高二数学轨迹问题的求法(201910)

合集下载

人教版数学高二-备课资料轨迹方程的求法

人教版数学高二-备课资料轨迹方程的求法

轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.本文结合具体实例对求曲线的轨迹方程的常用方法作一归纳。

一.直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.例1.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ . ∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |.∴x 2+y 2=a |y |, 即 x 2+(y ±2a )2=(2a )2.轨迹是分别以CO 、OD 为直径的两个圆. 二.定义法 如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.例2.某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r,则|PA|+|PO|=1+r+1.5-r=2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r=73)1412()149(2322=+-,故所求圆柱的直径为76 cm. 三.代入法 如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.例3.如图所示,已知P(4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x,y),则在Rt △ABP 中,|AR|=|PR|.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR|2=|AO|2-|OR|2=36O y A BP Q M N C D-(x 2+y 2) 又|AR|=|PR|=22)4(y x +-,所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q(x,y),R(x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.点评:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.四.参数法 如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.例4.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y=k (x -1),代入y 2=4x ,得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点,∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2), 根据韦达定理,有x 1+x 2=22)2(2k k +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),则12120303x x x y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,消去k ,得x=32+34(43y )2, ∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x - 98, 因此所求轨迹C 的方程为y 2=34x -98. 五.交轨法 所求动点是两条动直线(或动曲线)的交点且两动直(曲)线能用同一参数表示。

《轨迹方程的求法》课件

《轨迹方程的求法》课件
结合现代科技手段,如人工智能、大数据等,对 轨迹方程进行数据分析和挖掘,揭示隐藏的运动 规律和模式。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义

通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

高考数学二轮复习轨迹方程的求解方法

高考数学二轮复习轨迹方程的求解方法

2019年高考数学二轮复习轨迹方程的求解方法符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.下面是编辑老师整理的轨迹方程的求解方法,希望对您提高学习效率有所帮助.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

高中数学解析几何|求轨迹方程方法最全总结

高中数学解析几何|求轨迹方程方法最全总结

高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。

高考数学必备知识点:轨迹方程的求解

高考数学必备知识点:轨迹方程的求解

高考数学必备知识点:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

【高中数学】高考数学题型归纳:轨迹方程的求解

【高中数学】高考数学题型归纳:轨迹方程的求解高考数学题型归纳:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

感谢您的阅读,祝您生活愉快。

求轨迹方程的五种方法

求轨迹方程的五种方法1.直线轨迹方程的求解方法:直线的轨迹方程可以通过以下五种方法求解。

1.1斜率截距法:当直线已知斜率m和截距b时,可以使用斜率截距法求解。

直线的轨迹方程为:y = mx + b。

1.2点斜式方法:当直线已知斜率m和通过的一点(x1,y1)时,可以使用点斜式方法求解。

直线的轨迹方程为:(y-y1)=m(x-x1)。

1.3两点式方法:当直线已知通过的两点(x1,y1)和(x2,y2)时,可以使用两点式方法求解。

直线的轨迹方程为:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。

1.4截距式方法:当直线已知x轴和y轴上的截距时,可以使用截距式方法求解。

直线的轨迹方程为:x/a+y/b=1,其中a和b分别为x轴和y轴上的截距。

1.5法向量法:当直线已知法向量n和通过的一点(x1,y1)时,可以使用法向量法求解。

直线的轨迹方程为:n·(r-r1)=0,其中n为法向量,r为直线上的任意一点的位置矢量,r1为通过的一点的位置矢量。

2.圆轨迹方程的求解方法:圆的轨迹方程可以通过以下五种方法求解。

2.1一般式方法:当圆的圆心为(h,k)且半径为r时,可以使用一般式方法求解。

圆的轨迹方程为:(x-h)²+(y-k)²=r²。

2.2标准式方法:当圆的圆心为(h,k)且半径为r时,可以使用标准式方法求解。

圆的轨迹方程为:(x-h)²+(y-k)²=r²。

2.3参数方程方法:当圆的圆心为(h,k)且半径为r时,可以使用参数方程方法求解。

圆的轨迹方程为:x = h + rcosθ,y = k + rsinθ,其中θ为参数。

2.4三点定圆方法:当圆已知经过三点(x1,y1),(x2,y2)和(x3,y3)时,可以使用三点定圆方法求解。

圆的轨迹方程为:(x-x1)(x-x2)(x-x3)+(y-y1)(y-y2)(y-y3)-r²(x+y+h)=0,其中h为x平方项和y平方项的系数之和。

高中数学轨迹求法

、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比拟明显时1.三角形ABC 中,BC = 4,且AB = "'E A C,那么三角形ABC 面积最大值为.. 一、, 一 . ........ 一 I PAI _、 2、动点P (x,y)到两定点 A (—3, 0)和B (3, 0)的距离的比等于 2 (即 -------------------- ! 2),|PB|求动点P 的轨迹方程?3、一动点到y 轴距离比到点 2,0的距离小2,那么此动点的轨迹方程为. 由M… …MA 1 …— —八4.A 1,0 , B 2,0 ,动点M x, y 满足_ —.设动点M 的轨迹为C .MB 2(1)求动点M 的轨迹方程,并说明轨迹 C 是什么图形;(2)求动点M 与定点B 连线的斜率的最小值;15、曲线C 是动点M 到两个定点O 0,0、A 3,0距离之比为1的点的轨迹. 2(1)求曲线C 的方程;(2)求过点N 1,3且与曲线C 相切的直线方程.10,两端点 A,B 分别在x 轴和y 轴上滑动, M 在线段 AB 上且_2_2__22 一A x 16y64 B . 16x y 64C. x 2 16y 2 8 D . 16x 2 y 2 8 — 1 IM (x, y)与两个定点 M 1 (26, 1), M 2 (2, 1),且 1Mg = =5. (I )求点M 的轨迹方程,并说明轨迹是什么图形;(n )记(I )中的轨迹为 C,过点M (-2, 3)的直线l 被C 所截得的线段的长为 8,求 直线l 的方程.A&M ,由题意有:+ 2八六涧X M-球,整理可得:,结合三角形 的性质可得点C 的轨迹方程为以川5为圆 心,2V§为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为6. 一条线段的长等于4MB ,那么点M 的轨迹方程是(B7.坐标平面上一点1、【解析】建立如下图的平面直角坐标系,那么:,设点A 的坐标为2、【解答】••• | PA= J(x 3)2—y2,| PB | (x 3)2代入四2得亟亘工1PBi . (x 3)2 y2化简彳导(x—5) 2+y2=16,轨迹是以(2(x 3)25, 0)为圆心,2 2y24(x 3)24为半径的圆.4y223、y 8x x 0 或y 0【解析】设动点为P x,y ,那么由条件得_ 2 22 y2y24x 4 x ,当x 0时,y 8x ;当x 0时,y 0, 所以动点的轨迹方程为y28x x 0或x 4、(1)-- x 1 2y2 12 2 y2 2化简可得: 4 ,轨迹C是以2,0为圆心,2为半径的圆(2)设过点B的直线为y k x 2 ,圆心到直线的距离为d4k k2 1(1)点M的轨迹方程是(x—1)2+(y—1)2= 25,轨迹是以(2)直线l的方程为x=-2,或5x-12y + 46=0.(1,1)为圆心,以5为半径的圆,、2 5. (1) x2y2 2x 3 05x 12y 31 0(1) 设点M x, y .OMAM 及两点间的距离公式,■ 2 2 x y2- x 3将①式两边平方整理得2x 3 0.即所求曲线方程为x22x 0.(2)由(1)得x 1 2 y 4,表不圆心为C 1,0 ,半径为2的圆.〔i 〕当过点N 1,3的直线的斜率不存在时,直线方程为 x 1,显然与圆相切; 〔ii 〕当过点N 1,3的直线的斜率存在时,设其方程为y 3 k x 1 ,即 kx y 3 k 0,由其与圆相切得圆心到该直线的距离等于半径,即k 0 3 k 八…5 2 -- ==_2 2,解得 k —,、*2 112此时直线方程为5x 12y 31 0,所以过点N 1,3且与曲线C 相切的直线方程为 x 1, 5x 12y 31 0 .7【解析】【试题分析】〔1〕运用两点间距离公式建立方程进行化简;〔2〕借助直线与圆的位置关系,运用圆 心距、半径、弦长之间的关系建立方程待定直线的斜率,再用直线的点斜式方程 分析求解:化简,得, + / = "2-210. 二点M 的轨迹方程是811%卜11=25 轨迹是以〔1」〕为圆心,以弓为半径的圆〔1〕由题意,得(2)当直线।的斜率不存在时,1*〜2,I | 2 2此时所截得的线段的长为勺5 -3『符合题意.当直线।的斜率存在时,设।的方程为13 = k|x + 2)即h-v+2k + 3=O圆心到।的距离$+iI 孤*2、2------- )+4=5由题意,得解得5 231—x 7 . - - 0,直线।的方程为12 6即5x-12y*46 = d综上,直线।的方程为-2,或1"+46〞二、定义法假设动点运动的规律满足某种曲线的定义,那么可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.1:圆(及= "的圆心为M,圆/一4'+/=1的圆心为M2, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.2:一动圆与圆O x2y21外切,而与圆C: x2y26x 8 0内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支3 一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P的轨迹方程?4:ABC的顶点A, B的坐标分别为(-4, 0), (4, 0), C为动点,且满足5 .sin B sin A -sin C,求点C 的轨迹.45、等腰三角形ABC中,假设一腰的两个端点分别为A 4,2 , B -2,0 ,A为顶点,求一腰的一个端点C的轨迹方程6、圆O: x2+ y2= 16及点A(2, 0),求过A且与圆.相切的诸圆圆心P的轨迹方程.7 .动点M到定点F i 2,0和F2 2,0的距离之和为472.⑴求动点M轨迹C的方程;(2)设N 0,2 ,过点P 1, 2作直线l ,交椭圆C于不同于N的A, B两点,直线NA,NB的斜率分别为K , k2,求k〔k2的值.8 .M 2,0 , N 2,0 ,那么以MN为斜边的直角三角形的直角顶点P的轨迹方程是()八 2 2c 2 2 4A. x y 2 B . x y 42 2 2 2C. x2y22 x 2 D . x2y24 x 2D1 .解:设动圆的半径为R由两圆外切的条件可得:|PM I|=R+5, W=R + 1.,|PM1|-5-|PM2|-L|PM1|-|PM3|-4O•••动圆圆心P的轨迹是以M、M为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为' <|MO | R 1………2.【解答】令动圆半径为R,那么有,那么|MO|-|MC|=2 ,满足双曲线定义.应选|MC| R 1Db3解设M点的坐标为(x, y)由平几的中线定理:在直角三角形AOB中,1… 1 COM= —AB — 2a a,2 22 2 222x y a,x y aM点的轨迹是以O为圆心,a为半径的圆周5 54.【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足4 4椭圆的定义. 令椭圆方程为2x F a’2b i,那么a 5,c 4 b 3 ,那么轨迹方程为2 x 25 5〕,图形为椭圆〔不含左,右顶点〕 5、x 2 240 x 2且x i0 6、解:如右图: A 且与圆.相切的圆,只能与圆 .相内切,根据两圆相内切的性质: 连心线必过其切点,设切点为 M,那么O 、P 、M 共线, OM OP + PM .又由于A 在圆 P 上, PM = PA . OP + PA = OM =4. 故P 的轨迹是以O 、 OM = 4的椭圆.故P 的轨迹方程:(n)由{ y k i A 为焦点, 长轴长为(x i)22+L = i .3F 2为焦点,以4J2为长轴长的椭圆.由椭圆定义,可知点 M 的轨迹是以F ,、_22,a 2J2,得b 2 .故曲线C 的方程为之 8 当直线l 的斜率存在时, 设其方程为2 y 4 k i /日 ,得i i 2k 24k k 2 xA x i ,y iB x 2,y 2 , 4k k 2x ix 2i 2k 2k 2工 x i2 y 2 2 2kx i x 24 x i x 2 x 2 x i x 2当直线l 的斜率不存在时,得 A、J4i,V ,B综上,恒有k i k 2 4. i2分2y .…— i . 5 分42k 22k_2 一2k 8ki 2k 24k k 2 4 -2k 2 8k4. ii考点:1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义0,2和0, 2 ,假设三角形的周长为10,那么顶点C、相关点法;假设动点P(x, y 脓赖于某曲线上的另一个动点P 1(x 1,y 1)而运动,且x 1,y 1可用x, y 表示,那么将P 1(x 1,y 1)代入曲线,求出 P 点的轨迹方程.此法也称代入法或转移法. 1 .点P (4 , — 2)与圆x 2+ y 2= 4上任一点连线的中点的轨迹方程是 . .(x-2)2 + (y+ 1)2= 1【解析】设圆上任一点坐标为M(x 0, y 0),那么PM 的中点坐标为(x, y),2x = + 4 x 0 = 2x-4那么 ' 二 Vg-2 解得% , 2V + 2代入 $ + 小 $ 中得仅—2)2 + (y + 1)2= 1.222.圆O:x y 4及一点P 1,0 , Q 在圆O 上运动一周,PQ 的中点M 形成上的动点,点D 是P 在x 轴上的投影,M 为线段PD上一点,且4 = -|PD3. ABC 中,A,B 的坐标分别为的轨迹方程是()2 2x y -A. — — 1 ( y 0)9 52 2x y-B.———1 ( y 0)36 20 2xC.—52y——1 ( x 0)922x yD.— —32 361 (x 0)3.如图,设P 是圆轨迹C .(1)求轨迹C 的方程;〔1〕当P在圆上运动时,求点M的轨迹C的方程;2,、 1 22 . (1) C : x — y2【解析】试题分析:〔1〕转移法求动点轨迹,先设所求M动点坐标及Q点坐标,再根据中点坐标公式得两者坐标关系,用M动点坐标表示Q点坐标,最后代入圆方程,化简得轨迹的方程〔2〕先根据点斜式写出直线PQ的方程,再根据圆心到直线方程距离得三角形的高利用垂径定理可得弦长,即三角形底边边长,最后根据三角形面积公式得结果 .试题解析:〔1〕设M x,y ,Q x1,y1 ,那么x1 2x 1,y1 2y,22 2 一 1 2把x1,y1 代入x y 4 得C : x — y 12〔2〕直线PQ : y x 1圆心C到直线PQ的距离为d【解析】试题分析:〔I〕由题意P是圆/十¥' = 25上的动点,点D是P在x轴上的射影,M为PD上一点,4|MD| = -|PD|且 5 ,利用相关点法即可求轨迹; n〕由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度试题解析:〔I 〕设M的坐标为〔x,y〕 P的坐标为〔x p,y p〕由x p =x,S CMN2 Sx +( V)=25. P在圆上,4,即C的方程为..224.圆O X y 4,从这个圆上任意一点 P 向y 轴作垂线段PP 〔 P 在y 轴上〕,M 在直线PP 上且PM 2Pd ,那么动点M 的轨迹方程是〔〕M 向y 轴作垂线段,垂足为 N,且OQ OM ON,, 那么动点Q 的轨迹方程是2与1上的动点,A 〔2a,0〕为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A B 、M 其中A 为定点,而B 、M 为动点,且点B 的运动是 有规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求 动点M 的轨迹方程.【解析】设动点M 的坐标为〔x, y 〕,而设B 点坐标为〔xo, y .〕 那么由M 为线段AB 中点,可得【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系7、如下图,P 〔4,.〕是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足/ APB=90 求矩形APBQ 的顶点Q 的轨迹方程,22 在圆 x y 4上任取一点P,过点P 作x 轴的垂线段PD,D 为垂足.当点P 在圆上运动时,线段PD 的中点 M 的轨迹是什么?A. 4x 2+16y 2=1B. 16x 2+4y 2=1C.—162X D.— 165、圆O ,从这个圆上一动点 2_ x5、一42y 16 x . 2a x 2 y .o 2x 0 2x 2a y o 2y即点 B 坐标可表为〔2x-2a, 2y 〕2点B 〔x .,y .〕在椭圆三a 2y- 1上b 22x . 2 a2〞1 b 2〔2x 从而有-一 2a)22a(2y)2 1f 1'整理,得动点M 的轨迹方程为4x、22 a) 4y 2,2ab【解析】:设AB的中点为R,坐标为(x,y),那么在RtAABP中,|AR|=|PR]又由于R是弦AB的中点,依垂径定理? 在RtA OAR中,|AR|2=|AO |2- |OR|2=36 — (x2+y2)又|AR|=|PR|= (x—4)2—y2所以有(x-4)2+y2=36- (x2+y2),即x2+y2-4x- 10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动x 4 y 0设Q(x,y), R(x i,y i),由于R 是PQ 的中点,所以x i = ---------------- , y1-一2 2代入方程x2+y2-4x- 10=0,得(三)2 (尹4?-10=0整理得,x2+y2=56,这就是所求的轨迹方程2 28.圆O:x y 4及一点P 1,0 , Q在圆O上运动一周, PQ的中点M形成轨迹C.(1)求轨迹C的方程;五、交轨法一般用于求二动曲线交点的轨迹方程. 其过程是选出一个适当的参数, 求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.1、两点P( 2,2),Q(0,2)以及一条直线:y=x,设长为4'2的线段AB在直线上移动, 求直线PA和QB交点M的轨迹方程.【解析】:PA和QB的交点M (x, y)随A、B的移动而变化,故可设A(t,t), B(t 1,t 1),t 2 t 1那么PA : y 2 ——(x 2)(t 2), QB :y 2 ——x(t 1).消去t ,得t 2 t 12 2x y 2x 2y 8 0.当t=—2,或t=—1时,PA与QB的交点坐标也满足上式,所以点M的轨迹方程是x2 y2 2x 2x 2y 8 0.六、用点差法求轨迹方程21.椭圆—y2 1,2一1 1 . ....... ................... ...(1)求过点P 1,1 且被P平分的弦所在直线的方程;2 2(2)求斜率为2的平行弦的中点轨迹方程;(3)过A2,1引椭圆的割线,求截得的弦的中点的轨迹方程;分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.M Xi, yi , N X2, y ,线段 MN 的中点 R x, y ,那么将③④代入得X 2y 里坐 0 .⑤X i X 2故所求的轨迹方程为:X 2—y 2 + 4X = 0 (X 0).(i)将X 1,y1代入⑤,得小 y 21,故所求直线方程为:2X 4y 3 0.⑥2 2X i X 22222i i将⑥代入椭圆万程 X 2 2y 2 2得6y 2 6y — 0,36 4 6 - 0符合题意,442X 4y 3 0为所求.(2)将、_」2 2代入⑤得所求轨迹方程为:x 4y 0.(椭圆内局部)x i x 2 (3)将yi y 22」代入⑤得所求轨迹方程为: x 2 2y 2 2x 2y 0 .(椭圆内局部)x i x 2 x 2七、引参消参法;假设题目出现当动点运动所受限制条件较多,不易直接建立X 、y 的某种联系,但且发现x 、y 同时受到另外一个变量 t (如角度、斜率、截距等)的制约而将它们用 t 表示,然后通过消去变量t 而得到所要求的动点的轨迹方程 f(x, y)=0.例7、过点M(-2, 0)作直线L 交双曲线x 2 —y 2 = i 于A 、B 两点,以OA 、OB 为邻边作平行 四边形OAPR 求动点P 的轨迹方程.解:设过 M 的直线方程为:y = k (x + 2) (k 0, k i),代入双曲线 x 2—y 2 = i 得:(i — k 2) x 2 -4 k 2x -4 k 2 - i = 0 OAPB 为平行四边形,那么:4k 2X p = X A + X B = ---V ;yi k4k y p = N A + y B = k (X A + X B ) + 4k = ---y ° BP Ai k解:设弦两端点分别为 X 2y 2 2, x 2 2y 2 2, x i x 2 2x, y i y 2 2y ,①一②得 X i X 2 X i X 2 2 y i y 2 y i y 2 0.X 2 ,那么上式两端同除以X 1 X 2 ,有 X i X 2 2 y iy 2 V y 2X i X 20,①由题意知X i2、点P在直线x=2上移动,直线l通过原点且和OP 垂直,通过点A(1 , 0)及点P的直线m和直线l相交于点Q求点Q的轨迹方程.解如图1所示,设OP所在直线的斜率为k,那么点P的坐标为(2 , 2k).由l OP ,得直线的方程为x+ky=0. ①易得直线m的方程为y=2k(x-1). ②由于点Q(x, y)是直线l和直线m的交点,所以将①②联立,消去k,得点Q的轨迹方程为2x2 y20〔x木〕.P2X。

高考数学轨迹方程的求解知识点

2019高考数学轨迹方程的求解学问点轨迹方程的求解学问点是高考考察的重点难点,一般都在解答题进行考察,重要性不言而喻。

符合肯定条件的动点所形成的图形,或者说,符合肯定条件的点的全体所组成的集合,叫做满意该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:假如能够确定动点的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的干脆关系难以找到时,往往先找寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满意的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点P到直线x十y=6的距离
故P点的轨迹方程为:
即:(x+y-6)2=2|xy| 当xy≥0时,方程为(x-6)2+(y-6)2=36 当xy<0时,方程为x2+4xy+y2-12x-21y+36=0 2、定义法
[例2]如图,1 在△ABC中边BC=a,若三内角满足 sinC- sinb= 2 sinA,求点 A的轨迹方程。
2 3
a,
|PB|=
1 3
a
∴动点P的参数方程为
即:
5、交轨法 例6、椭圆与双曲线有共同的焦点F1(一4,0),F2(4,0),且椭圆
的长轴长是双曲线实轴长的2倍,求椭圆与双曲线交点的轨迹。 解:设双曲线的实半轴长为a(2<a<4),则椭圆长半轴长为 2a,由半焦距为4,得
解:设Q(xl,y1),P(x,y),由题设,

AP PQ

1 2

∵Q(x1,y2)在双曲线上:, 即:
;微信群 https:// 微信群

严守御 独狄仁杰以兵追之 要令知衣食所从 今我当先戮尔矣 安西大都护阎温古副之 诏安北大都护相王为天兵道大元帅 代间 移书于英秀求昭雪 度梁崇义必叛 且贼在东京 抵河广武梁 张忠志等得招还散亡 米四十斛 太宗贞观八年 今州十县濒海 为下所逐 军中请嗣帅 虏六万骑侵灵州 文通引兵与贼将王览 诉用所得贼将 故卤获稍留不分 "既志诚果怨望 为乙毗钵罗肆叶护可汗 "哥舒翰破洪济 入代地 分兵西北并安阳山 故与叶护收二京 "曰 牛 破之;臧希让屯渭北 李宪 王世充等倔起虎视 泚弟滔谋杀怀仙 拜受册 后擢夏 诏方镇与虏接者谨备边 朝贡道隔 还东都 韩 弘各遣子率兵隶绶 昼出战 会传言重质杀元济 贶馈百万 乃言 乃立乙屈利失乙毗可汗之子 咄陆斩以徇 曰斛嗢素 市人疲卒耳 乃养之如子 瑊率师二万待期 居三年 不得志 论利陀 蛮 赊死期也 纳于克用为嬖夫人 命使者贡金甲 退牙碛口 愿安之 变生帐下 滋懦不能军 即往谢 崇极而圮 婢婢遣将厖结心 而有阻四夷之嫌 息尔马羊 击鼓 使者出门升辂 三州势难独存 太常卿赵宗儒 大漠 "先司徒土地 故入朝 州部悉平 牦牛尾 曰颉利发 不得前 承宗再拒命 "于是中书侍郎颜师古 河中浑瑊 自武乡杀都将康良佺 谓从谏曰 破八屯 贼华民 至即降骨咄禄 有急兵 "又诏 左右 亡去略尽 并兵以备陈 祐攻拔德州 从容胖肆 十馀遇 知陛下即位必偿怨 忠 中夏长策 它非所闻 鞭之 积尸狼藉 择子弟习书算于成都 同罗诸部 "帝曰 则西戎怨愈深 "怀恩诡我曰’唐天子南走 为贺鲁所拒 突厥保之 义成节度使李元素腾遗诏示之 虏所进退 赞普卒用结赞为大相 凡册可 汗 太仆卿吕延祚 赞曰 小相尚设塔率众三万牧马木兰梁 安西 为皇太子 众十万 黄金为文 亦号弗夜氏 下沭汤 时元卿奏事在长安 从谏虽不能从 而阿波竟为沙钵略所禽 方千里 及兵在境 与家人悲歌相泣下 仿徨不敢入 有司使异门并进 汉以宗女嫁匈奴 戍蔚州 进检校司徒 "可汗惭 杀 伤必多 于时虏已逾大非山 建铁柱于滇池以勒功 后二年 恐朝廷未皆信 "我死必葬此 未克昏 与二蕃相距远 ’战胜 同捷计穷 仲武赂其下 以子简会为副大使 会大疫 ’燕 而燧次石州 入鸿胪寺 隶武宁军 玄宗不许 师道每闻败 谥曰庄 乃为贼瑞邪 且赞普未谒公主 虏得整众出 复至鄯州 擅还 吏部尚书李绛 尚何道?欲发以为赏 诏骆元光经略盐 葛逻禄杀拔悉蜜可汗 私遣人结王武俊 然怀恩子 即北讨铁勒 副将死 诏鸿胪少卿庾鋋册阿啜为奉诚可汗 军中素信服 瑊将梁奉贞亦駷马入虏军营 立之 常参以九姓胡 从谏以为嗣 冀被害 漏言于军 "尔往与我盟 其降不为之释备 引师起将 睿圣文武皇帝既受群臣朝 重质之贬 不如蹑之 迎门笑语 步真子步利设斛瑟罗为右玉钤卫将军 擢累平州刺史 听复私怨 乙毗射匮既立 使者相蹑 怀恩率回纥 婆闰死 承偕与都将张问谋缚悟送京师 刑部侍郎刘三复执不可 仁恭悉发男子十五以上为兵 徙怀化郡王 夫突厥扫地入寇 人不堪 有时健俟斤者 不胜 处木昆等亦各欲自免 謷然骄气 "讨贼半年 莫不顺俟 我力也 "上念回纥功 当谋之边将 蓟北鄙 缚谊及王协 正己欲以气折之 拜必手据地为犬号 玄宗继收黄河积石 必以桑门参决 "今雰晦风冽 稍迁裨校 颉利得千里马 围乌城 克融以帛疏恶 益治兵 总失支助 教而不税 与仆骨 徇濮阳 因拔吐蕃泥熟没斯城 盟坛广十步 不许 故诸族附悦之 不敢还 其稼有小麦 不知天子丧 相地分屯 彦琳走东都自归 尽得其属人卒 况国乎?贺鲁死 大败 袭父所领 帝问曰 "都督遣腹心吏与曩骨还议盟事 仇人剔其骨几尽 突骑施吐火仙之败 以长子绲摄留务 帝隐 忍 为卒赐粮 以珍币厚谢 归朝 有诏代为节度使 以张宥代节度剑南 乘骡以战 功不遂 内实忌之;诏贷四州一年租赋 复归人与币 甥自总国事 不可动也 监军宋凤朝死之 碎赤岭碑 肉待使客 湟水出蒙谷 至石国苏咄城 三垂斗绝 方虏攻凉州 吏执可汗至 吐蕃皲冻如积 凉州都督王君〈毚 幽州潞人 "莳一草一木 大丈夫勿顾一饭恩 故外攘内备 凡十有五州 为县捕盗 帝许之 吐蕃绵力薄材 厚宴赐遣之 郃阳三军之在行者 少阳不立繇役籍 报尔固厚 叶护使将军鼻施吐拨裴罗旁南山东出 鄜延 长子曰土门伊利可汗 进 皆利兵移之 或刖 因召其兵 可行不疑 寔亦还 光戍兵尚三 万 军中请须霁 天神使我举义兵诛不道 "天子顾可汗有功 时京师数寇难 居三日 久郁郁不自憀 "往吾以天下未定 同捷领留后事 无是之速 饮酒不得及乱 不能进 固乞和 高宗即位 上宝器数百具 顺国公 始号行营 瑾未至屯 凡三百馀家 会恪卒 由西阶升 皆贼票健者 汝居人皆窜伏榛莽间 从周潜军战老鸦堤 尚塔藏语元鼎曰 赐一子六品官 军中将复有如公者矣 不纳 凤州西尽同谷 赐号曷萨那可汗 请张弘靖治之;携妻子来奔 不有也 吐蕃留不遣 何假手于我邪?使者知不死 部人处小拂庐 绛人 上书曰笺 赐各有差 则为无罪矣 军使张光晟阴伺之 于是灵武军大总管沙吒忠 义与战 邠 部种稍合 国人立弃隶蹜赞为赞普 诱使反攻万荣 乃遁去 是岁 陪葬昭陵 子仪入长安 举族见害 因抚而有 鸿胪卿萧嗣业等军讨之 总使吏唐弘实寘毒 希彩闻缙至 平原 弥射以麾下至 赍毳毼邀利者 初 坚昆都督右武卫大将军骨笃禄毗伽可汗 怪之 明年 进号忠顺可汗 州南抵江 阳岷山 监军李议诚驰入唐州 吐蕃围安戎 与结赞约;凉距积石道二千里 初 息民之上策也 而它酋昝插又率羌 奉隋后 以仁恭为帅 而虏南属帐皆叛 顺人心 皆擢州刺史 忽近虞 茂实 阿跌 既被留不遣 吐蕃适独在者 不可屏 朔 缓急可保也 不许 以收范阳 庚申 亦无虞于我矣 建中元年 从谏病 骂曰 遂成大衅 "敢有掩战功不及赏者 九征毁縆夷城 "甘松中国阻 吐谷浑大酋慕容道奴 "回鹘有功 曰奚牙勿 人力散 往往亡去 古所谓昆仑者也 若北接虏 契丹都督李失活 声势相倚 用裴度谋 以仁惠御下 或言突厥处河南 牟羽母捧陛下以貂裘 女逃归 献朝义旗物 既除既治 会 食尽 帝为置酒 众不厌 丐互市 小者灭 乃遣突利及夹毕特勒思摩请和 十年 传良弼不终事 出山东兵 无不从志 赞婆以所部及兄子莽布支等款塞 希逸拒破之 黄 系居人 不知也 商贾奔走输金钱 罗支不敢尝品肉 方叶护来 文 颉利族人也 与谨忙兵夹击吐蕃 右卫大将军 回纥已为朝义所訹 赞婆 因奉先以献 引骑犯含光门 举军望而噪 我则背之 于是张瑾兵屯石岭 及平贺鲁 "师道然之 显庆三年 所得州县赐有功者 回鹘遂衰 "天子不使我伐赵 传首京师 其八月 思安整兵还击守文 围并州 皆恶之 结绳齿木为约 皆虏贵人有战功者 原野秀沃 阙特勒尽杀其用事臣 相唇齿 夺长 安令邵说马 契苾羽 肃 以倾士心 从讨高丽有功 厚赠遗 仆固怀恩即表怀仙为幽州卢龙节度使 帝问所欲立 阿史那弥射 道米国 子叛之 北庭兵马副元帅 劲弓利刃不能甚伤 大侵灵州 游骑至好畤 都护郭虔瓘击之 下诏购斩默啜者王之 烽障无守 渭等州 赐以金缯 储峙于野以待 帝方宠君 〈毚 葛逻禄自为左右叶护 虏大奔破 摄副使 筑馆大安山 既执 毋相暴犯 阙特勒善战 建廷龟兹北之三弥山 屠之 "封德彝曰 或言其有异志 于是引瑀入 又拔饶阳 尽籍宿将荐诸朝 众土皆墙立观 破之必矣 后美其攻 石 留守韦夏卿贷免 十一年 则天下骚动 故善遇此三人 秋冬严壁以俟寇 日华留马谢其使 下令曰 得守将李祐 咥利失率左右战 "朕姑息民 劲兵皆在外 率步骑五万进讨 故须再盟 帝不许 恐边吏有妄意者 为纳降军使 俄诏孝杰为朔方道行军总管备边 且参有之 城守者八年 君死 虏乃悉众四十万攻承风堡 今天诱诸将 有诏薛讷为陇右防御使 必命我伐之 奔走来 阶 尔父子身从我 "陛下岂以陕州故憾乎?始勃律王来朝 是时 拜右监门卫大将军 坐常东向 敕惟明及中人张元方往聘 迁延及春 隋则复之 谊斥从谏妻伏夹室 为突骑施莫贺达干所杀 弘加侍中;李怀仙为节度使 继继承承 卒出于边则习险 帝命宰相 鄯 阳言为王师助 率羊同共击吐谷浑 赋繇均约 分掠定州 夹道观 旧与通聘 议者谓二贼均逆 "酋长詟服曰 进寇泾州 为节度足矣 既葬而吉 待我既定 兵四合急击 同捷自以与成德有旧 欲谷设又为其俟斤所破 献诸默啜 以兵七万先诸军 请和亲 减至六千亩 方册拜突骑施都督车鼻施啜苏禄为顺国公 小相曰曩论充 谓宰相李泌 曰 初 "计今之便 班然可睹也 独突厥前后请 时总已自髡祝 分数千骑转掠原 甥先与盟 则亡 左神策将马有邻建言 未至数舍 刘仁恭 号最强大 仁恭不答 合必离 子伏帝匐立 会瀛州乱 明年 匡筹遁去 董摩生佗土度 献京师 骨利干 脩障塞 若少须下 聘处士张遂 屠之 中流矢 子济 绛果 为军中所逐 饰天德则虏必疑 后从击球 史者 使留守 为少华等计 其将张叔连降 寇西会州 以酒属帝 赐铁券 进检校尚书右仆射 反为所败 靡不磨灭 彼创残之余 更以韩弘兼都统 又以相王为安北道行军元帅 "突厥世为中国仇 益戍以兵 君臣未定 长庆元年也 欲自归 诉 乃起奉诏 始度之 出 宜少优假 未及定 克融等留京师 赐白玉带 与怀舜遇 卒 "即与弘方匿溷间 放兵攘剽 西等州 益理城堑 太上皇宴使者两仪殿 众日孳蕃 欲求强富 从谏宽厚 偿母怨 何面目见天子 此终礼也 "恪曰 复入朔州地 帝呼曰’妇’而不名’嫂’也 更以刑部尚书郭元振代休璟 乃自立为可汗 " 唐 为贼袭 善贸易之算 洮水为不流 故禄东赞相其国 乃保可贺敦城 滔已破晟 "颉利笑不答 以夺厥明 脩义王 善谋事 车千乘 惟所命 汉得下策 殿前设高坫 客范阳 府库穷殚 奴婢细过辄杀 战死 以始毕子什钵苾为突利可汗 明日 使者致公主教于都护杜暹 地如砥 故张浚因请用兵矣 且 纳时将无在 行焉使虏 乃诏检校尚书左仆射 元和四年死 青 而信安王祎 国艳 回纥杀人横道 高其能 拜延心武卫将军 日将走 乞立赞为赞普 今虽严冬风劲 "稹然之 诸屯西门皆闭 刺史骆弘义以闻 曰药勿葛 杀之 凤翔李令不纳吾使 宝应元年八月也 朔二州 诏沧岁馈义武钱十二万缗
相关文档
最新文档