高模量和优异的特性,被广泛应用于航空航天、船舶、运动器材等领域。

PAN碳纤维的制备方法主要包括聚合纺丝、胶纺丝、气相重聚和高温碳化等工艺步骤。

本文将重点介绍沥青基碳纤维和PAN碳纤维的特性和制备方法,并探讨它们在不同领域的应用。

通过对比分析两种碳纤维的特点,我们可以更好地理解它们的适用范围和优势。

此外,我们也将展望沥青基碳纤维和PAN碳纤维在未来的发展方向,以期为相关领域的研究和应用提供参考和指导。

在接下来的章节中,我们将详细介绍沥青基碳纤维和PAN碳纤维的特性、制备方法和应用领域。

通过全面的研究和讨论,我们可以为碳纤维材料的发展和应用提供更深入的了解和见解。

1.2文章结构文章结构部分的内容可以写成以下形式:1.2 文章结构本文将以两个主要部分来探讨沥青基碳纤维和PAN碳纤维。

首先,我们将详细介绍沥青基碳纤维,包括其特性和制备方法。

接着,我们将探讨沥青基碳纤维在不同领域的应用。

其次,我们将转向PAN碳纤维,同样介绍其特性和制备方法,并讨论其应用领域。

最后,我们将通过对沥青基碳纤维和PAN碳纤维进行比较,总结两者的差异和优势。

此外,我们还将展望未来发展方向,探讨这两种碳纤维在新兴领域中的应用前景。

通过本文的阅读,读者将可以深入了解沥青基碳纤维和PAN碳纤维的特性、制备方法及其在不同领域的应用,为碳纤维领域的研究和开发提供有价值的参考。

中间相沥青基碳纤维金属基复合材料

中间相沥青基碳纤维金属基复合材料

《中间相沥青基碳纤维金属基复合材料的研究与应用》一、引言中间相沥青基碳纤维金属基复合材料是一种新型的复合材料,在材料工程领域具有广泛的应用前景。

本文将从多个角度对这一主题进行全面评估,并探讨其研究与应用。

二、中间相沥青基碳纤维金属基复合材料的结构与性能2.1 结构中间相沥青基碳纤维金属基复合材料主要由碳纤维、金属基体和中间相沥青组成。

碳纤维具有高强度、高模量和轻质的特点,金属基体具有良好的导热性和导电性,中间相沥青则起到了粘结剂的作用。

2.2 性能中间相沥青基碳纤维金属基复合材料具有优异的力学性能、导热性能和耐蚀性能。

碳纤维的高强度使得复合材料具有很高的强度和刚度,金属基体的导热性和导电性为复合材料的应用提供了广泛的可能性,中间相沥青的使用使得材料的结合更加牢固。

三、中间相沥青基碳纤维金属基复合材料的制备技术3.1 碳纤维预处理在制备中间相沥青基碳纤维金属基复合材料之前,需要对碳纤维进行表面处理,以增强其与金属基体的结合力。

3.2 中间相沥青的应用选择合适的中间相沥青对于复合材料的性能具有重要意义,不同种类的沥青会对复合材料的性能产生不同的影响。

3.3 金属基体的制备在制备过程中,金属基体的制备工艺也是关键的一步,需要考虑金属的种类、形状和表面处理工艺等因素。

3.4 复合材料的成型将处理过的碳纤维与制备好的金属基体进行成型,形成中间相沥青基碳纤维金属基复合材料。

四、中间相沥青基碳纤维金属基复合材料的应用领域4.1 轻质结构材料由于复合材料具有轻质和高强度的特点,适用于飞机、汽车等领域的轻质结构材料。

4.2 热传导材料由于金属基体的导热性,中间相沥青基碳纤维金属基复合材料适用于热传导材料的制备。

4.3 耐蚀材料碳纤维和金属基体的耐蚀性能使得复合材料适用于化工设备和海洋工程等耐蚀材料的制备。

五、个人观点与总结中间相沥青基碳纤维金属基复合材料作为一种新型的复合材料,在材料工程领域具有重要的应用前景。

复合材料的研究和制备技术将对材料工程领域带来重大影响,同时也为推动材料工程领域的发展做出了重要贡献。

沥青碳纤维情况介绍

沥青碳纤维情况介绍

沥青基碳纤维1 定义沥青基碳纤维是指以沥青等富含稠环芳烃的物质为原料,通过聚合、纺丝、不熔化、碳化处理制备的一类碳纤维,按其性能的差异又分为通用级沥青碳纤维和高性能沥青碳纤维,前者由各向同性沥青制备,又称各向同性沥青级碳纤维,后者由中间相沥青出发制备,故又称为中间相沥青级碳纤维。

2 可纺沥青的调制2.1 沥青原料的前处理沥青是有机化合物经热处理形成的一种由不同分子量和烷基侧链构成的稠环芳烃混合物,主要由C、H元素组成,还含有少量O、N、S及一定灰份杂质,通常沥青含碳量在91%~95%,平均相对分子质量在400以上,具可塑性。

按其来源不同可分为煤焦油沥青、石油沥青和人工合成沥青(如PVC沥青,萘沥青等),前者是炼焦副产物煤焦油经热处理或蒸馏得到的重质馏分,主要含有稠环芳烃和杂环芳烃;石油沥青是由石油组分经热处理或蒸馏获得的残渣,主要含有芳烃和烷基取代芳烃化合物。

一种沥青是否适于制备碳纤维,取决于它的可纺性及转变为不熔化状态的能力,这在很大程度上依赖于沥青的化学组分及分子量分布。

适于作为碳纤维原料的沥青要求是:杂原子和灰分杂质含量低,碳含量高,具有一定的流变性能以满足纺丝的需求,具有较高的化学反应性以满足不熔化处理的需要。

然而,我们通常所用的沥青原料却难以满足以上要求,需在充分了解各种原料沥青分子化学结构和物理性能之间相互关系的基础上对不适合的沥青组份或分子群进行裁减或改性修饰,使之符合作为制备沥青基碳纤维原料的基本要求。

沥青中,特别是煤焦油沥青中常含有游离炭和固体杂质等一次QI,它们在纺丝过程中可能堵塞纺丝孔,细小颗粒残留在纤维中则是碳纤维的断裂源。

含一次QI的沥青也不易转化为流变性能好、各向异性发达的中间相沥青。

因此,无论是通用级沥青碳纤维还是中间相沥青碳纤维,原料沥青都必须精制以脱除其中的一次QI。

方法主要采用物理手段,如热溶过滤,离心分离,静置沉降分离,减压蒸馏,溶剂抽提等。

用苯或甲苯等溶剂抽提除去轻组份,改变原料的分子量分布,密集生成中间相的组份,利于中间相的转化;超临界抽提和旋转刮膜蒸发法是最近发展起来的两种新的沥青处理方法,具有高效、快速、使馏份分子量分布狭窄等特点。

石油沥青碳材料概述

石油沥青碳材料概述

石油沥青碳材料概述一、高软化点沥青---高碳材料按照沥青软化点高低分类,当软化点≤80℃称低软化点沥青,光学各向同性;软化点介于80℃-150℃称中软化点沥青,光学各向同性,又称预中间相沥青;软化点介于150℃-260℃称高软化点沥青,光学各向异性,又称潜中间相沥青;软化点介于260℃-372℃称超软化点沥青,光学各向异性,又称中间相沥青。

二、锂离子电池负极材料(一)石油沥青基中间相碳微球1、简介中间相碳微球即MCMB,用作锂电池负极材料,具有高的质量比容量-300mAh/g,很低的不可逆容量20mAh/g,与低成本石墨相比,显现出较低的容量衰减,对要求长循环和高体积比的动力电池来说更适合。

化学稳定性和热稳定性相对较高。

日本的新一代电动车电池大多使用MCMB。

2、市场价格中间相碳微球根据质量和使用需求不同,国产产品市场上从5万-15万元/吨不等,日本JFE(日本钢铁工程控股公司)价格更高。

3、生产企业目前国内有能力批量稳定生产高质量中间相碳微球的企业并不多,高端的产品主要是国外企业垄断。

国内企业--天津市贝特瑞新能源材料有限责任公司(原天津铁诚,属中国宝安集团) AGP-3 系列--杉杉科技公司 CMS系列、MCP系列国外企业--JFE、日立化学,三菱化工等日本企业(二)高端人造石墨1、简介高端人造石墨,用作锂电池负极材料,和天然石墨合计市场占有率高达90%,是主要的锂离子电池负极材料。

2、市场价格高端人造石墨根据终极市场锂电池的应用不同,所需的性能和质量不同,统计价格不包括特殊情况,国产产品市场价格6-16万元/吨不等。

3、生产企业高端人造石墨,从全球的情况看,前三甲的市场占有率就高达66%,国内主要生产厂商有以下:--中国宝安贝特瑞新能源材料(BTR)公司--杉杉科技公司--长沙海容公司据不完全统计,截止2011年以上3家企业的产能总额达1.3万吨,其中人造石墨占38%左右。

其他主要人造石墨生产企业:华鑫能源、宏远碳素、长沙星城、东莞金卡本、新乡远东、新乡格瑞恩、青岛恒源、湖州创亚等。

中间相沥青基碳纤维金属基复合材料

中间相沥青基碳纤维金属基复合材料

中间相沥青基碳纤维金属基复合材料中间相沥青基碳纤维金属基复合材料一、引言中间相沥青基碳纤维金属基复合材料是一种重要的结构材料,具有广泛的应用前景。

它由中间相沥青基体和碳纤维增强体构成,同时具备了沥青基材料的优良性能和碳纤维增强材料的高强度、高刚度等特点。

本文将从不同角度出发,对中间相沥青基碳纤维金属基复合材料的深度和广度进行评估和探讨,力求为读者全面理解该复合材料的性能和应用提供有价值的信息。

二、中间相沥青基碳纤维金属基复合材料的优点1. 高强度和高刚度:碳纤维增强体的加入使得复合材料具备了优异的强度和刚度,适用于各种结构件的制造。

2. 轻量化:相比于金属材料,中间相沥青基碳纤维金属基复合材料具有较低的密度,可以降低结构的整体重量。

3. 耐腐蚀性:中间相沥青基体具有良好的耐腐蚀性能,可以在多种恶劣环境中使用,延长结构的使用寿命。

4. 易加工性:中间相沥青基材料可通过热压、压模等工艺进行成型,成本相对较低且加工过程相对简单。

三、中间相沥青基碳纤维金属基复合材料的性能评估1. 力学性能中间相沥青基碳纤维金属基复合材料的力学性能是其应用中最重要的指标。

通过实验和数值模拟的方法可以评估材料在拉伸、弯曲、剪切等加载条件下的力学性能特性,如强度、刚度、断裂韧性等。

这些评估结果可以帮助工程师选择合适的复合材料用于不同结构工程的设计和制造。

2. 耐热性能中间相沥青基碳纤维金属基复合材料在高温环境中的性能表现是评估其耐用性和可靠性的关键。

通过热循环实验、热导率测试和热膨胀系数测试等可以评估材料的耐热性能。

这些评估结果有助于确定材料在高温工况下的适用性和工程设计的安全性。

3. 导电性能由于碳纤维增强体的加入,中间相沥青基碳纤维金属基复合材料具有优异的导电性能。

通过测试材料的电阻率和热导率等指标,可以评估材料的导电性能,为电子设备散热、防雷和静电保护等应用提供技术支撑。

四、中间相沥青基碳纤维金属基复合材料的应用领域1. 航空航天中间相沥青基碳纤维金属基复合材料具有轻量化和高强度的特点,适用于航空器结构件的制造,如机翼、尾翼、机身等。

高导热沥青基碳纤维EN

高导热沥青基碳纤维EN

Sample No.
BB-1 BB-2 TC-4 TC-6 BB-7
Resin
PPS* PPS PPS PPS PPS PEEK**
Carbon Fiber
無し K6371T K237SE K223HE K223HE K223HE
CF(wt%)
30%
30%
30%
50%
30%
Fiber Volume (%)
8.8
14.4
0.3
1.3
1ical Properties Tensile:JISK 7161 Flexural:JISK 7171 Thermal Conductivity: Laser flash
Confidential
Heat diffusion in plate specimen made by injection molding K223HE/PPS
K223SE 185 2350 1.1 2.0 -- 10~20 Polyamide 6mm、25mm
K6371T 640 2600 0.4 2.1 140 6~7 Epoxy 3, 6, 12, 18, 25mm Flat
K637N1 640 2600 0.4 2.1 140 6~7 Non 6mm
【Production upon Order】
Chopped Fiber K223QE 185 2350 1.1 2.0 -- 10~20 Non 6mm
min. 1ton
K223QG 590 3230 0.6 2.1 140 7~8 Non 6mm
min. 1ton
K237SE 640 2600 0.4 2.1 140 6~7 Polyamide 6mm

基碳纤维材料

基碳纤维材料

前言:温馨小提示:本篇文档是通过查阅资料精心整理编制的,希望能帮助大家解决实际问题,文档内容不一定完美契合各位的需求,请各位根据需求进行下载。

文档下载后可自己根据实际情况对内容进行任意改写,确保能够帮助到大家。

除此之外,本店铺还提供各种文档材料,涉及多个领域例如活动文案、工作方案、读后感、读书笔记等,大家按需搜索查看!Warm tip:This document is prepared by consulting information carefully. Hope to help you solve practical problems. The content of the document is not necessarily perfect to match your needs. Please download according to your needs. Then you can rewrite the content according to the actualsituation to ensure that we can help. In addition, the store also provides a variety of documents and materials, covering areas such as copywriting for activities, work plans, reflections, reading notes, etc.正文如下:基碳纤维材料:新时代的材料之王一、引言在21世纪,材料科学的发展日新月异,各种新型材料层出不穷,其中基碳纤维材料以其独特的性能优势和应用潜力,被誉为“新时代的材料之王”。

本文将对基碳纤维材料的基本概念、分类、性能特点、应用领域以及发展现状和未来趋势进行详细介绍。

二、基碳纤维材料概述基碳纤维材料,简称碳纤维,是一种由有机纤维经过高温碳化处理得到的含碳量极高的无机高分子纤维。

沥青碳纤维

沥青碳纤维

碳纤维(carbon fibre),顾名思义,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。

与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。

有学者在1981年将PAN基CF浸泡在强碱NaOH 溶液中,时间已过去20多年,它至今仍保持纤维形态。

成分结构碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。

碳纤维的微观结构类似人造石墨,是乱层石墨结构。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。

因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。

碳纤维化学性质碳纤维是含碳量高于90%的无机高分子纤维。

其中含碳量高于99%的称石墨纤维。

碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。

但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。

因此,碳纤维在使用前须进行表面处理。

碳纤维的制备碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。

通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档