艺术生高考数学专题讲义:考点43 双曲线

合集下载

高考数学复习考点知识专题讲解课件47---双曲线

高考数学复习考点知识专题讲解课件47---双曲线

返回导航
新高考 大一轮复习 · 数学
解析:由题意得ba=34,c2=a2+b2=25,所以 a=4,b=3,所以所求双曲线的标 准方程为1x62 -y92=1. 答案:B
返回导航
新高考 大一轮复习 · 数学
(2)已知双曲线ax22-by22=1(a>0,b>0)的离心率为 2,过右焦点且垂直于 x 轴的直
返回导航
新高考 大一轮复习 · 数学
6.共轭双曲线 (1)定义:如果一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么 这两条双曲线互为共轭双曲线. (2)性质:①它们有共同的渐近线;②它们的四个焦点共圆;③它们的离心率的倒 数的平方和等于 1.
返回导航
新高考 大一轮复习 · 数学
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点的轨迹是双曲 线.( × ) (2)方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.( × )
返回导航
新高考 大一轮复习 · 数学
题型分类 深度剖析
返回导航
新高考 大一轮复习 · 数学
题型一 双曲线的定义 例 1 (1)已知定点 F1(-2,0),F2(2,0),N 是圆 O:x2+y2=1 上任意一点,点 F1
关于点 N 的对称点为 M,线段 F1M 的中垂线与直线 F2M 相交于点 P,则点 P 的
新高考 大一轮复习 · 数学
解 析 : 椭 圆 C1 的 离 心 率 为
a2-b2 a



线
C2 的 离 心 率 为
a2+b2 a


高考双曲线知识点大全

高考双曲线知识点大全

高考双曲线知识点大全高考是每位学生所面临的一次重要考试,而数学是其中一道十分重要的科目。

在数学中,高考考察的范围很广,其中一个重要的知识点就是双曲线。

掌握双曲线的相关知识,不仅能够帮助学生更好地解题,还能提高数学思维和分析问题的能力。

本文将为大家整理双曲线的相关知识点,提供一个全面的学习参考。

一、双曲线的定义和基本性质双曲线是平面上与两个给定直线有关的曲线。

它的定义是两个焦点到该曲线上的每一点的距离之差等于一个常数。

双曲线的基本性质包括:对称轴、顶点、焦点、准线等概念。

掌握这些基本概念是理解双曲线的首要步骤。

二、双曲线的标准方程双曲线的标准方程有两种形式,分别是椭圆的极坐标方程和参数方程。

前者是由焦点到曲线上任一点的半焦距和半准距之比等于常数,而后者是由双曲线上任一点的坐标值与参数关系式的方程。

掌握这两种标准方程形式,能够帮助学生更好地解题。

三、双曲线的基本图形和特点根据双曲线的标准方程,可以绘制出双曲线的图形。

双曲线可以分成三种类型:椭圆型、双曲线型和抛物线型。

每一种类型都有着自己独特的图形特点。

通过观察双曲线的图形,可以了解其形状和性质。

四、双曲线的性质与应用双曲线在实际应用中有着广泛的应用。

比如在物理学、工程学等领域,常常需要利用双曲线的性质来解决实际问题。

例如,双曲线的离心率可以用于描述椭圆轨道和抛物线轨道的偏心程度。

掌握这些性质和应用,对于解答相关试题具有重要的指导作用。

五、双曲线与其他数学知识的关联双曲线与其他数学知识有着密切的关联。

比如,双曲线与函数、微积分、极限等内容有着紧密的联系。

掌握双曲线与其他数学知识的关联,可以帮助学生更深入地理解数学的整体结构和知识体系。

六、双曲线解题技巧与策略在高考中,双曲线的问题通常是考察学生对知识点运用的掌握程度。

因此,提高解题的技巧和策略是非常重要的。

比如,可以通过简化方程、利用对称性、借助性质等方法解决比较复杂的双曲线问题。

综上所述,双曲线作为高中数学的一个重要知识点,掌握了双曲线的相关知识可以帮助学生更好地解题,提高数学思维能力。

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

高考数学复习考点43 双曲线(练习)(解析版)

高考数学复习考点43 双曲线(练习)(解析版)

考点43 双曲线(练习)【题组一 双曲线的定义及运用】1.已知双曲线221259x y -=上有一点M 到右焦点1F 的距离为18,则点M 到左焦点2F 的距离是 。

【答案】8或28【解析】双曲线221259x y -=的5a =,3b =,c ==由双曲线的定义得12||||||210MF MF a -==, 即为21810MF -=,解得28MF =或28.检验若M在左支上,可得15MF c a ≥-=,成立; 若M在右支上,可得15MF c a ≥+=,成立.2.设双曲线22227x y m m-=(0m >)的焦距为12,则m = 。

【答案】2【解析】因为22227x y m m -=可化为221414x y m m -=,所以221241418362c m m m ⎛⎫=+=== ⎪⎝⎭,则2m =. 【题组二 焦点三角形】1.已知点P 是双曲线22184x y -=上一点,1F ,2F 分别为双曲线的左、右焦点,若12F PF △的外接圆半径为4,且12F PF ∠为锐角,则12PF PF ⋅= 。

【答案】16【解析】依题意,2,a b c ====在三角形12F PF △中,122F F c ==121224sin F F F PF =⨯∠,即12128,sin sin 2F PF F PF =∠=∠,由于12F PF ∠为锐角,所以123F PF π∠=.根据双曲线的定义得122PF PF a -== 在三角形12F PF △中,由余弦定理得2221212122cos3F F PF PF PF PF π=+-⋅⋅⋅,即22121248PF PF PF PF =+-⋅, 即()2121248PF PF PF PF -+⋅=,即123248PF PF +⋅=,所以1216PF PF ⋅=.2.设F 1,F 2是双曲线24x -y 2=1的左右焦点,点P 在双曲线上,当△F 1PF 2面积为1时,1PF ·2PF 的值为 。

数学高考知识点双曲线

数学高考知识点双曲线

数学高考知识点双曲线双曲线是高考数学中的重要知识点之一,它在几何和代数中都有广泛的应用。

本文将从双曲线的定义、图像、性质和应用几个方面进行讨论。

一、双曲线的定义双曲线是平面上一类点的集合,满足到两个给定点的距离的差等于一个常数的条件。

具体来说,对于给定的两个焦点F1和F2,双曲线上任意一点P到F1的距离减去到F2的距离得到的差等于常数c,即PF1 - PF2 = c。

二、双曲线的图像双曲线的图像呈现出两个分离的无限曲线,它们相对于两个焦点对称。

双曲线图像的形状与离心率有关,离心率越大,曲线的形状越扁平;离心率越小,曲线的形状越尖锐。

三、双曲线的性质1. 双曲线的离心率 e = c / a,其中c为焦点之间的距离,a为焦点到对称轴的距离。

2. 双曲线有两条渐进线,渐近线是曲线与直线无限相接的情况,双曲线的渐进线与曲线的极限形态相关。

3. 双曲线有两个对称轴,与椭圆和抛物线不同的是,双曲线的对称轴与曲线相交而不是切线。

4. 双曲线有焦点和顶点,它们在平面上是两个对称的点,顶点位于曲线的中心位置。

四、双曲线的应用1. 物理学中的双曲线:双曲线在天体力学、声学和光学中有广泛的应用。

例如,双曲线可以描述天体的轨迹,声学中的雷达测距原理也建立在双曲线的概念上。

2. 经济学中的双曲线:双曲线可以用来分析货币的供给和需求,以及金融市场的波动和趋势。

3. 电子工程中的双曲线:双曲线在电路分析和信号处理中有一定的应用。

例如,高频电路中的天线和滤波器设计使用了双曲线的原理。

总结起来,双曲线是高考数学中的一个重要知识点,它的定义、图像、性质和应用都有着广泛的应用领域。

掌握了双曲线的相关知识,不仅有助于理解几何和代数中的概念,还能在物理学、经济学和电子工程等领域中找到更多的应用。

因此,对于准备参加高考的学生来说,理解和掌握双曲线的相关知识是十分重要的。

艺术生高考数学总复习第八章平面解析几何第6节双曲线课件

艺术生高考数学总复习第八章平面解析几何第6节双曲线课件

法 2:∵渐近线 y=12x 过点(4,2),而 3<2,∴点(4, 3)在渐近 线 y=12x 的下方,在 y=-12x 的上方(如图).
∴双曲线的焦点在 x 轴上,故可设双曲线方程为ax22-by22=1(a>0,
b>0).由已知条件可得a1ba= 62 -12b,32=1,
解得ab22==41,,
D.8
解析:B [由题意知|PF1|=9<a+c=10,所以 P 点在双曲线的 左支,则有|PF2|-|PF1|=2a=8,故|PF2|=|PF1|+8=17.]
2.[教材改编] (2018·全国Ⅲ卷)已知双曲线 C:ax22-by22=1(a>0,
b>0)的离心率为 2,则点(4,0)到 C 的渐近线的距离为( )
[思考辨析]
判断下列说法是否正确,正确的在它后面的括号里打“√”,错
误的打“×”.
(1)平面内到点 F1(0,4),F2(0,-4)距离之差的绝对值等于 8 的点
的轨迹是双曲线.( )
(2)方程xm2-yn2=1(mn>0)表示焦点在 x 轴上的双曲线.(
)
(3)双曲线mx22-ny22=λ(m>0,n>0,λ≠0)的渐近线方程是mx22-ny22=0,
(1)当 2a<|F1F2| 时,P 点的轨迹是双曲线; (2)当 2a=|F1F2| 时,P 点的轨迹是两条射线; (3)当 2a>|F1F2| 时,P 点不存在.
2.双曲线的标准方程和几何性质
标准方程
ax22-by22=1(a>0,b>0)
ay22-bx22=1(a>0,b>0)
图形
范围 x≥a 或 x≤-a,y∈R y≤-a 或 y≥a,x∈R

双曲线的基本知识点(大全)

双曲线的基本知识点(大全)双曲线的基本知识点(大全)双曲线,这在高中数学中是一大考点,那么双曲线知识点又有什么重点呢?下面小编给大家整理了关于双曲线的基本知识点的内容,欢迎阅读,内容仅供参考!双曲线的基本知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的'直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示。

但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

高考数学——双曲线-考点复习


3
考向一 双曲线的定义和标准方程
1.在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值 为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一 支.同时注意定义的转化应用. @#网
2.求双曲线方程时,一是注意判断标准形式;二是注意 a、b、c 的关系易错易混.
y= ±bx a
y= ±ax b
=e 2=c c (e > 1) 2a a
2.等轴双曲线的概念和性质
实轴和虚轴等长的双曲线叫做等轴双曲线.等轴双曲线具有以下性质:
(1)方程形式为 x2 − y2 = λ(λ ≠ 0) ; (2)渐近线方程为 y = ± x ,它们互相垂直,并且平分双曲线实轴和虚轴所成的角; (3)实轴长和虚轴长都等于 2a ,离心率 e = 2 .
(2)符号语言: MF1 − MF2 = 2a,0 < 2a < F1F2 .
(3)当 MF1 − MF2 = 2a 时,曲线仅表示焦点 F2 所对应的双曲线的一支; 当 MF1 − MF2 = −2a 时,曲线仅表示焦点 F1 所对应的双曲线的一支; 当 2a =| F1F2 | 时,轨迹为分别以 F1,F2 为端点的两条射线; 当 2a >| F1F2 | 时,动点轨迹不存在.
得 | PF2 |2 =8a,则双曲线的离心率的取值范围是
.
PF1
【答案】(1,3]
4.已知点 P 为双曲线
x2 a2

y2 b2
= 1(a
> 0,b
>
0) 右支上一点,点 F1, F2 分别为双曲线的左、右焦点,点 I

△PF1F2 的内心(三角形内切圆的圆心),若恒有 S△IPF1

高考双曲线知识点总结

高考双曲线知识点总结一、双曲线的定义和性质1. 双曲线的定义双曲线是平面上的一类曲线,其定义为到两个定点的距离之差的绝对值等于常数的点的集合。

2. 双曲线的性质(1)双曲线的标准方程双曲线的标准方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(横轴为实轴)或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(纵轴为实轴)。

其中,a和b分别为横轴和纵轴半轴的长度。

(2)双曲线的对称性双曲线关于x轴、y轴、原点对称。

(3)渐近线双曲线有两条渐近线,分别是x轴和y轴。

(4)焦点和直焦距双曲线的焦点定义为到两个定点的距离之差的绝对值等于常数的点的集合。

焦点之间的距离称为直焦距。

(5)双曲线的渐近线双曲线有两条渐近线,分别是x轴和y轴。

双曲线与它的渐近线有如下关系:a)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$时,它的渐近线是x=±a,当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}=-1$时,它的渐近线是y=±b;b)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}<1$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}<1$时,它的渐近线是y=ax或x=ay;c)当曲线的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}>0$或$\frac{y^2}{a^2}-\frac{x^2}{b^2}>0$时,它的渐近线是没有。

(6)四条特殊的双曲线内离心双曲线,外离心双曲线,右开弧双曲线,左开弧双曲线。

二、双曲线的图像与方程1. 双曲线的图像(1)当$a>b$时,双曲线的图像为两支开口朝左右的曲线,焦点在横轴上。

双曲线(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.4 双曲线(知识点讲解)【知识框架】【核心素养】1.考查双曲线的定义,求轨迹方程及焦点三角形,凸显数学运算、直观想象的核心素养.2.考查双曲线几何性质(范围、对称性、顶点、离心率、渐近线),结合几何量的计算,凸显逻辑推理、数学运算的核心素养.3.考查直线与双曲线的位置关系,凸显逻辑推理、数学运算、数学应用的核心素养.【知识点展示】(一)双曲线的定义及标准方程1.双曲线的定义满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形(二)双曲线的几何性质 双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线y =±b axy =±a bx离心率 e =ca,e ∈(1,+∞),其中c =a 2+b 2 实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)(三)常用结论 1.等轴双曲线及性质(1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x 2-y 2=λ(λ≠0). (2)等轴双曲线⇔离心率e =2⇔两条渐近线y =±x 相互垂直. 2.双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a . (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b 2a,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线P A ,PB 斜率存在且不为0,则直线P A 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则S △PF 1F 2=b 2·1tan θ2,其中θ为∠F 1PF 2.【常考题型剖析】题型一:双曲线的定义及其应用例1.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B 410C 7D 10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得1333x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= 故选:D.例2.(2017·上海·高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________ 【答案】11【详解】由双曲线的方程2221(0)9x y b b -=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±,又因为15PF =,所以2||11PF =. 【总结提升】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解. 题型二:双曲线的标准方程例3.(2021·北京高考真题)双曲线2222:1x y C a b -=过点2,3,且离心率为2,则该双曲线的标准方程为( ) A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得3b a =,再将点2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a -=,则双曲线的方程为222213x y a a-=,将点2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =因此,双曲线的方程为2213y x -=.故选:B例4. (2022·全国·高三专题练习)已知双曲线的上、下焦点分别为()10,3F ,()20,3F -,P 是双曲线上一点且124PF PF -=,则双曲线的标准方程为( ) A .22145x y -=B .22154x y -=C .22145y x -=D .22154y x -=【答案】C【分析】设双曲线的标准方程为()222210,0y x a b a b -=>>,由双曲线的定义知3c =,2a =,即可求出双曲线的标准方程.【详解】设双曲线的标准方程为()222210,0y x a b a b -=>>,半焦距为c ,则由题意可知3c =,24a =,即2a =,故222945b c a =-=-=,所以双曲线的标准方程为22145y x -=.故选:C .例5.【多选题】(2020·海南·高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C n C .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:ACD. 【规律方法】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C可以变形为x 2C A +y 2C B=1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B=1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).题型三:双曲线的实际应用例6.(2023·全国·高三专题练习)江西景德镇青花瓷始创于元代,到明清两代达到了顶峰,它蓝白相映怡然成趣,晶莹明快,美观隽永.现有某青花瓷花瓶的外形可看成是焦点在x 轴上的双曲线的一部分绕其虚轴旋转所形成的曲面,如图所示,若该花瓶的瓶身最小的直径是4,瓶口和底面的直径都是8,瓶高是6,则该双曲线的标准方程是( )A .221169x y -=B .2214x y -=C .22189x y -=D .22143x y -=【答案】D【分析】由已知得双曲线的焦点在x 轴上,设该双曲线的方程为()222210,0x y a b a b -=>>,代入建立方程组,求解即可得双曲线的标准方程.【详解】由题意可知该双曲线的焦点在x 轴上,实轴长为4,点()4,3在该双曲线上.设该双曲线的方程为()222210,0x y a b a b-=>>,则222224,431,a a b =⎧⎪⎨-=⎪⎩解得2a =,3b =,故该双曲线的标准方程是22143x y -=.故选:D.例7.(2021·长丰北城衡安学校高二月考(理))如图为陕西博物馆收藏的国宝——唐⋅金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线2222:x y C a b-=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .2B .3πC .3D .4π【分析】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m , 代入方程,即可解得23,3a a == 3,从而得解. 【详解】103239,且杯身最细之处到上杯口的距离是到下底座距离的2倍, 可设5339(2),()M m N m 代入双曲线方程可得 22222225134331,1m m a b a b -=-= , 即22222213251312,14m m a b a b-=-=,作差可得2273124a =,解得23,3a a ==,所以杯身最细处的周长为23π . 故选:C 【总结提升】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤. 题型四 已知双曲线的方程,研究其几何性质例8.(2018·浙江·高考真题)双曲线221 3x y -=的焦点坐标是( )A .()2,0-,)2,0B .()2,0-,()2,0C .(0,2-,(2D .()0,2-,()0,2【分析】根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±,因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.例9.(2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________. 5【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,22543c a b ++,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-=225512==+ 5例10.(2020·北京·高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________. 【答案】 ()3,0 3【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,6a =,3b =,则223c a b =+=,则双曲线C 的右焦点坐标为()3,0, 双曲线C 的渐近线方程为22y x =±,即20x y ±=, 所以,双曲线C 的焦点到其渐近线的距离为23312=+. 故答案为:()3,0;3.例11.(2021·全国·高考真题(理))已知双曲线22:1(0)x C y m m -=>30x my +=,则C 的焦距为_________. 【答案】4【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】由渐近线方程30x my +=化简得3y x m=-,即3b a m =,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.例12.(2021·全国·高考真题)若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】3y x =±【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a ==,即2c a =, 又22224a b c a +==,即223b a =,则3ba=, 故此双曲线的渐近线方程为3y x =±. 故答案为:3y x =±. 【总结提升】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为2222221b b c a e a a a-===-可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.题型五 由双曲线的性质求双曲线的方程例11. (2022·天津·高考真题)已知抛物线21245,,y x F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c ⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a ,可得2ba=, 所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.例12.(2021·北京·高考真题)若双曲线2222:1x y C a b -=离心率为2,过点2,3,则该双曲线的方程为( )A .2221x y -= B .2213y x -=C .22531x y -=D .22126x y -=【答案】B【分析】分析可得3b a =,再将点()2,3代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a ==,则2c a =,223b c a a =-=,则双曲线的方程为222213x y a a-=,将点()2,3的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故3b =,因此,双曲线的方程为2213y x -=.故选:B例13.(2018·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A 【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:22122bc b bc b d c a b --==+,22222bc b bc b d c a b++==+, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2229112c b e a a a ==+=+=, 据此可得:23a =,则双曲线的方程为22139x y -=.本题选择A 选项. 【规律总结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).题型六 求双曲线的离心率(或范围)例13.(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A 2B 3C .2 D 5【答案】A【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .例14.(2021·湖北恩施土家族苗族自治州·高三开学考试)双曲线2222:1x y C a b -=(0a >,0b >)的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足2AF BF >,则双曲线离心率e 的取值范围是( ) A .12e << B .312e <<C .322e << D .331e +<<【答案】B 【分析】设双曲线半焦距c ,再根据给定条件求出|BF |长,列出不等式即可得解. 【详解】设双曲线半焦距为c ,因BF AF ⊥,则由22221x c x ya b =⎧⎪⎨-=⎪⎩得2||||b y B a F ==,而AF a c =+, 于是得22b a c a +>⋅,即222c a a c a-+>⋅,整理得23a c >,从而有32c e a =<,又1e >,所以双曲线离心率e 的取值范围是312e <<. 故选:B例15.(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________. 【答案】364【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4ba 的直线:()4b AB y xc a =+,渐近线2:b l y x a=,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率36e 4=. 故答案为:364.例16.(2020·全国·高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y 2,则C 的离心率为_________. 【答案】3【分析】根据已知可得2ba=,结合双曲线中,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b -=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =,2213c be a a==+=.故答案为:3 1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =c a是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用21c b e a a ⎛⎫==+ ⎪⎝⎭题型七:与双曲线有关的综合问题例17.(2022·江西·丰城九中高三开学考试(文))已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,E 为双曲线C 的右顶点.过2F 的直线与双曲线C 的右支交于,A B 两点(其中点A 在第一象限),设,M N 分别为1212,AF F BF F 的内心,则ME NE -的取值范围是( )A .4343,∞∞⎛⎫-⋃+ ⎪ ⎪⎝⎭⎝⎭ B .4343⎛ ⎝⎭C .3333⎛ ⎝⎭D .55⎛ ⎝⎭【答案】B【分析】由内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,将ME NE -表示为θ的三角函数,结合正切函数的性质可求得范围.【详解】设1212,,AF AF F F 上的切点分别为H 、I 、J , 则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a , ∴122-=HF IF a ,即122-=JF JF a .设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=, 得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合. 同理可得12BF F △的内心在直线JM 上, 设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ, 当2πθ=时,||||0ME NE -=; 当2πθ≠时,由题知,2,4,3===ba c a, 因为A ,B 两点在双曲线的右支上, ∴233ππθ<<,且2πθ≠,所以tan 3θ<-或tan 3θ>, ∴3133tan 3θ-<<且10tan θ≠, ∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ. 故选:B.例18.(2018·全国·高考真题(理))已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若OMN 为直角三角形,则|MN |=( ) A .32B .3C .3D .4【答案】B【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得33(3,3),(,)22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为33±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒, 可以得出直线MN 的方程为3(2)y x =-, 分别与两条渐近线33y x =和33y x =-联立, 求得33(3,3),(,)22M N -,所以2233(3)(3)322MN =-++=,故选B.例19.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______. 【答案】21+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解. 【详解】由题意知: ,2,2pc p c -=-∴= ∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b ∴-=2224224,60c a c a c a b =-∴-+=2322e ∴=±,又()1,e ∈+∞,2 1.e ∴=+故答案为:21+例20.(2020·全国·高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立2222222{1x cx y a b c b a =-==+,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223bc a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2.例21. (2022·全国·高考真题(理))若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________. 【答案】33【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.【详解】解:双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离2211m d m==+,解得33m =或33m =-(舍去). 故答案为:33.例22. (2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>43F 且斜率为0k >的直线交C 的两支于,A B 两点.若||3||FA FB =,则k =________________. 【答案】33【分析】由题意设双曲线的方程为22223113x y a a -=,直线为1x y c k =-,即1433x y a k =-,联立方程,设()()1122,,,A x y B x y ,由||3||FA FB =,得123y y =,由根与系数的关系求解即可 【详解】因为22224316,33c a c a b a ==+=, 所以22313b a =,双曲线的方程为22223113x y a a -=,设过左焦点F 且斜率为0k >的直线为1x y c k =-,即1433x y a k =-, 与双曲线222231131433x y a a x y ak ⎧-=⎪⎪⎨⎪=-⎪⎩联立得2221310431693033y ay a k k ⎛⎫--+= ⎪⎝⎭, 设()()1122,,,A x y B x y ,则()()221212221043169,31333133ak a k y y y y k k +=⋅=--,因为||3||FA FB =, 所以123y y =,所以()()222222210431694,331333133ak a k y y k k ==--,消去2y 得()222221696433169163133a k a k k ⨯⨯⨯=-, 化简得2121133k =-,即213k =, 因为0k >, 所以33k =, 故答案为:33例23.(2022·广东·广州市真光中学高三开学考试)设1F ,2F 分别是双曲线2222:1(0,0)x ya b a bΓ-=>>的左、右两焦点,过点2F 的直线:0l x my t --=(,R m t ∈)与Γ的右支交于M ,N 两点,Γ过点(2,3)-,且它的7(1)求双曲线Γ的方程;(2)当121MF F F =时,求实数m 的值;(3)设点M 关于坐标原点O 的对称点为P ,当2212MF F N =时,求PMN 面积S 的值. 【答案】(1)2213y x -=; (2)1515m =±; (3)9354. 【分析】(1)根据点在双曲线上及两点距离列方程组求双曲线参数,即可得方程;(2)由点在直线上求得2t =,根据1F 到直线:20l x my --=与等腰三角形12F MF 底边2MF 上的高相等,列方程求参数m ;(3)设11(,)M x y ,22(,)N x y ,联立双曲线与直线方程,应用韦达定理得1221213m y y m +=-,122913y y m =--,由向量的数量关系可得2135m =,根据对称点、三角形面积公式1222OMN S S y y ==-求PMN 面积. (1)由Γ过点(2,3)-,且它的虚轴的端点与焦点的距离为7,所以()222224917a b b a b ⎧-=⎪⎨⎪++=⎩,即2213a b ⎧=⎨=⎩, 则所求的双曲线Γ的方程为2213y x -=. (2)因为直线:0l x my t --=过点2(2,0)F ,所以2t =,由121MF F F =得:等腰三角形12F MF 底边2MF 上的高的大小为22112()152MF MF --=, 又1F 到直线:20l x my --=的距离等于等腰三角形12F MF 底边上的高,则2202151m ---=+, 即2115m =,则1515m =±. (3)设11(,)M x y ,22(,)N x y ,由221320y x x my ⎧-=⎪⎨⎪--=⎩得:22(31)1290m y my -++=, 则1221213m y y m +=-,122913y y m=--,又2212MF F N =,即212y y =-, 则121213m y m -=-,2129213y m =-,即22122()13m m =-2913m-,则2135m =, 又M 关于坐标原点O 的对称点为P ,则2121212222()4OMN S S y y y y y y ==-=+-222221*********()4()1313134m m m m m +=--==---. 则所求的PMN 面积为9354. 【总结提升】 双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点四十三双曲线知识梳理1.双曲线的概念把平面内到两定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线.定点F1,F2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用集合语言表示为:P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. 说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e ∈(0,1),而双曲线的离心率e ∈(1,+∞); (3) a ,b ,c 的关系不同:在椭圆中a 2=b 2+c 2,a >c ;而在双曲线中c 2=a 2+b 2, c >a .典例剖析题型一 双曲线的定义和标准方程例1 设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________. 答案 x 2-y 2=1解析 由题意可知,双曲线的焦点在x 轴上,且c =2,a =1,则b 2=c 2-a 2=1, 所以双曲线C 的方程为x 2-y 2=1.变式训练 与椭圆C :y 216+x 212=1共焦点且过点(1,3)的双曲线的标准方程为________.答案 y 22-x 22=1解析 椭圆y 216+x 212=1的焦点坐标为(0,-2),(0,2),设双曲线的标准方程为y 2m -x2n=1(m >0,n >0),则⎩⎪⎨⎪⎧3m -1n =1m +n =4,解得m =n =2.∴双曲线的标准方程为y 22-x 22=1.解题要点 求双曲线的标准方程的基本方法是定义法和待定系数法.在求解时,注意巧设方程,可以减少讨论以及计算的难度,一般来说:(1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m -y 2n =1 (mn >0),也可设为Ax 2+By 2=1 (AB <0),这种形式在解题时更简便. 题型二 双曲线的离心率例2 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =________.答案 1解析 由题,c =2a . ∴c 2=4a 2,又c 2=a 2+3,∴4a 2=a 2+3,a 2=1, ∵a >0,∴ a =1.变式训练 若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.解题要点 1.注意双曲线中a ,b ,c 的关系,在双曲线中c 2=a 2+b 2, c >a . 2. 注意离心率公式及其变式运用,e =ca c 2a 2=a 2+b 2a 2=1+b 2a2, e =c 2c 2-b 2= 11-b 2c 2. 题型三 双曲线的渐近线例3 设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________. 答案 x 23-y 212=1 y =±2x解析 设双曲线C 的方程为y 24-x 2=λ,将点(2,2)代入上式,得λ=-3,∴C 的方程为x 23-y 212=1,其渐近线方程为y =±2x .变式训练 已知双曲线C :x 2n -y 24-n =1的离心率为3,则C 的渐近线方程为________.答案 y =±2x解析 由双曲线的方程x 2n -y 24-n =1知,双曲线的焦点在x 轴上,∴n +4-n n =(3)2=3,∴n =43,∴a 2=43,b 2=4-43=83,从而双曲线的渐近线方程是y =±2x .解题要点 1.已知双曲线方程x 2a 2-y 2b 2=1,求渐近线时可直接将1换为0,解方程x 2a 2-y 2b 2=0求出渐近线.2.双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.已知渐近线方程时,可得b a 的值,于是e 2=c 2a 2=a 2+b 2a2=1+⎝⎛⎭⎫b a 2,因此可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即ba =e 2-1.但要注意,当双曲线的焦点所在的坐标轴不确定时,上述两类问题都有两个解.当堂练习1.(2015广东理)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为________.答案 x 216-y 29=1解析 因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1.2.(2015安徽文)下列双曲线中,渐近线方程为y =±2x 的是________. ①x 2-y 24=1 ②x 24-y 2=1 ③x 2-y 22=1 ④x 22-y 2=1答案 ①解析 由双曲线渐近线方程的求法知;双曲线x 2-y 24=1的渐近线方程为y =±2x ,故选①.3. (2015福建理)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E上,且|PF 1|=3,则|PF 2|等于________. 答案 9解析 由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9.4.(2015山东文)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________. 答案 2+ 3解析 把x =2a 代入x 2a 2-y 2b2 =1;得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca=2+ 3.5.(2015北京文)已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b =________.答案 3解析 由题意:c =2,a =1,由c 2=a 2+b 2.得b 2=4-1=3,所以b = 3.课后作业一、 填空题1. (2015天津文)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为________. 答案 x 2-y 23=12.(2015湖南文)若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为________. 答案 53解析 由条件知y =-b a x 过点(3,-4),∴3ba=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2,∴25a 2=9c 2,∴e =53.3.(2015新课标II 理)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________. 答案2解析 如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a=a 2+b 2a 2= 2. 4.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.答案 x 24-y 25=1解析 由曲线C 的右焦点为F (3,0),知c =3.由离心率e =32,知c a =32,则a =2,故b 2=c 2-a 2=9-4=5,所以双曲线C 的方程为x 24-y 25=1.5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为________.2解析 ∵e =c a =52,∴e 2=c 2a 2=a 2+b 2a 2=54.∴a 2=4b 2,b a =12.∴渐近线方程为y =±b a x =±12x .6.(2015新课标Ⅰ理)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是________. 答案 ⎝⎛⎭⎫-33,33解析 由双曲线方程可求出F 1,F 2的坐标,再求出向量MF 1→,MF 2→,然后利用向量的数量积公式求解.由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0), ∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 7.(2015重庆文)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为________. 答案 ±1解析 双曲线x 2a 2-y 2b 2=1的右焦点F (c,0),左、右顶点分别为A 1(-a,0),A 2(a,0),易求B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b 2a ,则kA 2C =b 2a a -c ,kA 1B =b 2a a +c ,又A 1B 与A 2C 垂直, 则有kA 1B ·kA 2C =-1,即b 2a a +c ·b 2aa -c=-1,∴b 4a 2c 2-a2=1,∴a 2=b 2,即a =b ,∴渐近线斜率k =±b a =±1.8.(2015新课标II 文)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.4解析 由双曲线渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.9. (2015天津文)双曲线x 22-y 2=1的焦距是______,渐近线方程是________________.答案 23 y =±22x解析 由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x .10.(2015湖南理)设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________. 答案5解析 不妨设F (c ,0),则由条件知P (-c ,±2b ),代入x 2a 2-y 2b 2=1得c 2a 2=5,∴e = 5.11.(2015新课标Ⅰ文)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________. 答案 12 6解析 设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A 、P 、F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1.与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =11AF F F PF S S ∆∆-=12 6.二、解答题12.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐进线恰好与圆M 相切,求双曲线G 的方程.解析 椭圆D 的两个焦点为F 1(-5,0),F 2(5,0),∴双曲线中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b 2=1(a >0,b >0),∴渐近线方程为bx ±ay =0且a 2+b 2=25, 又圆心M (0,5)到两条渐近线的距离为r =3.∴|5a |b 2+a 2=3,得a =3,b =4, ∴双曲线G 的方程为x 29-y 216=1.13.已知双曲线关于两坐标轴对称,且与圆x 2+y 2=10相交于点P (3,-1),若此圆过点P 的切线与双曲线的一条渐近线平行,求此双曲线的方程. 解析 切点为P (3,-1)的圆x 2+y 2=10的切线方程是3x -y =10. ∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称, ∴两渐近线方程为3x ±y =0.设所求双曲线方程为9x 2-y 2=λ(λ≠0).∵点P (3,-1)在双曲线上,代入上式可得λ=80, ∴所求的双曲线方程为x 2809-y 280=1.。

相关文档
最新文档