第10讲 二叉树的存储结构及遍历
数据结构树的知识点总结

数据结构树的知识点总结一、树的基本概念。
1. 树的定义。
- 树是n(n ≥ 0)个结点的有限集。
当n = 0时,称为空树。
在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。
- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。
2. 结点的度、树的度。
- 结点的度:结点拥有的子树个数称为结点的度。
- 树的度:树内各结点的度的最大值称为树的度。
3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。
- 分支结点:度不为0的结点称为分支结点或非终端结点。
- 除根结点之外,分支结点也称为内部结点。
4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
树中结点的最大层次称为树的深度(或高度)。
二、二叉树。
1. 二叉树的定义。
- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。
- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
2. 二叉树的特点。
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,次序不能颠倒。
3. 特殊的二叉树。
- 满二叉树。
- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。
满二叉树的特点是每一层上的结点数都是最大结点数。
- 完全二叉树。
- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。
完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。
三、二叉树的存储结构。
1. 顺序存储结构。
- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。
《数据结构》期末考试试卷试题及答案

《数据结构》期末考试试卷试题及答案一、选择题(每题5分,共20分)1. 下列哪个不是线性结构?A. 栈B. 队列C. 图D. 数组2. 下列哪个不是栈的基本操作?A. 入栈B. 出栈C. 查找D. 判断栈空3. 下列哪个不是队列的基本操作?A. 入队B. 出队C. 查找D. 判断队列空4. 下列哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 环二、填空题(每题5分,共20分)5. 栈是一种______结构的线性表,队列是一种______结构的线性表。
6. 图的顶点集记为V(G),边集记为E(G),则无向图G=(V(G),E(G)),有向图G=(______,______)。
7. 树的根结点的度为______,度为0的结点称为______。
8. 在二叉树中,一个结点的左子结点是指______的结点,右子结点是指______的结点。
三、简答题(每题10分,共30分)9. 简述线性表、栈、队列、图、树、二叉树的基本概念。
10. 简述二叉树的遍历方法。
11. 简述图的存储结构及其特点。
四、算法题(每题15分,共30分)12. 编写一个算法,实现栈的入栈操作。
13. 编写一个算法,实现队列的出队操作。
五、综合题(每题20分,共40分)14. 已知一个无向图G=(V,E),其中V={1,2,3,4,5},E={<1,2>,<1,3>,<2,4>,<3,4>,<4,5>},画出图G,并给出图G的邻接矩阵。
15. 已知一个二叉树,其前序遍历序列为ABDCE,中序遍历序列为DBACE,请画出该二叉树,并给出其后序遍历序列。
答案部分一、选择题答案1. C2. C3. C4. D二、填空题答案5. 后进先出先进先出6. V(G),E(G)7. 0 叶结点8. 左孩子右孩子三、简答题答案9. (1)线性表:一个线性结构,其特点是数据元素之间存在一对一的线性关系。
数据结构第5章课件 中国石油大学(华东)

二叉链表
leftChild
data rightChild
22
二叉树的链表表示(三叉链表)
每个结点增加一个指向双亲的指针parent,使 得查找双亲也很方便。
leftChild data parent rightChild
三叉链表
data
leftChild
27
BinTreeNode *LeftChild (BinTreeNode *current ) { return (current != NULL )? current->leftChild :NULL; } BinTreeNode *RightChild (BinTreeNode *current ) { return ( current!= NULL) ? current->rightChild : NULL; } int Height( ){return Height(root);} int Size( ){return Size(root);} BinTreeNode *GetRoot ( ) const { return root; } void preOrder( ) {preOrder(root);} //前序遍历 void inOrder( ) {inOrder(root);} //中序遍历 void postOrder( ) {postOrder(root);} //后序遍历 void levelOrder( ) ; // 不需要递归,所以直接对外接 口调用即可。层序遍历 28
b
f
c
d
g
6
e
a
b.嵌套集合表示法: b 根据树的集合定义,写出集合划分。 { a, {b,{e},{f}}, {c}, {d,{g}} } e c d
树和二叉树——精选推荐

第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
树形表示法A

root
T1
T2 … Tm
7.1.2 树的表示
(1)树形表示法。这是树的最基本的表示,使用一棵倒 置的树表示树结构,非常直观和形象。下图就是采用这种表 示法。
A BCD E FG
0 A -1 1 B0 2 C0 3 D0 4 E2 5 F2 6 G2
(a)
(b)
树的双亲存储结构示意图
双亲存储结构的类型声明如下:
typedef struct
{ ElemType data; //节点的值
int parent;
//指向双亲的位置
} PTree[MaxSize];
DE F
D∧∧ ∧ E ∧ ∧ F ∧∧ ∧
G∧∧ ∧ G
树的孩子链存储结构示意图
孩子链存储结构的节点类型声明如下:
typedef struct node { ElemType data;
struct node *sons[MaxSons]; } TSonNode;
//节点的值 //指向孩子节点
其中,MaxSons为最多的孩子节点个数。
思考题:该存储结构的优缺点?
A
BCD
E FG (a)
0 A -1 1 B0 2 C0 3 D0 4 E2 5 F2 6 G2
(b)
2. 孩子链存储结构
孩子链存储结构可按树的度(即树中所有节点度的最大值) 设计节点的孩子节点指针域个数。以下左图的树对应的孩子链 存储结构如右图所示。
A
∧
A
B
《数据结构与算法设计》第5章 树

5.2.2 二叉树的性质
➢ 满二叉树和完全二叉树
满二叉树是指深度为h且节点数取得最大值2h-1的二叉树。 如果一棵深度为h的二叉树,除第h层外,其他每层的节点数 都达到最大,且最后一层的节点自左而右连续分布,这样的二 叉树称为完全二叉树。
5.2.2 二叉树的性质
5.2.2 二叉树的性质
性质6 对含有n个节点的完全二叉树自上而下、同一层从左往右 对节点编号0,1,2,…,n-1,则节点之间存在以下关系: (1)若i=0,则节点i是根节点,无双亲;若i>0,则其双亲节 点的编号为i/2-1; (2)若2×i +1≤n,则i的左孩子编号为2×i+1; (3)若2×i+2≤n,则i的右孩子编号为2×i+2; (4)若i>1且为偶数,则节点i是其双亲的右孩子,且有编号为 i-1的左兄弟; (5)若i<n-1且为奇数,则节点i是其双亲的左孩子,且有编号 为i+1的右兄弟。
5.3.3 二叉树的二叉链表类模板定义
//根据二叉树的先序遍历序列和中序遍历序列创建以r为根的二叉树
void CreateBinaryTree(BTNode<DataType> * &r, DataType pre[], DataType
in[], int preStart, int preEnd, int inStart, int inEnd); int Height(BTNode<DataType> *r); //求以r为根的二叉树高度 //求以r为根的二叉树中叶子节点数目
5.1.2 树的术语
(9)节点的层次:从根节点开始,根为第一层,根的孩子为 第二层,根的孩子的孩子为第三层,依次类推,树中任一节 点所在的层次是其双亲节点所在的层次数加1。 (10)堂兄弟:双亲在同一层的节点互为堂兄弟。
树和二叉树知识考点整理
树和二叉树知识考点整理●树的基本概念●树的定义●n个结点的有限集●n=0代表空树●满足条件●只有一个根的结点●其余结点是互不相交的有限集,每个集合本身是一棵树,是根的子树●树是一种递归的数据结构●树的根结点没有前驱,其余结点只有一个前驱●树中所有结点可以有零个或多个后驱●基本术语●双亲、兄弟、孩子、祖先●度:孩子个数●分支结点:度大于0●叶子结点:度为0●深度:从下往上;●高度:从上往下;●有序树:从左到右是有次序的●路径和路径长度:路径是从上往下的●森林:m棵互不相交的树的集合。
●树的基本性质●结点数=所有结点度数之和+1●度为m的树中第i层上至多有m的i-1次分个结点●高度为h的m叉树至多有(m^h-1)/(m-1)个结点●具有n个结点的m叉树的最小高度为「logm(n(m-1)+1)]●二叉树的概念●定义●一种树形结构,特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点)并且二叉树的子树有左右之分,次序不可颠倒●二叉树与度为2的有序树区别●度为2的可以有三个结点,二叉树可以是空树●度为2的有序树的孩子左右之分是根据另一个孩子而言的;二叉树无论有没有,都要确定左右●特殊的二叉树●满二叉树●树中每一层都含有最多的结点●完全二叉树●高度为h,有n个结点的二叉树,当且仅当,每个结点都与高度为h的满二叉树中的编号一一对应●二叉排序树●用途:可用于元素的排序、搜索●左子树上所有结点的关键字均小于根结点的关键字;右子树上所有结点的关键字均大于根结点的关键字;左子树和右子树又是一棵二叉排序树●二叉树的性质●非空二叉树上的叶子结点数等于度为2的结点树加1,即n0=n2+1●非空二叉树上第k层至多有2^(k-1)个结点●高度为h的二叉树至多有2^h-1个结点●具有n个结点的完全二叉树的高度为log2(n+1)取顶或者log2n取底+1●二叉树的存储结构●顺序存储结构●只适合存储完全二叉树,数组从0开始●链式存储结构●顺序存储的空间利用率太低●至少三个指针域:数据域、左指针域、右指针域●增加了指向父结点后,变为三叉链表的存储结构●在含有n个结点的二叉链表中,含有n+1个空链域●二叉树的遍历和线索二叉树●二叉树的遍历●先序遍历●根左右●应用:求树的深度●中序遍历●左根右●后序遍历●左右根●应用:求根到某结点的路径、求两个结点的最近公共祖先等●三个遍历时间复杂度都是O(n)●递归算法和非递归算法的转换●层次遍历●需要借助队列●步骤●二叉树根结点入队,然后出队,访问出队结点,若有左子树,左子树根结点入队●遍历右子树,有右子树,右子树根结点入队。
二叉树结构的特点
二叉树结构的特点二叉树是一种常见的数据结构,它具有以下特点:1. 结构简单:二叉树是一种有序树结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
这种结构的简洁性使得二叉树在实际应用中得到广泛使用。
2. 层次性:二叉树具有明显的层次性,即树的每一层都可以通过节点间的父子关系来确定。
根节点是第一层,根节点的子节点是第二层,以此类推。
3. 有序性:在二叉树中,每个节点的左子节点小于它,右子节点大于它。
这种有序性使得二叉树在查找和排序方面具有很高的效率。
4. 高度平衡:二叉树的高度平衡性是指树的左右子树的高度差不超过1。
高度平衡的二叉树可以保证查找、插入和删除操作的平均时间复杂度为O(log n)。
5. 递归性:二叉树的定义是递归的,即每个子树都是二叉树。
这种递归性质使得在二叉树上的操作可以通过递归算法来实现。
6. 存储结构灵活:二叉树的存储结构可以采用顺序存储和链式存储两种方式。
顺序存储是将二叉树的节点按照层次顺序存储在一维数组中,链式存储是通过每个节点的指针来连接各个节点。
在二叉树的基础上,还可以扩展出以下几种特殊的二叉树结构:1. 完全二叉树:完全二叉树是指除了最后一层外,其他层的节点个数都达到最大值,并且最后一层的节点依次从左到右排列。
完全二叉树的特点是高度平衡,可以用数组来存储。
2. 满二叉树:满二叉树是指每个节点都有两个子节点的二叉树,即除了叶子节点外,每个节点都有两个子节点。
满二叉树的特点是节点个数达到最大值,高度平衡。
3. 平衡二叉树:平衡二叉树是指任意节点的左右子树的高度差不超过1的二叉树。
平衡二叉树的特点是高度平衡,可以保证各种操作的时间复杂度较低。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它具有以下性质:对于树中的任意节点,其左子树中的节点值都小于它,右子树中的节点值都大于它。
二叉搜索树的特点是可以高效地进行查找、插入和删除操作。
5. 线索二叉树:线索二叉树是对二叉树的一种扩展,它的特点是在每个节点上增加了指向前驱节点和后继节点的指针。
数据结构详解ppt课件
“数据结构知识导入全程目标•数据结构的基本概念–逻辑结构–物理结构–运算结构•数据结构的基本实现–堆栈–队列–链表–二叉树知识讲解数据结构的基本概念•数据结构是相互之间存在一种或多种特定关系的数据的集合•数据结构是计算机存储、组织数据的方式•数据结构的选择直接影响计算机程序的运行效率(时间复杂度)和存储效率(空间复杂度)•计算机程序设计=算法+数据结构•数据结构的三个层次–抽象层——逻辑结构–结构层——物理结构–实现层——运算结构识讲解•集合结构(集)–结构中的数据元素除了同属于一个集合外没有其它关系识讲解•线性结构(表)–结构中的数据元素具有一对一的前后关系识讲解•树型结构(树)–结构中的数据元素具有一对多的父子关系知识讲解实现双向线性链表•删除节点识讲解•树形结构的最简模型,每个节点最多有两个子节点•每个子节点有且仅有一个父节点,整棵树只有一个根节点•具有递归的结构特征,用递归的方法处理,可以简化算法•三种遍历序–前序遍历:D-L-R–中序遍历:L-D-R–后序遍历:L-R-D识讲解•二叉树的一般形式–根节点、枝节点和叶节点–父节点和子节点–左子节点和右子节点–左子树和右子树–大小和高度(深度)识讲解•满二叉树–每层节点数均达到最大值–所有枝节点均有左右子树知识讲解二叉树•完全二叉树–除最下层外,各层节点数均达到最大值–最下层的节点都连续集中在左边识讲解•顺序存储–从上到下、从左到右,依次存放–非完全二叉树需用虚节点补成完全二叉树识讲解•链式存储–二叉链表,每个节点包括三个域,一个数据域和两个分别指向其左右子节点的指针域识讲解•链式存储–三叉链表,每个节点包括四个域,一个数据域、两个分别指向其左右子节点的指针域和一个指向其父节点的指针域知识讲解实现有序二叉树•有序二叉树亦称二叉搜索树,若非空树则满足:–若左子树非空,则左子树上所有节点的值均小于等于根节点的值–若右子树非空,则右子树上所有节点的值均大于等于根节点的值–左右子树亦分别为有序二叉树•基于有序二叉树的排序和查找,可获得O(logN)级的平均时间复杂度知识讲解逻辑结构•网状结构(图)–结构中的数据元素具有多对多的交叉映射关系识讲解•顺序结构–结构中的数据元素存放在一段连续的地址空间中识讲解•顺序结构–随机访问方便,空间利用率低,插入删除不方便识讲解•链式结构–结构中的数据元素存放在彼此独立的地址空间中–每个独立的地址空间称为节点–节点除保存数据外,还需要保存相关节点的地址识讲解•链式结构–插入删除方便,空间利用率高,随机访问不方便知识讲解逻辑结构与物理结构的关系•每种逻辑结构采用何种物理结构实现,并没有一定之规,通常根据实现的难易程度,以及在时间和空间复杂度方面的要求,选择最适合的物理结构,亦不排除复合多种物理结构实现一种逻辑结构的可能知识讲解运算结构•创建与销毁–分配资源、建立结构、释放资源•插入与删除–增加、减少数据元素•获取与修改–遍历、迭代、随机访问•排序与查找–算法应用知识讲解数据结构的基本实现•堆栈–基于顺序表的实现–基于链式表的实现•队列–基于顺序表的实现–基于链式表的实现•链表–双向线性链表的实现•二叉树–有序二叉树(二叉搜索树)的实现知识讲解堆栈•后进(压入/push)先出(弹出/pop)识讲解•初始化空间、栈顶指针、判空判满识讲解•动态分配、栈顶指针、注意判空知识讲解队列•先进(压入/push)先出(弹出/pop)识讲解•初始化空间、前弹后压、循环使用、判空判满识讲解•动态分配、前后指针、注意判空知识讲解链表•地址不连续的节点序列,彼此通过指针相互连接•根据不同的结构特征,将链表分为:–单向线性链表–单向循环链表–双向线性链表–双线循环链表–数组链表–链表数组–二维链表识讲解•单向线性链表识讲解•单向循环链表识讲解•双向线性链表识讲解•双向循环链表识讲解•数组链表识讲解•链表数组识讲解•二维链表识讲解•结构模型识讲解•插入节点。
二叉树实验报告
实验报告实验题目二叉树需求分析程序的功能从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立),并采用递归算法对其进行遍历(先序、中序、后序),将遍历结果打印输出。
输入的形式ABCффDEфGффFффф(其中ф表示空格字符)输出的形式先序:ABCDEGF中序:CBEGDFA后序:CGBFDBA概要设计给出所用抽象数据类型的逻辑定义CreateTree(&bt); //创建二叉树PreOrder(bt); //先序遍历InOrder(bt); //中序遍历PostOrder(bt); //后序遍历画出主程序的流程框图画出各模块之间的调用关系图。
Main()Preorder() InOrder() PastOrder()详细设计(1)确定存储结构,并给出所用抽象数据类型的数据结构定义void PreOrder(BiTree root){if(root!=NULL){printf("%c",root->data);PreOrder(root->Lchild);PreOrder(root->Rchild);}}void InOrder(BiTree root){if(root!=NULL){ InOrder(root->Lchild );printf("%c",root->data);InOrder(root->Rchild);}}void PostOrder(BiTree root){if(root!=NULL){ PostOrder(root->Lchild);PostOrder(root->Rchild);printf("%c",root->data);}}给出主程序的伪码算法Main(){创建二叉树先序遍历中序遍历后序遍历}调试分析核心算法改进设想使用非递归算法测试结果列出典型输入及对应的输出结果。