二极管双向限幅电路的实验研究

二极管双向限幅电路的实验研究
二极管双向限幅电路的实验研究

限幅器原理

限幅器原理 理想限幅器是一个无记忆的非线性电路。理想限幅器应具有放大和限幅的双重功能,且要求其放大量为无穷大、限幅是瞬时的。通常限幅器是由非线性限幅器件和一个带通滤波器组成,调频波通过它时,首先由非线性器件将其超过限幅电平E的那部分幅度切去,然后经带通滤波器滤出其基波分量,以使输出电压的频率仍和输入的频率一致。实际设计中,我们采用在一个近似中频带宽的限幅器中加入适量的正反馈,就能够明显地改善它的削弱比,起到几级无正反馈但其它结构相同的限幅器的作用. 二极管限幅: 下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当ui低于E时,D不导通,uO=E;当ui高于E以后,D导通,uO=ui。该限幅器的限幅特性如图2所示,当输入振幅大于E的正弦波时,输出电压波形见图3。可见,该电路将输出信号的下限电平限定在某一固定值E上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 如将二极管和负载并联,则组成并联限幅器,见图4。图中,当ui高于E时,D导通,uO =E;当ui低于E时,D截止,uO=ui。它的限幅特性如图5所示。显然,这是一个上限幅器。 将上、下限幅器组合在一起,就组成了如图6所示的双向限幅电路,它的限幅特性如图7所示。当输入一个振幅较大的正弦信号时,输出波形见图8。

限幅二极管: 用来做限幅用的二极管称为限幅二极管。所谓限幅,就是将信号的幅值限制在所需要的范围之内。由于通常所需要限幅的电路多为高频脉冲电路、高频载波电路、中高频信号放大电路、高频调制电路等,故要求限幅二极管具有较陡直的U-I特性,使之具有良好的开关性能。从这一点出发,限幅二极管一般均由结型开关二极管2CK*担当;在一些特殊要求的电路中,点接触的检波二极管2AG*或开关二极管2AK*也可以作为限幅二极管完成限幅任务;还有一些需要较大幅值限幅或既需要限幅又需要温度自动补偿的特定电路,稳压二极管作为限幅二极管将会成为唯一正确的选择。 限幅二极管的特点: 1、多用于中、高频与音频电路; 2、导通速度快,恢复时间短; 3、正偏置下二极管压降稳定; 4、可串、并联实现各向、各值限幅; 5、可在限幅的同时实现温度补偿。 大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。限幅电路的作用是把输出信号幅度限定在一定的范围内,亦即当输入电压超过或低于某一参考值后,输出电压将被限制在某一电平(称作限幅电平),且再不随输入电压变化。

限幅与钳位电路分析

欢迎光临实用电子技术网愿你在这里有所收获! 实用电子技术网 返回电子知识 限幅与箝位电路 一、限幅电路 图一是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

图三、任意电平箝位电路 箝位电路可以把信号箝位于某一固定电平上,如图三(a)电路,当输入Ui=0期间,D截止,Uo=-Eo;而当输入Ui突变到Um瞬间,电容C相当短路,输出Uo由-Eo突变至Um,这时D截止,C经R及Eo充电,但充电速度很慢,使Uo随C充电稍有下降;当Ui从Um下降为零瞬间,Uo也负跳幅值Um,此时D导通,C放电很快,因此输出信号起始电平箝位于-Eoo同理,电路(b)的输出信号箝位于Eoo值得注意的是,箝位电路不仅使输出信号的起始电平箝位于某一电平,而且能使输出信号的顶部电平箝位于某一数值,电路元件估算公式如下: -------------------------------------------------式一 式中:Rf、Rr为二极管正向、反向电阻。箝位电路的电容量为: C= ---------------------------------------------------------------式二 式中:C′≤T ρ/3Rs+Rf C″≥100(Tr/R) 其中Tp为输入脉冲信号持续期,Tr为间歇期,Rs为输入信号源内阻。要选用正、反电阻相差大的二极管,如要求变化速度快及反向 恢复时间短,则选硅二极管如2CK型为宜,若要求箝位靠近零电平,则选锗二极管2AK型为合适。

二极管钳位电路

二极管钳位电路 钳位电路 (1)功能:将输入讯号的位准予以上移或下移,并不改变输入讯号的波形。 (2)基本元件:二极管D、电容器C及电阻器R(直流电池VR)。 (3)类别:负钳位器与正钳位器。 (4)注意事项 D均假设为理想,RC的时间常数也足够大,不致使输出波形失真。 任何交流讯号都可以产生钳位作用。 负钳位器 (1)简单型 工作原理 Vi正半周时,DON,C充电至V值,Vo=0V。 Vi负半周时,DOFF,Vo=-2V。 (2)加偏压型 工作原理 Vi正半周时,二极管DON,C被充电至V值(左正、右负),Vo=+V1(a)图或-V1(b)图。 Vi负半周时,二极管DOFF,RC时间常数足够大,Vo=V C + Vi(负半周)=2V。 re5838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 几种二极管负钳位器电路比较

正钳位器 (1)简单型 工作原理 Vi负半周时,DON,C充电至V值(左负、右正),Vo=0V。Vi正半周时,DOFF,Vo=V C + V i(正半周) =2V。 (2)加偏压型

判断输出波形的简易方法 1 由参考电压V1决定输出波形于坐标轴上的参考点。 2 由二极管D的方向决定原来的波形往何方向移动,若二极管的方向为,则波形必 须向上移动;若二极管的方向为,则波形必须往下移动。 3 决定参考点与方向后,再以参考点为基准,将原来的波形画于输出坐标轴上,即为我们所求。 几种二极管正钳位器电路比较

补充:二极管的钳位作用,是指把高电位拉到低电位;二极管的稳压作用,是指一种专用的稳压管,它是有固定稳压参数的,在电路上是把负极接在电路的正极上,正极接在地端,当电路中的电压高于稳压二极管稳压值时,稳压二极管瞬间对地反向导通,当把电压降到低于该稳压值时二极管截止,起到稳压保护电路中元件的作用。 不一定非得用稳压二极管来稳压,用一般的二极管串联也行,例如三个二极管串联,负极接地正极一路接负载,一路接一足够大的电阻再接电源就可以实现伏的稳压。

二极管限幅

2.3 二极管限幅电路 所谓限幅电路是限制信号输出幅度的电路,它能按限定的范围削平信号电压的波形幅度,是用来限制信号电压范围的电路,又称限幅器、削波器等。限幅电路应用非常广泛,常用于整形、波形变换、过压保护等电路。 限幅电路按功能分为上限幅电路、下限幅电路和双向限幅电路三种。上限幅电路在输入电压高于某一上限电平时产生限幅作用;下限幅电路在输入电压低于某一下限电平时产生限幅作用;双向限幅电路则在输入电压过高或过低的两个方向上均产生限幅作用。 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当i u 低于E 时,D 不导通,o u =E ;当u i高于E 以后,D 导通,o u =i u 。该限幅器的限幅特性如图所示,当输入振幅大于E 的正弦波时,输出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。

2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 2.4 稳压二极管电路 1、稳压二极管的基本特性 稳压二极管是一种用特殊工艺制造的面接触型半导体二极管,这种管子的掺杂度高,击穿电压值低,正向特性和普通二极管一样。当反向电压加到某一定值时,反向电流剧增,产生反向击穿,反向击穿特性很陡峭。击穿时通过管子的电流在很大范围内变化,而管子两端的电压却如图(b)所示几乎不变,稳压二极管就是利用这一特性来实现稳压的。 可见,稳压管就是工作在反向击穿状态下的硅二极管,因此,在使用时,稳压管必须反向偏置;另外,稳压管可以串联使用,一般不能并联使用,因为并联有时会因电流分配不匀而引起管

二极管钳制电路

所谓钳位,就是把输入电压变成峰值钳制在某一预定的电平上的输出电压,而不改变信号。 钳位电路 (1)功能:将输入讯号的位准予以上移或下移,并不改变输入讯号的波形。 (2)基本元件:二极管D 、电容器C 及电阻器R (直流电池VR )。 (3)类别:负钳位器与正钳位器。 (4)注意事项 D 均假设为理想,RC 的时间常数也足够大,不致使输出波形失真。 任何交流讯号都可以产生钳位作用。 负钳位器 (1)简单型 工作原理 V i 正半周时,DON,C 充电至V 值,V o =0V 。 V i 负半周时,DOFF ,Vo=-2V 。 (2)加偏压型 工作原理 V i 正半周时,二极管DON ,C 被充电至V 值(左正、右负),Vo=+V 1(a)图或-

V 1(b)图。 V i 负半周时,二极管DOFF ,RC 时间常数足够大,V o =V C +V i (负半周)=2V 。 几种二极管负钳位器电路比较 正钳位器 (1)简单型 工作原理 V i 负半周时,DON ,C 充电至V 值(左负、右正),V o =0V 。

V i 正半周时,DOFF ,V o =V C +V i (正半周) =2V 。 (2)加偏压型 判断输出波形的简易方法 1. 由参考电压V 1决定输出波形于坐标轴上的参考点。 2 .由二极管D 的方向决定原来的波形往何方向移动,若二极管的方向为, 则波形必须向上移动;若二极管的方向为 ,则波形必须往下移动。 3 决定参考点与方向后,再以参考点为基准,将原来的波形画于输出坐标轴上, 即为我们所求。 几种二极管正钳位器电路比较

(仅供参考)二极管限幅电路

2.3二极管限幅电路 所谓限幅电路是限制信号输出幅度的电路,它能按限定的范围削平信号电压的波形幅度,是用来限制信号电压范围的电路,又称限幅器、削波器等。限幅电路应用非常广泛,常用于整形、波形变换、过压保护等电路。 限幅电路按功能分为上限幅电路、下限幅电路和双向限幅电路三种。上限幅电路在输入电压高于某一上限电平时产生限幅作用;下限幅电路在输入电压低于某一下限电平时产生限幅作用;双向限幅电路则在输入电压过高或过低的两个方向上均产生限幅作用。 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当i u 低于E 时,D 不导通,o u =E ;当u i高于E 以后,D 导通,o u =i u 。该限幅器的限幅特性如图所示,当输入振幅大于E 的正弦波时,输出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D u u i u O 幅限特性

2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 u u 3、二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 u E u 2.4稳压二极管电路 1、稳压二极管的基本特性 稳压二极管是一种用特殊工艺制造的面接触型半导体二极管,这种管子的掺杂度高,击穿电压值低,正向特性和普通二极管一样。当反向电压加到某一定值时,反向电流剧增,产生反向击穿,反向击穿特性很陡峭。击穿时通过管子的电流在很大范围内变化,而管子两端的电压却如图(b )所示几乎不变,稳压二极管就是利用这一特性来实现稳压的。 可见,稳压管就是工作在反向击穿状态下的硅二极管,因此,在使用时,稳压管必须反向偏置;另外,稳压管可以串联使用,一般不能并联使用,因为并联有时会因电流分配不匀而引起管

二极管基本电路及其分析方法

§1-4 二极管基本电路及其分析方法 1.4.1 二极管的等效模型 1、二极管的直流模型 1)理想开关模型 2)恒压降模型 3)折线模型 2、二极管的交流小信号模型 当在二极管的工作点上叠加有低频交流小信号电压ud时,只要工作点选择合适,且ud足够小,可以将Q点附近的特性曲线看成是线性的(线性化),则交流电压与电流之间的关系可以用一个电阻rd来表示。 rd——即为工作点处的交流电阻,rd=UT/ID。 注意:小信号模型只能表示交流电压与电流之间的关系,不能反映总的电压与电流的关系。 1.4.2 二极管的应用电路 二极管在低频电路和脉冲电路中常用于整流、限幅、钳位、稳压等波形变换和处理电路,在高频电路中常用于检波、调幅、混频等频率变换电路. 1、整流电路

2、二极管限幅电路 二极管的导通压降为UD=0.7V, (1)|ui|< UD时, D1、D2 都截止,视为开路,输出为uo=ui。 (2)ui> UD时,D1截止,D2导通,输出为uo = 0.7V 。 (3)ui<-UD时,D2截止,D1导通,输出为uo = -0.7V 。 输出电压被限幅在±0.7V之间,是一个双向限幅电路。由于二极管在限幅时并非理想的恒压源,在限幅期间电压仍会有变化,所以二极管限幅为“软限幅”。限幅电路常用作波形变换和保护电路。 3、二极管钳位电路 钳位:把交流信号的顶部或底部固定在某个电位值上。 二极管钳位电路是改变信号直流成分的电路。

(1)ui负半周,二极管导通,uo=uD =0V,导通电阻RD很小, C被充电到ui的峰值。 (2)ui正半周,二极管反偏截止,C无法放电,输出电压为uo=ui+uC=5V。(3)下一个负半周,二极管上的电压为0,二极管截止,输出电压为uO=0V。此后,二极管保持截止状态,电容无法放电,相当于恒压源,输出电压为:uo=ui +2.5V,uo的底部被钳位于0V。

限幅电路

你问的是这个问题吗? 下图:是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

导通,u O s=E;当ui低于E时,D截止,u O=ui。它的限幅特性如图Z1610所示。显然,这是一个上限幅器。 将上、下限幅器组合在一起,就组成了如图Z1611所示的双向限幅电路,它的限幅特性如图Z1612所示。当输入一个振幅较大的正弦信号时,输出波形见图Z1613。 2.三极管限幅器 利用三极管的截止和饱和特性也可构成限幅电路(如图Z1614所示),这类电路还兼有放大作用。为了满足一些较高的技术要求,还可以用集成运放构成限幅电路。 备做一个限幅电路的整理,在学校内学的如下图:

钳位电路

钳位电路(Clamping Circuit)跟前面所说的限幅电路不同,它的作用不是限制信号的电压幅值,而是把整个信号幅值进行直流平移。最后的输出波形与输入波形的形状不变,只是在输入信号的基础上增加了直流分量。该直流分量的大小取决于电路本身的具体参数。 钳位电路的应用也很多,在我们家里的彩色电视机里有它的身影。在其中它起到恢复电视亮度信号的直流分量。稍微想一下,电视的信号肯定不是有规律的波形,那么钳位电路肯定不用知道确切的波形,就能把直流分量调出来。 那么二极管在会充当什么角色呢?还是先来看看下图的二极管钳位电路: 以正弦信号为例:输入为v i=V m sin(ωt)来分析该电路是如何钳位的。为了简单起见,设电容的初始电压V C(0)=0,二极管D是理想的。则当

时间t由0时刻增至T/4时,v i达到其峰值V m,电容的电压也被充至峰值V m。随之,v i下降,很显然,二极管处于反偏截至状态,电容的电压没有地方放电,只能保持V m不变。因而可得输出电压 v o=-v c+v i=-V m+V m sin(ωt)。由此可见,输出电压被钳住了,输出与输入的波形相同,不同的只是输出波形进行了-V m的直流平移。 下图是上图仿真结果的波形图的比较: 正弦波形 三角波形 对上面的波形图说明一下:红色为输入波形,黑色为输出波形。大家可能有疑问了。根据上面的原理分析这不对啊!不是反了吗?对!是反了!

不过不是我说反了,而是我把二极管接反了。这就对了!二极管的方向只是影响直流平移的方向而已。也就是正移和负移。看看二极管又是功不可没啊! 大家可以从上面波形图看到,输出的波形相对输入波形抬高了,即多加了一个直流分量,两者的波形形状没有发生变化。这也就完成了钳位功能。

二极管7种应用电路详解

二极管7种应用电路详解之一 许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 9.4.1 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。 图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 (1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 (2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 (3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中

二极管限幅电路实验报告(最新整理)

R u i D u O E t 一、实验目的 实验:设计和探究二极管限幅电路 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱三、实验原理和装置图 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中, 若二极管具有理想的开关特性,那么,当u i 低于 E 时,D 不导通, u o =E ;当 u i高于 E 以 后,D 导通, u o = u i 。该限幅器的限幅特性如图所示,当输入振幅大于 E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值 E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D E u i 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 u i u E R u i u O u O E E t t t

R u i D 1 D2 u O E E t 3、 二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 u i u E E E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论五、数据记录 A : -3.751V -2.145V -1.140V 1.340V 2.279 5.525 7.726 B: -2.547V -2.145V -1.139V 1.340V 2.279 5.429 5.563 六、数据处理和实验结论 1. 这些数据都几乎一样,没什么太大差别。 2. 结论:二极管最基本的工作状态是导通和截止两种。 信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 信号幅度比较大时的电路工作状态,即信号幅度大到让限幅电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 第三小组: 时间:2012 年 5 月 10 日星期四 t

二极管钳位(精华合辑)

钳位二极管 作用: 在钳位电路中,二极管负极接地,则正极端电路被钳位零电位以下; 1、当二极管负极接地时,则正极端电路的电位比地高时,二极管会导通将其电位拉下来,即正极端电路被钳位零电位或零电位以下(忽略管压降)! 2、当二极管正极接地时,则负极端电路的电位比地高时,二极管会截至,其电位将不会受二极管的任何作用; 3、在钳位电路中,二极管负极接+5V,则正极端电路被钳位+5V电位以下; 4、在钳位电路中,二极管正极接+5v,则负极端电路被钳位+5V电位以上; (忽略管压降) 原理: 二极管钳位保护电路是指由两个二极管反向并联组成的,一次只能有一个二极管导通,而另一个处于截止状态,那么它的正反向压降就会被钳制在二极管正向导通压降0.5-0.7以下,从而起到保护电路的目的。 钳位电路的作用是将周期性变化的波形的顶部或底部保持在某一确定的直流电平上。图Z1615为常见的二极管钳位电路。设输入信号如图Z1616(a)所示,在零时刻,uO(0+)=+E,uO产生一个幅值为E的正跳变。此后在0~t1间,二极管D导通,电容C充电电流很大,uC很快等于E,致使uO=0。在t1时刻,ui(t1)=0,uO又发生幅值为-E的跳变,在t1~t2期间,D截止,充电电容C只能通过R放电,通常,R取值很大,所以uC下降很慢,uO变化也很小。在t1时刻uI(t2)=E,uO又发生一个幅值为E的跳度,在t2~t3期间,D导通,电容C又重新充电。与0~t1期间内不同,此时电容上贮有大量电荷,因而充电持续时间更短,uO更迅速地降低为零。以后重复上述过程,uO和uC的波形如图Z1616(b)、(c)。可见,uO的顶部基本上被限定在零电平上,于是,就称该电路为零电平正峰(或顶部)钳位电路。 一钳位二极管要用稳压二极管,因为稳压管有各种电压,稳压管是用在反向击穿状态下的,用普通两极管, 只能用正向压降来稳压,不能工作在击穿状态的。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管. 二 1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变.这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中 各点电压变动时,负载两端的电压将基本保持不变. 2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定.在这3种故障中, 前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定. 常用稳压二极管的型号及稳压值如下表: 型号1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N47511N4761 稳压值3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V

限幅器的作用

什么是限幅器 微波限幅器是一种自控衰减器, 是一种功率调制器件。当信号输入功率较小时无衰减通过,当输入功率增大到超过某一值时,衰减会迅速增大,这一功率值称为门限电平,输入功率超过门限电平后,输出功率不再增加。实际工作中,限幅器基本上都是为整机需要而专门设计的。常用于微波扫频信号源或相位检测系统中,使输出信号幅度保持稳定。功率限幅器设计用于通信、遥感、雷达系统和高频仪器领域电子元件的输入保护。它针对不同的工作频率、需承受的微波功率、微波脉冲宽度、占空比等要求进行设计.微波限幅器通常用在接收机的放大器或混频器的前面保护它们,免受强信号的影响而烧毁。在扫频仪或测相系统中可使输出幅度保持恒定。限幅器一般由输入端口和输出端口上的隔直流电容器和集成式二极管限幅器电路组成。集成电路包含着透过50欧姆传输线并联的平面掺杂阻挡层(PDB)或Schottky二极管。限幅器在低输入电平时有很低的插入损耗和线性特性,可提供对瞬态或短时间过载的保护。它们有很低的插入损耗和回波损耗,可为您的设备提供安全保护,避免因过大射频功率、直流电压瞬变或静电放电(ESD)导致损坏。 微波限幅器主要参数定义 1.限幅电平:限幅器开始限幅时的功率值。 2.插入损耗:输入电平低于门限电平时输入信号损耗,一般在-10dBm 下测试。 3.承受功率:能承受的最大输入功率(脉冲功率,脉冲平均功率,连续波功率)。 4.恢复时间:以输入脉冲终止开始,到限幅器损耗比插入损耗大3dB为止的时间。

限幅器原理是什么? 理想限幅器是一个无记忆的非线性电路。理想限幅器应具有放大和限幅的双重功能,且要求其放大量为无穷大、限幅是瞬时的。通常限幅器是由非线性限幅器件和一个带通滤波器组成,调频波通过它时,首先由非线性器件将其超过限幅电平E的那部分幅度切去,然后经带通滤波器滤出其基波分量,以使输出电压的频率仍和输入的频率一致。实际设计中,我们采用在一个近似中频带宽的限幅器中加入适量的正反馈,就能够明显地改善它的削弱比,起到几级无正反馈但其它结构相同的限幅器的作用。 限幅器常用在接收设备的前级,对超过门限的大功率输入信号限幅,起到保护后级敏感电路和器件的作用。限幅器的峰值输入功率是在脉冲调制占空比为1%(脉宽10μS,6GHz 以下;脉宽1μS,6GHz 以上)的条件下测试的结果。插损和驻波比是在输入连续波功率-10dBm的条件下测试的结果。 压缩/限幅器的调整及应用 人类的听感动态范围能承受的最大响度和能感受的最安静声音响度的范围可达100万:1(即106倍)听感的动态范围达120dB。扩声系统声音重放的动态范围由于受电子设备的限制,远比人耳的动态范围小很多。最低声音的响受系统中不相关噪声的限制,使小的声音信号淹没在噪声中而无法听到;最大声音的响度受信号削波的限制,使音乐信号中的特大峰值被“砍头”(削波),不仅

二极管限位与钳位

二极管限位与钳位电路 发布时间:2011-12-13 13:45:49 访问次数:3107 有一种二极管电路,称为限位器(limiter或clipper), S5H1410X01-Q0可将信号的电压在某个固定值以上,或以下的部分截掉。另一种二极管电路,称为钳位器,可将直流电压叠加到信号上,或者恢复信号的原有直流幅值。这一节我们将介绍限位器和钳位器的二极管电路。 在学习完本节的内容后,你应该能够:说明并且分析二极管限位和钳位电路的工作原理;说明二极管限位器的工作原理;计算出加上偏压后的限位器输出电压;使用分压器的偏压方式,设定限位器的幅值;说明二极管钳位器的工作原理。 1.二极管限位器 图2. 34(a)显示的二极管限位器(limiter或者clipper),会限制或者截掉输入电压的正半周部分。当输入电压进入正半周期,二极管处于正向偏压状态。因为二极管的阴极是接地电位(OV),于是阳极的电位就不能超过0.7V(假设此二极管是硅质)。于是输入电压超过这个数值时,A点的电位就被限制在10. 7V。当输入电压降回到0. 7V以下时,二极管就变成反向偏压,而变成开路的状态。输出电压的波形看起来与输入电压的负半周相似,但是波幅则是由R1和R2所组成的分压器决定,计算式如下: Vout(R L/+R1+RL)×Vin 如果R1相较RL很小,于是Vout=Vin

如果将二极管反接,如图2.34(b),则输入电压的负半周会被截掉。在输入电压的负半周期间,此二极管是处于正向偏压,因为二极管电压降的缘故,A点的电压维持在-0.7V。当输入电压超过-0.7V,二极管就不再处于正向偏压,于是RL上就出现与输入电压成比例的电压。 (1)加上偏压的限位器 可将偏压y BIAS和二极管串联,就可以调整交流电压的值,如图2.37所示。在A点的电压必须等于+0.7V,此二极管才会成为正向偏压而导通。一旦二极管导通后,在A点的电压就会被限制在+0.7V,于是所有高于此幅值的输入电压均会被截掉。

二极管限幅电路实验报告

实验:设计和探究二极管限幅电路 一、实验目的 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性 二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱 三、实验原理和装置图 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中,若二极管具有理想的开关特性,那么,当i u 低于E 时,D 不导通,o u =E ;当u i高于E 以 后,D 导通, o u =i u 。该限幅器的限幅特性如图所示,当输入振幅大于E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D R E u i u O t E u O u i t E u i u O 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 D R E u O t E u O u i t E u i

3、 二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 D1R E u O u i t E u i D2E E t u O E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论 五、数据记录 A : -3.751V -2.145V -1.140V 1.340V 2.279 5.525 7.726 B: -2.547V -2.145V -1.139V 1.340V 2.279 5.429 5.563 六、数据处理和实验结论 1.这些数据都几乎一样,没什么太大差别。 2.结论:二极管最基本的工作状态是导通和截止两种。 信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 信号幅度比较大时的电路工作状态,即信号幅度大到让限幅电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 第三小组: 时间:2012年5月10日星期四

论坛牛人谈关于RCD钳位电路中二极管D的选择

论坛牛人谈关于RCD钳位电路中二极管D的选择 2013-08-30 13:52 文章来源: 电源网有309人阅读过 在电源网论坛里,就存在这样一些人,他们时常能DIY出被网友们称之为的经典设计,出于大家能够共同学习的目的,小编抓住了难得的机会,整理了这些经典帖,供分享学习。 本文设计分享来自“mko145”的精华帖。--------小编语 前几天写了个贴子,讨论了一下 RCD公式计算出的电阻值与实际的参数为什么相差很大。(有兴趣的朋友请参看:谈谈 RCD 的计算结果为何与实验参数出入很大 ) 其中有朋友提出讨论一下“RCD线路中的二极管D的选择问题”。对于二极管的选择,相信大多数工程师都很有经验。坛子里相关的讨论不算多(当然这也不是个重要的问题)。后来做了些实验,在这和大家分享一下,有兴趣的朋友请一起讨论。 在上个帖子里谈到:计算误差大的其中一个原因是二极管的开关速度不够快(即便是快速恢复二极管)。各大 IC 公司的公式大都是基于这样一个假设——即二极管是理想的开关,正向导通时间是0,反向恢复时间也是0。于是由初级漏感而引起的所有的能耗都消耗在了电阻Rsn上。由这个公式计算出来的电阻数值比起实际的参数通常要小很多。 大家可能会有这样的经验 - 选择越慢的二极管(反向恢复时间长),则这个计算的误差就越大。比如说在谈谈RCD 的计算结果为何与实验参数出入很大中的例子里,用的是反向恢复实际只有75nS的超快恢复二极管UF4007。假如用恢复速度慢些的二极管,那么情况会大不一样了。现在有的线路中使用开关速度很慢1N4007。在之前的帖子中,我没有提到用慢速二极管而造成的计算误差,是因为如果使用1N4007,那么就不用算了。因为误差会大到“计算本身完全失去了意义”。给大家一个直观的例子 - 在上个帖子的例子中计算出的电阻数值是33K,如果二极管用1N4007的话,实际上270K的电阻就可以了。 说起二极管的开关特性,大家都会想到“二极管的反向恢复时间”。这也是衡量一个二极管开关速度的主要参数。大家对此都很熟悉。不过,下面我想先谈谈二极管的正向恢复时间: 对于“二极管正向恢复时间”,好像关心的人很少。电源网的坛子里似乎也没有相关的帖子。相反,在“世纪电源”的论坛里,关于这个话题曾经有过“热闹的”辩论。有人认为“正向恢复只是书本上一个概念”。 让我们先来看一下反激电源MOS管Vds 的波形。一般的RCD计算的资料中的图形是这样的:

限幅器原理

限幅器原理 This model paper was revised by the Standardization Office on December 10, 2020

限幅器原理 理想限幅器是一个无记忆的非线性电路。理想限幅器应具有放大和限幅的双重功能,且要求其放大量为无穷大、限幅是瞬时的。通常限幅器是由非线性限幅器件和一个带通滤波器组成,调频波通过它时,首先由非线性器件将其超过限幅电平E的那部分幅度切去,然后经带通滤波器滤出其基波分量,以使输出电压的频率仍和输入的频率一致。实际设计中,我们采用在一个近似中频带宽的限幅器中加入适量的正反馈,就能够明显地改善它的削弱比,起到几级无正反馈但其它结构相同的限幅器的作用 . 二极管限幅: 下图所示的中,因二极管是串在输入、输出之间,故称它为串联。图中,若二极管具有理想的开关特性,那么,当ui低于E时,D不导通,uO=E;当ui高于E以后,D导通,uO =ui。该限幅器的限幅特性如图2所示,当输入振幅大于E的正弦波时,输出电压波形见图3。可见,该电路将输出信号的下限电平限定在某一固定值E上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 如将二极管和负载并联,则组成并联限幅器,见图4。图中,当ui高于E时,D导通,uO =E;当ui低于E时,D截止,uO=ui。它的限幅特性如图5所示。显然,这是一个上限幅器。 将上、下限幅器组合在一起,就组成了如图6所示的双向,它的限幅特性如图7所示。当输入一个振幅较大的时,输出波形见图8。 :

用来做限幅用的二极管称为。所谓限幅,就是将信号的幅值限制在所需要的范围之内。由于通常所需要限幅的电路多为高频、高频载波电路、中、高频调制电路等,故要求具有较陡直的U-I特性,使之具有良好的开关性能。从这一点出发,限幅二极管一般均由结型2CK*担当;在一些特殊要求的电路中,点接触的2AG*或2AK*也可以作为限幅二极管完成限幅任务;还有一些需要较大幅值限幅或既需要限幅又需要温度自动补偿的特定电路,作为限幅二极管将会成为唯一正确的选择。 限幅二极管的特点: 1、多用于中、高频与音频电路; 2、导通速度快,恢复时间短; 3、正偏置下二极管压降稳定; 4、可串、并联实现各向、各值限幅; 5、可在限幅的同时实现。 大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。 限幅电路的作用是把输出信号幅度限定在一定的范围内,亦即当输入电压超过或低于某一参考值后,输出电压将被限制在某一电平(称作限幅电平),且再不随输入电压变化。

二极管钳位电路图

钳位电路(ClampingCircuit)的作用是把整个信号幅值进行直流平移。最后的输出波形与输入波形的形状不变,只是在输入信号的基础上增加了直流分量。该直流分量的大小取决于电路本身的具体参数。钳位电路的应用也很多,在我们家里的彩色电视机里有它的身影。在其中它起到恢复电视亮度信号的直流分量。 钳位二极管特性 1、二极管具有单向导电性,正向导通,反向不导通。半导体二极管导通时相当于开关闭合(电路接通),截止时相当于开关打开(电路切断),所以二极管可作开关用。 2、二极管的钳位是指利用二极管正向导通压降相对稳定,且数值较小(有时可近似为零)的特点,来限制电路中某点的电位。 3、二极管是有一个P型半导体和一个N型半导体结合在一起形成的,中间会形成一个PN节,隔离正是由于PN节的作用。PN节处由于电子的漂移本身形成了一个内电场,当外加电压产生的电场与内电场的方向相同时电流便能通过,否则就会被内电场抵消而被隔离。过大则会将PN节击穿,是不容许的 负钳位器 (1)简单型 工作原理Vi正半周时,DON,C充电至V值,Vo=0V。Vi负半周时,DOFF,Vo=-2V。 (2)加偏压型

工作原理 Vi正半周时,二极管DON,C被充电至V值(左正、右负),Vo=+V1(a)图或-V1(b)图。 Vi负半周时,二极管DOFF,RC时间常数足够大,Vo=VC+Vi(负半周)=2V。 正钳位器 (1)简单型 工作原理 Vi负半周时,DON,C充电至V值(左负、右正),Vo=0V。Vi正半周时,DOFF,Vo=VC+Vi (正半周)=2V。 (2)加偏压型

判断输出波形的简易方法 1.由参考电压V1决定输出波形于坐标轴上的参考点。 2。由二极管D的方向决定原来的波形往何方向移动,若二极管的方向为 ,则波形必须向上移动;若二极管的方向为 ,则波形必须往下移动。 3决定参考点与方向后,再以参考点为基准,将原来的波形画于输出坐标轴上,即为我们所求。

在RCD钳位电路中二极管D的选择(一)

在RCD钳位电路中二极管D的选择(一) 2014-06-25来源:电子信息网 最近有朋友对RCD钳位电路中二极管D的选择产生了疑问。虽然二极管对大家来说并不陌生,但是其在RCD钳位电路中的应用却少有人讨论。于是专门针对这个问题动手进行了一些实验和求证,得出了一些理论和实际经验,今天就拿出和大家分享一下。 计算误差大的其中一个原因是二极管的开关速度不够快(即便是快速恢复二极管)。各大IC公司的公式大都是基于这样一个假设-即二极管是理想的开关,正向导通时间是0,反向恢复时间也是0。于是由初级漏感而引起的所有的能耗都消耗在了电阻Rsn上。由这个公式计算出来的电阻数值比起实际的参数通常要小很多。 大家可能会有这样的经验-选择越慢的二极管(反向恢复时间长),则这个计算的误差就越大。比如说在谈谈RCD的计算结果为何与实验参数出入很大中的例子里,用的是反向恢复实际只有75nS的超快恢复二极管UF4007。假如用恢复速度慢些的二极管,那么情况会大不一样了。现在有的线路中使用开关速度很慢1N4007。在之前没有提到用慢速二极管而造成的计算误差,是因为如果使用1N4007,那么就不用算了。因为误差会大到“计算本身完全失去了意义”。给大家一个直观的例子-在上个帖子的例子中计算出的电阻数值是33K,如果二极管用1N4007的话,实际上270K的电阻就可以了。 说起二极管的开关特性,大家都会想到“二极管的反向恢复时间”。这也是衡量一个二极管开关速度的主要参数。大家对此都很熟悉。不过,下面我想先谈谈二极管的正向恢复时间。 对于“二极管正向恢复时间”,好像关心的人很少。让我们先来看一下反激电源MOS管Vds的波形。一般的RCD计算的资料中的图形是这样的: 上面的波形是理想的样子,把二极管看成了一个理想的开关。很多讲RCD 计算的AN里都是这样的。而实际上的波形会有些不同,比如说我之前的帖子中的例子。波形是下面的样子:

相关文档
最新文档