完全二叉树的顺序存储

合集下载

二叉树的顺序存贮

二叉树的顺序存贮

for(i=0;i<n-1;i++) {p->data=tree[i].data; if(tree[i].rtag= =„0‟) stack[top++]=p; else p->rchild=NULL; q=(NODE*)malloc(sizeof(NODE)); if (tree[i].ltag= =„0‟) p->lchild=q; else {p->lchild=NULL; p=stack[--top]; p->rchild=q;} p=q; }
#include <stdio.h> #define MAXN 100 struct node {char data; struct node *lchild; struct node *rchild; }; typedef struct node NODE; struct lrnode {char data; char ltag,rtag; }; typedef struct lrnode LRNODE;
NODE *transfer(tree,n) LRNODE tree[ ]; int n; { NODE *stack[MAXN],*root,*p,*q; int top,i; if(n= =0) return(NULL); root=(NODE*)malloc(sizeof(NODE)); p=root; top=0;
A B C
Ltag data
rtag
D
F G
E
H
0 1 0 1 0 0 1 1
A B D F C E G H
0 0 1 1 1 1 0 1
查找树中所有结点的右子结点
• 栈:存放rtag=0且尚末找到右子结点的结点的地址 • 从根结点开始往下查找

数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(二十四)二叉树的链式存储结构(二叉链表)

数据结构(⼆⼗四)⼆叉树的链式存储结构(⼆叉链表) ⼀、⼆叉树每个结点最多有两个孩⼦,所以为它设计⼀个数据域和两个指针域,称这样的链表叫做⼆叉链表。

⼆、结点结构包括:lchild左孩⼦指针域、data数据域和rchild右孩⼦指针域。

三、⼆叉链表的C语⾔代码实现:#include "string.h"#include "stdio.h"#include "stdlib.h"#include "io.h"#include "math.h"#include "time.h"#define OK 1#define ERROR 0#define TRUE 1#define FALSE 0#define MAXSIZE 100 /* 存储空间初始分配量 */typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 *//* ⽤于构造⼆叉树********************************** */int index=1;typedef char String[24]; /* 0号单元存放串的长度 */String str;Status StrAssign(String T,char *chars){int i;if(strlen(chars)>MAXSIZE)return ERROR;else{T[0]=strlen(chars);for(i=1;i<=T[0];i++)T[i]=*(chars+i-1);return OK;}}/* ************************************************ */typedef char TElemType;TElemType Nil=''; /* 字符型以空格符为空 */Status visit(TElemType e){printf("%c ",e);return OK;}typedef struct BiTNode /* 结点结构 */{TElemType data; /* 结点数据 */struct BiTNode *lchild,*rchild; /* 左右孩⼦指针 */}BiTNode,*BiTree;/* 构造空⼆叉树T */Status InitBiTree(BiTree *T){*T=NULL;return OK;}/* 初始条件: ⼆叉树T存在。

数据结构考试题(二)

数据结构考试题(二)

数据结构试卷(一)一、选择题(30分)1.设一维数组中有n个数组元素,则读取第i个数组元素的平均时间复杂度为()。

(A) O(n)(B) O(nlog2n)(C) O(1)(D) O(n2)2.设一棵二叉树的深度为k,则该二叉树中最多有()个结点。

(A) 2k-1(B) 2k(C) 2k-1(D) 2k-13.设某无向图中有n个顶点e条边,则该无向图中所有顶点的入度之和为()。

(A) n(B) e(C) 2n(D) 2e4.在二叉排序树中插入一个结点的时间复杂度为()。

(A) O(1)(B) O(n)(C) O(log2n)(D) O(n2)5.设某有向图的邻接表中有n个表头结点和m个表结点,则该图中有()条有向边。

(A) n(B) n-1(C) m(D) m-16.设一组初始记录关键字序列为(345,253,674,924,627),则用基数排序需要进行()趟的分配和回收才能使得初始关键字序列变成有序序列。

(A) 3(B) 4(C) 5(D) 87.设用链表作为栈的存储结构则退栈操作()。

(A) 必须判别栈是否为满(B) 必须判别栈是否为空(C) 判别栈元素的类型(D) 对栈不作任何判别8.下列四种排序中()的空间复杂度最大。

(A) 快速排序(B) 冒泡排序(C) 希尔排序(D) 堆9.设某二叉树中度数为0的结点数为N0,度数为1的结点数为N l,度数为2的结点数为N2,则下列等式成立的是()。

(A) N0=N1+1(B) N0=N l+N2(C) N0=N2+1(D) N0=2N1+l10.设有序顺序表中有n个数据元素,则利用二分查找法查找数据元素X的最多比较次数不超过()。

(A) log2n+1(B) log2n-1(C) log2n(D) log2(n+1)二、填空题(42分)1.1.设有n个无序的记录关键字,则直接插入排序的时间复杂度为________,快速排序的平均时间复杂度为_________。

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。

二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。

本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。

一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。

通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。

顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。

1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。

通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。

在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。

1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。

二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。

哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。

二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。

每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。

链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。

2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。

通过指针来连接各个节点,形成一个二叉树的结构。

在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。

二叉树的顺序存储及基本操作

二叉树的顺序存储及基本操作

二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。

一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。

2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。

3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。

4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。

5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。

6. 修改节点:根据节点值进行查找,然后进行修改操作。

数据结构 复习重点

数据结构 复习重点

数据结构复习重点谁让我找到你们了.第一章1.数据是信息的载体,它能够被计算机识别、存储和加工处理。

2.数据元素是数据的基本单位。

有些情况下,数据元素也称为元素、结点、顶点、记录。

3.数据结构指的是数据之间的相互关系,即数据的组织形式。

一般包括三个方面的内容:①数据元素之间的逻辑关系,也称为数据的逻辑结构;②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构;③数据的运算,即对数据施加的操作。

4.数据类型是一个值的集合以及在这些值上定义的一组操作的总称。

按"值"是否可分解,可将数据类型划分为两类:①原子类型,其值不可分解;②结构类型,其值可分解为若干个成分。

5.抽象数据类型是指抽象数据的组织和与之相关的操作。

可以看作是数据的逻辑结构及其在逻辑结构上定义的操作。

6.数据的逻辑结构简称为数据结构。

数据的逻辑结构可分为两大类:①线性结构(~的逻辑特征是若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继);②非线性结构(~的逻辑特征是一个结点可能有多个直接前趋和直接后继)。

7.数据存储结构可用四种基本的存储方法表示:①顺序存储方法(该方法是把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。

由此得到的存储表示称为顺序存储结构);②链接存储方法(该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。

由此得到的存储表示称为链式存储结构);③索引存储方法(该方法通常是在存储结点信息的同时,还建立附加的索引表);④散列存储方法(该方法的基本思想是根据结点的关键字直接计算出该结点的存储地址)。

8.非形式地说,算法是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值为输出。

因此,一个算法是一系列将输入转换为输出的计算步骤。

9.求解同一计算问题可能有许多不同的算法,究竟如何来评价这些算法的好坏以便从中选出较好的算法呢?选用的算法首先应该是"正确"的。

数据结构-二叉树的存储结构和遍历

数据结构-二叉树的存储结构和遍历

return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操

左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }

全国计算机等级考试四级复习纲要:树和二叉树

全国计算机等级考试四级复习纲要:树和二叉树

全国计算机等级考试四级复习纲要:树和二叉树(2)二叉树的顺序存储结构二叉树的顺序存储结构由一个一维数组构成,二叉树上的结点按某种次序分别存入该数组的各个单元。

显然,这里的关键在于结点的存储次序,这种次序应能反映结点之间的逻辑关系(父子关系),否则二叉树的基本运算就难以实现。

由二叉树的性质5可知,若对任一完全二叉树上的所有结点按层编号,则结点编号之间的数值关系可以准确地反映结点之间的逻辑关系。

因此,对于任何完全二叉树来说,可以采用“以编号为地址”的策略将结点存入作为顺序存储结构的一维数组。

具体地说就是:将编号为i的结点存入一维数组的第i个单元。

在这一存储结构中,由于一结点的存储位置(即下标)也就是它的编号,故结点间的逻辑关系可通过它们下标间的数值关系确定。

(3)双亲表示法树上每个结点的孩子可以有任意多个,但双亲只有一个。

因此,通过指向双亲的指针而将树中所有结点组织在一起形成一种存储结构是十分简法的。

树的这种存储表示方法称为双亲表示法。

在双亲表示法下,每个存储结点由两个域组成:数据域———用于存储树上结点中的数据元素;“指针”域———用于指示本结点之双亲所在的存储结点。

值得注意的是,“指针”域的类型定义可以有两种选择。

第一种是将其定义为高级语言(如C语句)中的指针类型。

通过将存储结点中的指针域定义为高级语言中的指针类型,就得到各种链式存储结构,如单链表、二叉链表、孩子链表等等。

第二种选择是将“指针”域定义为整型、子界型等型。

严格地说,无论选择上述哪种定义,得到的都是链式存储结构,因为在这两种定义之下,各存储结点之间的联结是通过“指针”完成的,而且这些指针反映了结点之间的逻辑关系。

为了区别这两种链式结构,通常将指针域定义为高级语言中的指针类型的各种链式存储结构(如单链表、二叉链表等等)称为“动态链表”,相应的指针称为“动态指针”;将指针域定义为整型、子界型等类型的各种键式存储结构称为“静态链表”,相应的“指针”称为:“静态指针”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
完全二叉树的顺序存储
#include<iostream.h>
#include<string.h>
class treenode { public:
char data; int left, right, parent;
treenode(){left=right=parent=-1;} };
int n; //全局变量
void creattree(char a[],treenode t[]) //建二叉树
{ for(int i=0;a[i]!='\0';i++)
{ t[i].data=a[i]; if(2*i+1<n) t[i].left=2*i+1; if(2*i+2<n) t[i].right=2*i+2; if(i!=0) t[i].parent=(i-1)/2; } } void searchchild(char x,treenode t[]) //寻找子节点 { for(int i=0;i<n;i++) if(t[i].data==x)
{ if(t[i].left==-1 && t[i].right==-1) //专对根节点的处理 cout<<x<<"无子节点"<<'\n'; else { if(t[i].left!=-1) cout<<x<<"的左子节点为:"<<t[t[i].left].data<<'\n'; f(t[i].right!=-1) cout<<x<<"的右子节点为:"<<t[t[i].right].data<<'\n'; if(t[i].left!=-1&&t[i].right==-1) cout<<x<<"无右子节点"<<endl; } break; } }
void searchparent(char x,treenode t[]) //寻找父节点 { for(int i=0;i<n;i++) if(t[i].data==x) { if(t[i].parent!=-1) cout<<x<<"的父节点为:"<<t[t[i].parent].data<<'\n'; else cout<<x<<"无父节点"<<'\n'; break; }
if(i>=n) cout<<"该树中无"<<x<<"此节点!"<<'\n'; } void searchbrother(char x,treenode t[]) //寻找兄弟节点 { for(int i=0;i<n;i++) if(t[i].data==x) { if(i==0) cout<<x<<"无兄弟"<<'\n'; //专对根节点的处理 else { if(i%2==0) cout<<x<<"的左兄弟为:"<<t[i-1].data<<'\n';
if(i%2!=0 && i+1<n)
cout<<x<<"的右兄弟为:"<<t[i+1].data<<'\n';
a[] left data right parent
0 1 A 2 -1
1 3 B 4 0
2 5 C 6 0
3 7 D -1 1
4 -1 E -1 1
5 -1 F -1 2
6 -1 G -1 2
7 -1 H -1 3
2
if(i%2==0 && i+1==n) //专对最后只有左节点的处理
cout<<x<<"无右兄弟"<<'\n'; } break; } }
void preorder(int r,treenode t[]) //前序遍历 { if(r<n) { cout<<t[r].data<<'\t'; preorder(2*r+1,t); preorder(2*r+2,t); } } void postorder(int r,treenode t[])//后序遍历 { if(r<n) { postorder(2*r+1,t); postorder(2*r+2,t); cout<<t[r].data<<'\t'; } } void main() { char a[20]; char x;
cout<<"请连续输入构成完全二叉树的各节点:"; cin>>a;
int size=strlen(a);n=size; //计算字符串的长度,赋值给全局变量n 。

treenode t[10]; //要输入的字符数需小于等于10 cout<<"请输入要查找的字符:"; cin>>x; creattree(a,t); int r=0; //从第一个节点开始遍历
cout<<'\n'<<"前序遍历结果为:"; preorder(r,t); cout<<'\n'; cout<<"中序遍历结果为:"; inorder(r,t); cout<<'\n'; cout<<"后序遍历结果为:"; postorder(r,t); cout<<'\n'; cout<<'\n'; searchchild(x,t); searchparent(x,t); searchbrother(x,t); }
结果如下:
void inorder(int r,treenode t[]) { if(r<n) { inorder(2*r+1,t); cout<<t[r].data<<'\t'; inorder(2*r+2,t); } } //中序遍历 请连续输入构成完全二叉树的各节点:ABCDEFGH 请输入要查找的字符:A
前序遍历结果为:A B D H E C F G 中序遍历结果为:H D B E A F C G 后序遍历结果为:H D E B F G C A
A 的左子节点为:
B A 的右子节点为:
C A 无父节点 A 无兄弟
请连续输入构成完全二叉树的各节点:ABCDEFGH 请输入要查找的字符:B
前序遍历结果为:A B D H E C F G 中序遍历结果为:H D B E A F C G 后序遍历结果为:H D E B F G C A
B 的左子节点为:D B 的右子兄弟为:E B 的父节点为:A B 的右兄弟为:C
A / \
B
C / \ / \
D
E
F
G / H
A / \
B C
/ \ / \ D E F G /
H。

相关文档
最新文档