二叉树的存储表示
数据结构二叉树PPT课件

A
B
CX
E FGH I
J
8
四. 基本名词术语
1. 结点的度:该结点拥有的子树的数目。
2. 树的度:树中结点度的最大值。
3. 叶结点:度为0 的结点. 4. 分支结点: 度非0 的结点. 5. 层次的定义: 根结点为第一层,若某结点在第i 层,
则其孩子结点(若存在)为第i+1层.
A
第1层
B
CX
第2层
12
完全二叉树.
三.i 层最多有2i–1个结点(i1)。
2. 深度为h 的非空二叉树最多有2h -1个结点.
3. 若非空二叉树有n0个叶结点,有n2个度为2的结点,
则
n0=n2+1
4. 具有n个结点的完全二叉树的深度h=log2n+1.
13
二叉树的存储结构
39
例
A
BC D
E F GH I
对树进行先根遍历,获得的先根序列是: ABEFCDGHI
对树进行后根遍历,获得的后根序列是: EFBCGHIDA
40
2.森林的遍历
先序遍历(对森林中的每一棵树进行先根遍历)
1)若森林不空,访问森林中第一棵树的根结点; 2)先序遍历森林中第一棵树的子树森林; 3)先序遍历森林中(除第一棵树外)其余树构成的森林。
(空) 根 根 根
根
左 子 树
右 子 树
左 子 树
右 子 树
11
二. 两种特殊形态的二叉树
1. 满二叉树
若一棵二叉树中的结点, 或者为叶结点, 或者具有两 棵非空子树,并且叶结点都集 中在二叉树的最下面一层.这 样的二叉树为满二叉树.
2.完全二叉树
若一棵二叉树中只有最下 面两层的结点的度可以小于2, 并且最下面一层的结点(叶结 点)都依次排列在该层从左至 右的位置上。这样的二叉树为
数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(⼆⼗四)⼆叉树的链式存储结构(⼆叉链表) ⼀、⼆叉树每个结点最多有两个孩⼦,所以为它设计⼀个数据域和两个指针域,称这样的链表叫做⼆叉链表。
⼆、结点结构包括:lchild左孩⼦指针域、data数据域和rchild右孩⼦指针域。
三、⼆叉链表的C语⾔代码实现:#include "string.h"#include "stdio.h"#include "stdlib.h"#include "io.h"#include "math.h"#include "time.h"#define OK 1#define ERROR 0#define TRUE 1#define FALSE 0#define MAXSIZE 100 /* 存储空间初始分配量 */typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 *//* ⽤于构造⼆叉树********************************** */int index=1;typedef char String[24]; /* 0号单元存放串的长度 */String str;Status StrAssign(String T,char *chars){int i;if(strlen(chars)>MAXSIZE)return ERROR;else{T[0]=strlen(chars);for(i=1;i<=T[0];i++)T[i]=*(chars+i-1);return OK;}}/* ************************************************ */typedef char TElemType;TElemType Nil=''; /* 字符型以空格符为空 */Status visit(TElemType e){printf("%c ",e);return OK;}typedef struct BiTNode /* 结点结构 */{TElemType data; /* 结点数据 */struct BiTNode *lchild,*rchild; /* 左右孩⼦指针 */}BiTNode,*BiTree;/* 构造空⼆叉树T */Status InitBiTree(BiTree *T){*T=NULL;return OK;}/* 初始条件: ⼆叉树T存在。
二叉树的顺序存储及基本操作

二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。
一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。
2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。
3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。
4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。
5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。
6. 修改节点:根据节点值进行查找,然后进行修改操作。
数据结构-二叉树的存储结构和遍历

return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操
根
左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }
数据结构第5章课件 中国石油大学(华东)

二叉链表
leftChild
data rightChild
22
二叉树的链表表示(三叉链表)
每个结点增加一个指向双亲的指针parent,使 得查找双亲也很方便。
leftChild data parent rightChild
三叉链表
data
leftChild
27
BinTreeNode *LeftChild (BinTreeNode *current ) { return (current != NULL )? current->leftChild :NULL; } BinTreeNode *RightChild (BinTreeNode *current ) { return ( current!= NULL) ? current->rightChild : NULL; } int Height( ){return Height(root);} int Size( ){return Size(root);} BinTreeNode *GetRoot ( ) const { return root; } void preOrder( ) {preOrder(root);} //前序遍历 void inOrder( ) {inOrder(root);} //中序遍历 void postOrder( ) {postOrder(root);} //后序遍历 void levelOrder( ) ; // 不需要递归,所以直接对外接 口调用即可。层序遍历 28
b
f
c
d
g
6
e
a
b.嵌套集合表示法: b 根据树的集合定义,写出集合划分。 { a, {b,{e},{f}}, {c}, {d,{g}} } e c d
树的存储结构、遍历;二叉树的定义、性质、存储结构、遍历以及树、森林、二叉树的转换

树和二叉树树与二叉树是本书的重点内容之一,知识点多且比较零碎。
其中二叉树又是本章的重点。
在本章中我们要了解树的定义、熟悉树的存储结构、遍历;二叉树的定义、性质、存储结构、遍历以及树、森林、二叉树的转换。
哈夫曼树及哈夫曼编码等内容。
算法的重点是二叉树的遍历及其应用。
6.1 树的定义一、树的定义树:树是n(n>0)个结点的有限集合T。
一棵树满足下列条件:(1)有且仅有一个称为根的结点;(2)其余结点可分为m(m>=0)棵互不相交的有限集合T1,T2,T3,…Tm,其中每个集合又是一棵树,并称之为根的子树。
有关树的一些基本概念:1)结点的度:树中每个结点具有的子树数目或后继结点数。
如图中结点A的度为2,B的度为32) 树的度:所有结点的度的最大值为树的度。
(图中树的度为3)3) 分支结点:即:树中所有度大于0的结点。
4) 叶子结点:即:树中度为零的结点,也称为终端结点。
5) 孩子结点:一个结点的后续结点称为该结点的孩子结点。
6) 双亲结点:一个结点为其后继结点的双亲结点。
7) 子孙结点:一个结点的所有子树中的结点为该结点的子孙结点。
8) 祖先结点:从根结点到一个结点的路径上所有结点(除自己外)称为该结点的祖先结点。
(如A和B为D结点的祖先结点)9) 兄弟结点:具有同一父亲的结点互相为兄弟结点。
(如B和C为兄弟结点)10) 结点的层数:从根结点到该结点的路径上的结点总数称为该结点的层数(包括该结点)。
11) 树的深度(高度):树中结点的最大层数为树的深度。
(图中树的深度为4)12) 森林:0个或多个互不相交的树的集合。
上图中:树的度为3,树的深度为4。
结点A,B,C,D,E,F,G,H,I,J的度分别为:2, 3, 2, 0 ,2 , 0, 0, 0, 0, 0叶结点有:D, F, G, H, I, JB,C为兄弟,D, E, F为兄弟,F, G为兄弟。
I,J为兄弟。
二、树的表示1. 树的逻辑结构描述Tree=(D,R)其中:D为具有相同性质的数据元素的集合。
第五章二叉树

树为空
树为空
根的左右子 树都不空
二、二叉树的性质
第1层(根) 第2层 第3层
第4层
1、若层次从1开始,则第i层最多有2 i-1个结点 2、高度为h的二叉树最多有2h -1个结点 3、任何一棵二叉树,若叶子结点数为n0,度为2的结点数 为n2,则n0 = n2 + 1
5.2.2 二叉树的性质
二叉树具有下列重要性质: 性质1: 在二叉树的第i层上至多有2i-1个结点(i>=1)。
二叉树的二叉链表存储表示
Elem val(){return data;} void setVal(const Elem e){data=e;} inline BinTreeNode<Elem>* left(){return lchild;} inline BinTreeNode<Elem>* right(){return rchild;} void setLeft(BinTreeNode<Elem>* left){lchild=left;} void setRight(BinTreeNode<Elem>* right){rchild=right;} bool isLeaf()
Elem data; BinTreeNode * lchild; BinTreeNode * rchild; public:
BinTreeNode(){lchild=rchild=NULL;} BinTreeNode(Elem e,BinNodePtr*l=NULL,
BinNodePtr*r=NULL) {data=e; lchild=l; rchild=r;} ~BinTreeNode(){}
n0,度为2的结点数为n2,则n0=n2+1。
数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉树的存储表示
1二叉树的顺序存储表示 2二叉树的链式存储表示 3三叉链表
1二叉树的顺序存储表示
二叉树的顺序存储结构的定义如下:
#define MAXSIZE = 100; //暂定二叉树中节点数的最大值为100 Typedef struct {
ElemType *data ; //存储空间基址(初始化时分配空间) Int nodeNum ; //二叉树中节点数 }SqBiTree ; //二叉树的顺序存储结构
为了能在存储结构中反映出节点之间的逻辑关系,必须将二叉树中节点依照一定规律安排在这组存储单元中。
对于完全二叉树,只要从根起按层序存储即可。
显然,这种顺序存储结构仅适用于完全二叉树。
因为,在最坏的情况下,一个深度为 k 且只有 k 个结点的单支树(树中不存在度为 2 的结点)却需要长度为2k -1的一维数组。
二叉树的顺序存储图如图1所示:
2
6
320
116
5402
106
543216
(a )满二叉树(b )一般二叉树
图1 顺序存储
2二叉树的链式存储表示
二叉树有不同的链式结构,其中最常用的是二叉链表与三叉链表。
二叉链表的结点形式如表1所示:
表1链式存储
date域:称为数据域,用于存储二叉树结点中的数据元素,
1child域:称为左孩子指针域,用于存放指向本结点左孩子的指针(左指针)。
rchild域:称为右孩子指针域,用于存放指向本结点右孩子的指针(右指针)二叉链表中的所有存储结点通过它们的左、右指针的链接而形成一个整体。
根指针:每个二叉链表还必须有一个指向根结点的指针。
根指针具有标识二叉链表的作用,对二叉链表的访问能从根指针开始。
图2中(a)(b)表示一棵二叉树及其二叉链表。
值得注意的是,二叉链表中每个存储结点的每个指针域必须有一个值,这个值或者是指向该结点的一个孩子的指针,或者是空指针NULL。
二叉链表的类型定义如下:
Typedef struct btnode *bitreptr;
Struct btnode
{
Datatype data;
Bitreptr lchild,rchild;
};
Bitreptr root;
若二叉树为空,则root=NULL。
若某结点的某个孩子不存在,则相应的指针为空。
具有n个结点的二叉树中,一共有2n个指针域,其中只有n-1个用来指向结点的的左右孩子,其余的n+1个指针域为NULL。
在二叉链表这种存储结构上,二叉树的多数基本运算如求根,求左、右孩子等很容易实现。
但求双亲运算PARENT(BT,X)的实现却比较麻烦,而且其时间性能不高。
3三叉链表
三叉链表的类型定义如下:
protected:
BiTreeNode<Elem> *lchild;// 指向左子树的指针
BiTreeNode<Elem> *rchild;// 指向右子树的指针
BiTreeNode<Elem> *parent;// 指向双亲的指针
三叉链表存储每个节点由四个域组成,具体结构为:
其中,data、lchild以及rchild三个域的意义同二叉链表结构;parent域为指向该结点双亲结点的指针。
这种存储结构既便于查找孩子结点,又便于查找双亲结点;但是,相对于二叉链表存储结构而言,它增加了空间开销。
为了便于查找任一结点的双亲结点,可以在结点中再增加一个指针域parent,它称为三叉链表。
如图2中的(a)(c)。
A
root
H
G
F
E
D
C
B
(a )
(c )
图 2二叉树的二叉链表和三叉链表。